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Abstract

This paper investigates data traffic offloading by considering a third-party cognitive small cell with wireless powered
user equipments (UEs) providing data traffic offloading service to a primary macrocell. The cognitive small cell is
assumed to use remaining resources for its own purpose provided that the quality of service (QoS) of the primary
macrocell is satisfied. It is assumed that the small cell UEs (SUEs) are wirelessly powered and can harvest energy from
the RF signals transmitted by the macrocell UEs (MUEs) as well as the RF signals transmitted by the small cell BS (SBS).
Under the assumption that the successive interference cancellation (SIC) decoder is available or not available at the
SBS, iterative optimization-based data traffic offloading schemes are proposed to maximize the SUE sum rate
provided that the required minimumMUE sum rate is satisfied. It is shown that the proposed data traffic offloading
schemes are effective in improving the performance of the MUEs and providing transmission opportunities for the
wireless powered SUEs.
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1 Introduction
Data traffic offloading is an effective way to address the
network overloading issue for overloaded cellular net-
works due to unprecedented increase in data traffic [1].
The quality of service (QoS) of the users in overloaded
networks cannot be satisfied, while data traffic offloading
can offload part of the data traffic load off the overloaded
networks, and thus, the QoS of the users can be improved.
Meanwhile, the recently proposed cognitive radio (CR)

technology is able to address the spectrum scarcity prob-
lem by allowing the secondary users who have no licensed
spectrum band to share the spectrum bands licensed to
the primary users [2]. In order to protect the licensed pri-
mary users, the activities of the secondary users cannot
affect the QoS of the primary users. Various problems in
CR networks have been studied, such as resource allo-
cation [3–8] and security issues [9, 10]. Generally, if the
primary users cannot benefit from allowing the secondary
users to transmit using their licensed spectrum bands, the
primary users have no incentive to do so. Therefore, in
the situation where the primary networks are overloaded
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and the secondary networks are light loaded, some pri-
mary users can direct their data traffic to the secondary
networks for better service experience, and as a reward
for the secondary networks, they can access the licensed
spectrum bands as long as the QoS of the primary users
is satisfied. Particularly, CR networks can form small cells
to deal with the data traffic offloaded from the primary
networks.
Energy harvesting is a promising technology that can

provide perpetual energy to wireless equipments [11].
Especially, for small wireless equipments such as wire-
less sensors or small portable equipments, energy har-
vesting through radio frequency (RF) signals is very
attractive. Naturally, CR and energy harvesting can be
jointly considered and designed. Specifically, with energy-
harvesting capability, CR equipments can be powered
by green energy sources and RF signals. Thus, energy
harvesting provides a sustainable power supply to the
energy-constrained CR networks. On the other hand, with
CR capability, energy-harvesting wireless networks can
explore new available spectrum for overcoming the issue
of limited available spectrum.
Therefore, for wireless powered secondary user equip-

ments (UEs) in CR networks, they can harvest energy
from RF signals transmitted from the primary UEs as well
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as from a dedicated power station. For the CR networks
that offer data traffic offloading service to the primary net-
works, the wireless powered secondary UEs can harvest
energy while the primary UEs are transmitting and trans-
mit using the harvested energy while the QoS of the pri-
mary UEs is satisfied and the secondary UEs are allowed to
transmit. Such data traffic offloading for the primary UEs
via CR networks with wireless powered secondary UEs
can achieve a win-win situation for the primary UEs and
the secondary UEs. However, how to optimize time allo-
cation between energy harvesting and data transmission,
how to determine which primary UEs are offloaded to the
CR network, and how to control the transmit powers of
the secondary UEs and the primary UEs remain unknown.
This motivates the work in this paper.
This paper considers a third-party cognitive small cell

with wireless powered secondary UEs that provides data
traffic offloading service to a primary macrocell. As long
as the QoS of the primary macrocell is satisfied, the cog-
nitive small cell can use the remaining time and frequency
resources for its own purpose. Specifically, successive
interference cancellation (SIC) decoder is assumed to be
available at themacrocell BS (MBS), while the small cell BS
(SBS) is assumed to be equipped or not equipped with SIC
decoder. It is assumed that the small cell UEs (SUEs) are
wirelessly powered and can harvest energy from the RF
signals transmitted by the macrocell UEs (MUEs) as well
as the RF signals transmitted by the SBS. With or without
SIC decoder at the SBS, we aim to optimize data traffic
offloading, time, and power allocation for maximizing the
SUE sum rate under the constraint that the required mini-
mumMUE sum rate is achieved. Such optimization prob-
lems are highly nonlinear nonconvex, and thus, optimal
solutions are unknown. To solve the optimization prob-
lems, we propose iterative optimization-based schemes
to iteratively optimize data traffic offloading, time, and
power allocation.
The main contributions and results of this paper are

summarized as follows.

• We consider a secondary small cell with wireless
powered SUEs to provide data traffic offloading
service to MUEs in a primary macrocell and
formulate the problem of optimizing data traffic
offloading, time, and power allocation for maximizing
the SUE sum rate under the required minimumMUE
sum rate.

• By assuming that SIC decoder is available or not
available at the SBS, we propose an iterative
optimization-based scheme to solve the optimization
problem by iteratively optimizing data traffic
offloading, time, and power allocation.

• We show that the proposed data traffic offloading
schemes are effective in improving the performance

of the MUEs and providing transmission
opportunities for the SUEs. Specifically, the MUE
sum rate with offloading is shown to be significantly
higher than that without offloading. It is also shown
that equipping SIC decoder at the SBS can increase
both the SUE sum rate and the MUE sum rate
compared to the case without SIC decoder at the
SBS. In addition, it is shown that increasing the
transmit power limit of the MUEs is beneficial to
both the MUEs and the SUEs.

The remainder of the paper is organized as fol-
lows. Section 2 surveys works related to this paper.
Section 3presents the system model. Section 4 presents
the data traffic offloading scheme without SIC decoder
at the SBS. Section 5 presents the data traffic offloading
scheme with SIC decoder at the SBS. Section 6 verifies the
proposed data traffic offloading schemes using extensive
simulation results. Section 7 concludes the paper.

2 Related work
So far, data traffic offloading in wireless networks has been
researched a lot. In [12], a two-level offloading scheme
that takes the network load and interference conditions
into account in small cell networks was proposed. In [13],
a learning mechanism-based fair auction scheme for data
offloading in small cell networks was proposed. In [14], an
optimal energy-efficient offloading scheme based on the
auction theory was proposed. In [15], a network-assisted
user-centric WiFi offloading scheme in a heterogeneous
network was proposed. In [16], the efficiency of the oppor-
tunistic and the delayed WiFi offloading schemes was
analyzed. In [17], the problem of joint BS switching,
resource allocation, and data traffic offloading was inves-
tigated. Note that all the works in [12–17] on data traffic
offloading did not consider CR and energy-harvesting
capabilities for the target data traffic offloading networks.
The works that considered data traffic offloading

through CR networks include [18–21]. In [18], the authors
proposed to deploy cognitive small cells to offload the
data traffic from the long-term evolution (LTE) network.
In the work, the cognitive small cells were assumed to
belong to the LTE network’s operator. In [19], a flexible CR
functional architecture was proposed for offloading data
traffic from the LTE network using the TV whitespaces
and was mapped to the LTE network architecture. In [20],
the authors considered traffic offloading through hetero-
geneous networks, where the offloaded users are treated
as the secondary users and the users in the heterogeneous
networks are treated as the primary users. In the work,
Stackelberg game was used to optimize the utilities of the
secondary users and the primary users. In [21], the cog-
nitive small cells were assumed to offload users from the
congested macrocells and the authors explored stochastic
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geometry to investigate the load of each cells and the
effects of different offloading techniques. Note that, dif-
ferent from this paper, all the works in [18–21] assumed
that the secondary users are powered by constant energy
sources.
Our paper is also related to the work on energy-

harvesting-based wireless networks. In [22], the authors
investigated simultaneous wireless information and
power transfer for non-regenerative multiple input
multiple-output orthogonal frequency-division multi-
plexing (MIMO-OFDM) relaying systems and proposed
two protocols to maximize the throughput. In [23], an
energy-efficient resource allocation scheme was proposed
for an OFDM based full-duplex distributed antenna
system with energy-harvesting capability. In [24], an
iterative subchannel and power allocation scheme was
proposed for a heterogeneous cloud small cell network
with simultaneous wireless information and power trans-
fer. In [25], a wireless powered communication network
with group energy cooperation was considered and
the resource allocation was optimized to maximize the
weighted sum rate and minimize the power consumption.
In [26], the problem of joint user association and power
allocation in a millimeter wave ultra dense network with
energy-harvesting base stations was investigated and an
iterative gradient-based algorithm was proposed. In [27],
the capacity region of a multiple access channel with
energy-harvesting transmitters and energy cooperation
was derived. Note that, as the works in [22–27] are not
for CR, providing data traffic offloading service to the
primary users is not of concern.
The works on energy-harvesting-based CR networks

include [28–32]. In [28], the time and energy allocation
problem for CR multiple access networks with energy
harvesting was formulated as a Stackelberg game, and
then, the Stackelberg equilibrium was derived. In [29], a
distributed channel selection strategy was proposed for
a multichannel CR system with energy-harvesting sec-
ondary users. In [30], the optimal power control and
time allocation for CR networks with wireless powered
secondary users to maximize the sum rate of the sec-
ondary users under the interference power constraint at
the primary user was derived. In [31], the wireless pow-
ered secondary users were assumed to relay the signals
from the primary users and energy-efficient scheduling
and power control algorithms were proposed. In [32],
the secondary users were assumed to cooperate with the
wireless powered primary users in exchange for transmis-
sion opportunities and the resource allocation schemes
to maximize the sum rate of the secondary users under
the minimum rate constraint at the primary users were
proposed. It is noted that, although the works in [28–32]
considered to guarantee or improve the performance of
the primary users, unlike this paper, they did not consider

that the SUs can provide offloading service to the primary
users. To our best knowledge, there is no work on the
topic of data traffic offloading considering both CR and
energy-harvesting capabilities yet.

3 Systemmodel
An uplink macrocell network with M MUEs and a MBS
licensed with a narrow spectrum band is considered1, as
shown in Fig. 1. Meanwhile, an uplink small cell network
with K wireless powered SUEs and a SBS with no licensed
spectrum band is considered to be in the coverage area of
the macrocell network. It is assumed that the MUEs can
be served by theMBS or offloaded to be served by the SBS.
As long as the performance of the macrocell network is
guaranteed, the small cell network can use the spectrum
licensed to the macrocell network for its own purpose.
We assume that all the channels are block-fading, i.e.,

the channel power gains are constant in each transmission
block and change independently. The channel power gains
from the MUE m to the MBS, between the SUE k and the
SBS, from the MUE m to the SBS, and from the MUE m
to the SUE k are denoted by hpm, hsk , h

ps
m , and hm,k , respec-

tively. We assume that perfect channel state information
(CSI) on these channel power gains is available at a central
control unit (CCU) which is responsible for making the
data traffic offloading decision. Usually, the MBS can be
the CCU. The CSI of the links from the MUEs to the MBS
and the links between the SUEs to the SBS can be obtained
by classic channel estimation methods, while the CSI of
the links from the MUEs to the SBS and from the MUEs
to the SUEs can be obtained by cooperation between the
macrocell and the small cell as proposed in [33].
The transmission time for each transmission block

denoted by T is assumed to be divided into three slots.

Fig. 1 System model
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The first slot is for MUE data communication with time
τ0. It is assumed that the SUEs can harvest energy from
the received signals transmitted by the MUEs in this slot.
The second slot with time τ1 is for the SBS to broadcast
energy wirelessly to the SUEs with transmit power psSBS.
The third slot with time τ2 is for the SUEs to use harvested
energy from the former two slots to transmit data to
the SBS.
Let ppm and psk denote the transmit power of the MUEm

in the first slot and the transmit power of the SUE k in the
third slot, respectively.We denote pp = [

pp1, . . . , p
p
M

]T and
ps = [

ps1, . . . , p
s
K
]T . The transmit power of the MUEs is

restricted as ppm ≤ Ppmax form = 1, . . . ,M due to hardware
limits. The energy harvested by the SUE k during the first
and the second slots is given by

Ek = ζ τ0

M∑

m=1
ppmhm,k + ζ τ1psSBSh

s
k , (1)

where ζ denotes the energy-harvesting efficiency. Thus,
the consumed energy during the third slot for the SUE k
cannot exceed the energy harvested during the first and
the second slots as given by

pskτ2 ≤ ζ τ0

M∑

m=1
ppmhm,k + ζ τ1psSBSh

s
k . (2)

Let αm ∈ {0, 1} and βm ∈ {0, 1} denote whether the
MUEm is connected to theMBS and the SBS, respectively,
where αm = 1 denotes that theMUEm is connected to the
MBS and vice versa, while βm = 1 denotes that the MUE
m is offloaded to the SBS and vice versa. It is assumed
that each MUE can be connected to either the MBS or the
SBS, i.e., αm + βm ≤ 1, for m = 1, . . . ,M. We denote
α =[α1, . . . ,αM]T and β =[β1, . . . ,βM]T .
In order to guarantee the QoS of the macrocell network,

the minimum MUE sum rate is required to be larger than
a threshold as given by2

Rp(τ0,α,pp) + Rps(τ0,β ,pp) ≥ Rmin, (3)

where Rp(τ0,α,pp) is the sum rate of theMUEs connected
to the MBS, Rps(τ0,β ,pp) is the sum rate of the MUEs
offloaded to the SBS, and Rmin is the required minimum
MUE sum rate.
Our aim is to maximize the SUE sum rate denoted

by Rs(τ2,ps). We assume that the MBS is powerful and
equipped with SIC decoder while the SBS is less powerful
and may or may not be equipped with SIC decoder. Thus,
Rp(τ0,α,pp) can be expressed as

Rp(τ0,α,pp) =τ0
T

ln
(

1 +
∑M

m=1 αmp
p
mh

p
m

σ 2

)

, (4)

and the exact expressions of Rps(τ0,β ,pp) and Rs(τ2,ps)
depend on whether SIC decoder is available at the SBS.

On the one hand, if SIC decoder is not available at the
SBS, the expressions of Rps(τ0,β ,pp) and Rs(τ2,ps) can be
written as

RNSIC
ps

(
τ0,β ,pp

) = τ0
T

M∑

m=1
ln

×
⎛

⎝1 + βmp
p
mh

ps
m

σ 2 + ∑M
m′=1,m′ �=m βm′ pp

m′ hpsm′

⎞

⎠ ,

(5)

and

RNSIC
s

(
τ2,ps

) =τ2
T

K∑

k=1
ln

⎛

⎝1 + pskh
s
k

σ 2 + ∑K
k′=1,k′ �=k p

s
k′hsk′

⎞

⎠ ,

(6)

respectively. On the other hand, if SIC decoder is available
at the SBS, the expressions of Rps (τ0,β ,pp) and Rs (τ2,ps)
can be written as

RSIC
ps

(
τ0,β ,pp

) =τ0
T

ln
(

1 +
∑M

m=1 βmp
p
mh

ps
m

σ 2

)

, (7)

and

RSIC
s

(
τ2,ps

) =τ2
T

ln
(

1 +
∑K

k=1 pskh
s
k

σ 2

)

, (8)

respectively.

4 Offloading schemewithout SIC decoder at the
SBS

This section investigates the data traffic offloading
scheme when SIC decoder is not available at the SBS. The
optimization problem is formulated as

max
τ0,τ1,τ2,α,β ,pp,ps

RNSIC
s (τ2,ps) (9)

s.t. τ0 + τ1 + τ2 ≤ T , τ0 ≥ 0, τ1 ≥ 0, τ2 ≥ 0, (10)
αm ∈ {0, 1},βm ∈ {0, 1},∀m, (11)
αm + βm ≤ 1,∀m, (12)
0 ≤ ppm ≤ Ppmax, ∀m, (13)

0 ≤ pskτ2 ≤ ζ τ0

M∑

m=1
ppmhm,k + ζ τ1psSBSh

s
k , ∀k, (14)

Rp(τ0,α,pp) + RNSIC
ps (τ0,β ,pp) ≥ Rmin. (15)

The above problem is a highly nonconvex nonlin-
ear problem, and thus, the optimal solution is hard to
obtain.We solve the above problem by iteratively optimiz-
ing τ0, τ1, τ2 with given α,β ,pp,ps, optimizing α,β with
given τ0, τ1, τ2,pp,ps, and optimizing pp,ps with given
τ0, τ1, τ2,α,β .
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With given α,β ,pp,ps, the problem in (9) reduces to the
following problem to optimize τ0, τ1, and τ2 as given by

max
τ0,τ1,τ2

RNSIC
s (τ2,ps) (16)

s.t. τ0 + τ1 + τ2 ≤ T , τ0 ≥ 0, τ1 ≥ 0, τ2 ≥ 0, (17)

pskτ2 − ζ τ0

M∑

m=1
ppmhm,k − ζ τ1psSBSh

s
k ≤ 0,∀k,

(18)

τ0 ≥ RminT
Cp

, (19)

where Cp = ln
(
1 +

∑M
m=1 αmp

p
mh

p
m

σ 2

)
+ ∑M

m=1 ln
(

1 + βmp
p
mh

ps
m

σ 2+∑M
m′ =1,m′ �=m

βm′ pp
m′ h

ps
m′

)

. It is observed that the

above problem belongs to the linear programming and
thus can be solved efficiently by linear programming
methods such as the simplex method [34].
With given τ0, τ1, τ2,pp,ps, the problem to optimize α,β

is given by

max
α,β

RNSIC
s (τ2,ps) (20)

s.t.αm ∈ {0, 1},βm ∈ {0, 1},∀m, (21)
αm + βm ≤ 1,∀m, (22)

Rp(τ0,α,pp) + RNSIC
ps (τ0,β ,pp) ≥ Rmin. (23)

The objective function of the above problem does not
depend on α,β . Thus, the above problem can be solved
by checking whether the problem is feasible by solving the
following problem as given by

max
α,β

Rp(τ0,α,pp) + RNSIC
ps (τ0,β ,pp) (24)

s.t.αm ∈ {0, 1},βm ∈ {0, 1},∀m, (25)
αm + βm ≤ 1,∀m. (26)

It is noted that the problem in (20) is infeasible if the
obtained maximum objective function value in (24) is
smaller than Rmin. The problem in (24) belongs to inte-
ger programming and thus is hard to be solved. Here,
we propose a heuristic scheme as follows. Initially, we set
αm = 0,βm = 0 for all m = 1, . . . ,M. Then, the MUEs
are sequentially decided to be connected to the MBS or
the SBS by selecting the one that provides higher objective
function value in (24). Since the sequence of theMUEs has
great impact on the performance of the heuristic scheme,
we randomly generate the sequence of the MUEs sev-
eral times and then pick the one that provides the highest
objective function value in (24). The algorithm to solve the
problem in (24) is summarized in Algorithm 1.

Algorithm 1 Algorithm for solving the problem in (24)
1: Set M = {1, . . . ,M} and randomize the order of the

elements inM for Υ times.
2: for each randomization ofM do
3: Set αm = 0, βm = 0 for allm ∈ M.
4: for allm such thatm ∈ M do
5: Let αm = 0, βm = 1. Calculate the objective

function in (24) and denote the result as Obj1.
6: Let αm = 1, βm = 0. Calculate the objective

function in (24) and denote the result as Obj2.
7: if Obj1 > Obj2 then
8: Set αm = 0, βm = 1.
9: else

10: Set αm = 1, βm = 0.
11: end if
12: end for
13: end for
14: Choose the one that maximizes the objective function

in (24) from the Υ solutions.

With given τ0, τ1, τ2,α,β , the problem to optimize pp,ps
is given by

max
pp,ps

RNSIC
s

(
τ2,ps

)
(27)

s.t. 0 ≤ ppm ≤ Ppmax, ∀m, (28)

0 ≤ psk ≤ ζ τ0
∑M

m=1 p
p
mhm,k + ζ τ1psSBSh

s
k

τ2
, ∀k,

(29)

Rp
(
τ0,α,pp

) + RNSIC
ps

(
τ0,β ,pp

) ≥ Rmin. (30)

We solve the above problem by iteratively optimizing ps
with the given pp and optimizing pp with the given ps.
With the given pp, we optimize ps as

max
ps

RNSIC
s

(
τ2,ps

)
(31)

s.t. 0 ≤ psk ≤ ζ τ0
∑M

m=1 p
p
mhm,k + ζ τ1psSBSh

s
k

τ2
, ∀k.

(32)

The above problem can be solved by iteratively optimiz-
ing one variable with other variables being fixed. With the
given ps1, . . . , p

s
k−1, p

s
k+1, . . . , p

s
K , the objective function in

(31) is a function of psk and is denoted by f sk
(
psk

)
. The first

derivative of f sk
(
psk

)
can be obtained as

df sk
(
psk

)

dpsk
= τ2hsk

T
(
σ 2 + ∑K

l=1 pslh
s
l

)

×
⎛

⎝1 −
K∑

k′=1,k′ �=k

ps
k′hsk′

σ 2 + ∑K
l=1,l �=k′ pslh

s
l

⎞

⎠ .

(33)
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It can be verified that τ2hsk
T

(
σ 2+∑K

l=1 p
s
lh

s
l

) is positive, and the

remaining part of df sk
(
psk

)

dpsk
is a strictly increasing function of

psk . Thus, the solution to df sk (psk)
dpsk

= 0 denoted by psk = xk is
unique. The function f sk (p

s
k) is an increasing function of psk

if xk ≤ 0, is a decreasing function of psk if xk ≥ Psmax, and
decreases as psk increases and turns to increase when psk is
beyond xk if 0 < xk < Psmax. Based on the above analysis,
the solution of psk is psk = Psmax if xk ≤ 0, is psk = 0 if
xk ≥ Psmax, is psk = 0 if 0 < xk < Psmax, f sk (0) > f sk (P

s
max),

and is psk = Psmax if 0 < xk < Psmax, f sk (0) ≤ f sk (P
s
max). In

summary, the solution of psk is given by

psk =
⎧
⎨

⎩

Psmax, xk ≤ 0,
Psmax, 0 < xk < Psmax, f sk (0) ≤ f sk (P

s
max),

0, otherwise.
(34)

With given ps, we optimize pp as

max
pp

RNSIC
s (τ2,ps) (35)

s.t. 0 ≤ ppm ≤ Ppmax, ∀m, (36)
M∑

m=1
ppmhm,k ≥ pskτ2 − ζ τ1psSBSh

s
k

ζ τ0
, ∀k, (37)

Rp(τ0,α,pp) + RNSIC
ps (τ0,β ,pp) ≥ Rmin. (38)

The objective function of the above problem does not
depend on pp. Thus, the above problem can be solved by
checking whether the problem is feasible by solving the
following problem as given by

max
pp

Rp(τ0,α,pp) + RNSIC
ps (τ0,β ,pp) (39)

s.t. 0 ≤ ppm ≤ Ppmax, ∀m, (40)
M∑

m=1
ppmhm,k ≥ pskτ2 − ζ τ1psSBSh

s
k

ζ τ0
, ∀k. (41)

It is noted that the problem in (35) is infeasible if the
obtained maximum objective function value in (39) is
smaller than Rmin. The problem in (39) is solved in a
heuristic way. First, without considering the constraint in
(41), the problem in (39) is solved in what follows. Since
Rp(τ0,α,pp) is an increasing functions of pp. Thus, the
optimal ppm is given as ppm = Ppmax for m ∈ {m|αm = 1,
m = 1, . . . ,M}. For the optimal {ppm,m ∈ {m|βm = 1,
m = 1, . . . ,M}} of the problem in (39), we iteratively opti-
mize one variable with other variables being fixed similar
to the problem in (31) and obtain the solution of ppm as
given by

ppm =
⎧
⎨

⎩

Ppmax, ym ≤ 0,
Ppmax, 0 < ym < Ppmax, f

p
m(0) ≤ f pm(Ppmax),

0, otherwise,
(42)

where f pm
(
ppm

)
denotes the function RNSIC

ps (τ0,β ,pp) of p
p
m

with other variables being fixed, and ym is the solution to
the following equation as given by

1 =
∑

m′ ∈Mβ ,m′ �=m

pp
m′hpsm′

σ 2 + ∑
l∈Mβ ,l �=m′ ppl h

ps
l
, (43)

where Mβ = {m|βm = 1,m = 1, . . . ,M}. The details
are omitted here for brevity. Then, we check whether the
constraint in (41) is satisfied. If the constraint in (41) is
violated, then we select the MUE from the set {m|βm = 1,
ppm = 0,m = 1, . . . ,M} that decreases the objective func-
tion in (39) to the smallest extent if its transmit power
is set to Ppmax. The above procedure continues until the
constraint in (41) is satisfied. The algorithm to solve the
problem in (27) is summarized in Algorithm 2.
The overall data traffic offloading scheme without SIC

decoder at the SBS is listed in Algorithm 3.

5 Offloading schemewith SIC decoder at the SBS
This section investigates the data traffic offloading
scheme when SIC decoder is available at the SBS. The
optimization problem is formulated as

max
τ0,τ1,τ2,α,β ,pp,ps

RSIC
s (τ2,ps) (44)

s.t. τ0 + τ1 + τ2 ≤ T , τ0 ≥ 0, τ1 ≥ 0, τ2 ≥ 0, (45)
αm ∈ {0, 1},βm ∈ {0, 1},∀m, (46)
αm + βm ≤ 1,∀m, (47)
0 ≤ ppm ≤ Ppmax, ∀m, (48)

0 ≤ pskτ2 ≤ ζ τ0

M∑

m=1
ppmhm,k + ζ τ1psSBSh

s
k , ∀k, (49)

Rp(τ0,α,pp) + RSIC
ps (τ0,β ,pp) ≥ Rmin. (50)

Similar to the problem in (9), the above problem
is solved by iteratively optimizing τ0, τ1, τ2 with given
α,β ,pp,ps, optimizing α,β with given τ0, τ1, τ2,pp,ps, and
optimizing pp,ps with given τ0, τ1, τ2,α,β .
With given α,β ,pp,ps, we optimize τ0, τ1, and τ2 as

given by

max
τ0,τ1,τ2

RSIC
s (τ2,ps) (51)

s.t. τ0 + τ1 + τ2 ≤ T , τ0 ≥ 0, τ1 ≥ 0, τ2 ≥ 0, (52)

pskτ2 − ζ τ0

M∑

m=1
ppmhm,k − ζ τ1psSBSh

s
k ≤ 0,∀k,

(53)

τ0 ≥ RminT
CSIC
p

, (54)
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Algorithm 2 Algorithm for solving the problem in (27)
1: Set psk(0) = Psmax for all k = 1, . . . ,K , ppm(0) = Ppmax

for allm = 1, . . . ,M, and t = 0.
2: Let ps(0) = [

ps1(0), . . . , p
s
K (0)

]
and pp(0) =[

pp1(0), . . . , p
p
M(0)

]
.

3: repeat
4: Set p̂sk(0) = Psmax for all k = 1, . . . ,K and t1 = 0
5: repeat
6: Obtain p̂sk(t1 +1), k = 1, . . . ,K sequentially from

(34).
7: Set p̂s(t1 + 1) = [

p̂s1(t1 + 1), . . . , p̂sK (t1 + 1)
]
.

8: t1 = t1 + 1.
9: until |RNSIC

s (τ2, p̂s(t1))−RNSIC
s (τ2, p̂s(t1 − 1))| ≤ ε

10: ps(t + 1) = p̂s(t1).
11: Set p̂pm(0) = Ppmax,m = 1, . . . ,M and t2 = 0.
12: repeat
13: Obtain p̂pm(t2 + 1),m ∈ {m|βm = 1,m =

1, . . . ,M} sequentially from (42).
14: Set p̂p(t2 + 1) = [

p̂p1(t2 + 1), . . . , p̂pM(t2 + 1)
]
.

15: t2 = t2 + 1.
16: until |RNSIC

ps (τ0,β , p̂p(t2)) − RNSIC
ps (τ0,β , p̂p(t2 −

1))| ≤ ε

17: pp(t + 1) = p̂p(t2).
18: repeat
19: if the constraint in (41) is violated. then
20: for all m such that m ∈ {m|βm = 1, ppm(t +

1) = 0,m = 1, . . . ,M} do
21: Calculate the objective function in (39) by

assuming that ppm(t + 1) = Ppmax.
22: end for
23: Choose the one that achieves the maximum

objective function in (39) and set its corre-
sponding ppm(t + 1) to Ppmax.

24: end if
25: until the constraint in (41) is satisfied.
26: t = t + 1.
27: until |RNSIC

s (τ2,ps(t)) − RNSIC
s (τ2,ps(t − 1))| ≤ ε

28: if the constraint in (30) is violated then
29: The problem is infeasible.
30: end if

where CSIC
p = ln

(
1 +

∑M
m=1 αmp

p
mh

p
m

σ 2

)
+

ln
(
1 +

∑M
m=1 βmp

p
mh

ps
m

σ 2

)
. The above problem belongs to

the linear programming and thus can be solved efficiently
by the simplex method [34].
With given τ0, τ1, τ2,pp,ps, we optimize α,β as given by

max
α,β

RSIC
s (τ2,ps) (55)

s.t.αm ∈ {0, 1},βm ∈ {0, 1},∀m, (56)

Algorithm 3 Data traffic offloading scheme without SIC
decoder at the SBS
1: Randomly initialize the values of

τ0(0), τ1(0), τ2(0),α(0),β(0) and set psk(0) = Psmax for
all k = 1, . . . ,K , ppm(0) = Ppmax for all m = 1, . . . ,M,
t = 0.

2: repeat
3: Obtain α(t + 1) and β(t + 1) using Algorithm 1.
4: Obtain ps(t + 1) and pp(t + 1) using Algorithm 2.
5: Obtain τ0(t + 1), τ1(t + 1), τ2(t + 1) by solving the

problem in (16) using the simplex method.
6: t = t + 1.
7: until |RNSIC

s (τ2(t),ps(t)) − RNSIC
s (τ2(t − 1),ps(t −

1))| ≤ ε

8: if the constraint in (15) is violated then
9: The problem is infeasible.

10: end if

αm + βm ≤ 1,∀m, (57)

Rp(τ0,α,pp) + RSIC
ps (τ0,β ,pp) ≥ Rmin. (58)

The above problem can be solved similar to the problem
in (20) and the algorithm is listed in Algorithm 4.
With given τ0, τ1, τ2,α,β , we optimize pp,ps as given by

max
pp,ps

RSIC
s (τ2,ps) (59)

s.t. 0 ≤ ppm ≤ Ppmax, ∀m, (60)

Algorithm 4 Algorithm for solving the problem in (55)
1: Set M = {1, . . . ,M} and randomize the order of the

elements inM for Υ times.
2: for each randomization ofM do
3: Set αm = 0, βm = 0 for allm ∈ M.
4: for allm such thatm ∈ M do
5: Let αm = 0, βm = 1. Calculate Rp(τ0,α,pp) +

RSIC
ps (τ0,β ,pp) and denote the result as Obj1.

6: Let αm = 1, βm = 0. Calculate Rp(τ0,α,pp) +
RSIC
ps (τ0,β ,pp) and denote the result as Obj2.

7: if Obj1 > Obj2 then
8: Set αm = 0, βm = 1.
9: else

10: Set αm = 1, βm = 0.
11: end if
12: end for
13: end for
14: Choose the one that maximizes Rp(τ0,α,pp) +

RSIC
ps (τ0,β ,pp) from the Υ solutions.

15: if the constraint in (58) is violated then
16: The problem is infeasible.
17: end if
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0 ≤ psk ≤ ζ τ0
∑M

m=1 p
p
mhm,k + ζ τ1psSBSh

s
k

τ2
, ∀k, (61)

Rp(τ0,α,pp) + RSIC
ps (τ0,β ,pp) ≥ Rmin. (62)

The above problem can be solved by iteratively optimiz-
ing ps with given pp and optimizing pp with given ps. With
given pp, the value of ps is optimized as

max
ps

RSIC
s (τ2,ps) (63)

s.t. 0 ≤ psk ≤ ζ τ0
∑M

m=1 p
p
mhm,k + ζ τ1psSBSh

s
k

τ2
, ∀k.

(64)

From (8), it is seen that RSIC
s (τ2,ps) is an increasing

function of psk . Thus, the solution to the problem in (63)

is psk = ζ τ0
∑M

m=1 p
p
mhm,k+ζ τ1psSBSh

s
k

τ2
for k = 1, . . . ,K . With

given ps, we optimize pp as given by

max
pp

RSIC
s (τ2,ps) (65)

s.t. 0 ≤ ppm ≤ Ppmax, ∀m, (66)
M∑

m=1
ppmhm,k ≥ pskτ2 − ζ τ1psSBSh

s
k

ζ τ0
, ∀k, (67)

Rp(τ0,α,pp) + RSIC
ps (τ0,β ,pp) ≥ Rmin. (68)

Since the objective function of the above problem does
not depend on pp, the above problem can be solved by
checking whether the problem is feasible by solving the
following problem as

max
pp

Rp(τ0,α,pp) + RSIC
ps (τ0,β ,pp) (69)

s.t. 0 ≤ ppm ≤ Ppmax, ∀m, (70)
M∑

m=1
ppmhm,k ≥ pskτ2 − ζ τ1psSBSh

s
k

ζ τ0
, ∀k. (71)

The above problem is convex but does not have a closed-
form solution. Therefore, the interior point method [35]
can be used to solve the above problem and we omit
the details here for brevity. The algorithm to solve the
problem in (59) is listed in Algorithm 5.
The overall data traffic offloading scheme with SIC

decoder at the SBS is listed in Algorithm 6.

6 Simulation results
This section verifies the performance of the proposed data
traffic offloading schemes using simulations. In the fol-
lowing results, we assume that all the channels involved
follow Rayleigh fading with unit mean and set σ 2 = 1,
T = 1,M = 10, and K = 10.
Figure 2 plots the MUE sum rate against the required

minimumMUE sum rate Rmin for different values of P
p
max.

The results from the scheme without data traffic offload-
ing are also given for the purpose of comparison. It is

Algorithm 5 Algorithm for solving the problem in (59)
1: Set psk(0) = Psmax for all k = 1, . . . ,K , ppm(0) = Ppmax

for allm = 1, . . . ,M, and t = 0.
2: Let ps(0) = [

ps1(0), . . . , p
s
K (0)

]
and pp(0) =[

pp1(0), . . . , p
p
M(0)

]
.

3: repeat
4: Calculate psk(t + 1) as psk(t + 1) =

ζ τ0
∑M

m=1 p
p
mhm,k+ζ τ1psSBSh

s
k

τ2
for all k = 1, . . . ,K .

5: Obtain pp(t + 1) by solving the problem in (69)
using the interior point method.

6: t = t + 1.
7: until |RSIC

s (τ2,ps(t)) − RSIC
s (τ2,ps(t − 1))| ≤ ε

8: if the constraint in (62) is violated then
9: The problem is infeasible.

10: end if

Algorithm 6 Data traffic offloading scheme with SIC
decoder at the SBS
1: Randomly initialize the values of

τ0(0), τ1(0), τ2(0),α(0),β(0) and set psk(0) = Psmax for
all k = 1, . . . ,K , ppm(0) = Ppmax for all m = 1, . . . ,M,
t = 0.

2: repeat
3: Obtain α(t + 1) and β(t + 1) using Algorithm 4.
4: Obtain ps(t + 1) and pp(t + 1) using Algorithm 5.
5: Obtain τ0(t + 1), τ1(t + 1), τ2(t + 1) by solving the

problem in (51) using the simplex method.
6: t = t + 1.
7: until |RSIC

s (τ2(t),ps(t))−RSIC
s (τ2(t−1),ps(t−1))| ≤ ε

8: if the constraint in (50) is violated then
9: The problem is infeasible.

10: end if

seen that the proposed data offloading schemes achieve
much higher MUE sum rate than the scheme without data
offloading. It is also seen that the proposed data offloading
scheme with SIC at the SBS achieves much higher MUE
sum rate than the scheme without SIC at the SBS, espe-
cially when Rmin is large. In addition, it is seen that the
MUE sum rate increases as Rmin increases until saturates
to a certain level. Especially, it is seen that for a small Rmin,
the achieved MUE sum rate is equal to Rmin, while for a
large Rmin, the achievedMUE sum rate is lower than Rmin.
This is due to the fact that, if Rmin is too high, the required
minimum MUE sum rate cannot be achieved even if all
the available resources are allocated to the MUEs with
data offloading provided by the SBS. Furthermore, it is
seen that the MUE sum rate increases as Ppmax increases,
especially when Rmin is large.
Figure 3 plots the SUE sum rate against the required

minimum MUE sum rate Rmin for different values of
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Fig. 2MUE sum rate against Rmin

Ppmax. It is seen that the SUE sum rate decreases as Rmin
increases. This is due to the fact that less resources
are remaining for the SUEs as Rmin increases. It is also
seen that the proposed data offloading scheme with
SIC at the SBS outperforms the scheme without SIC at
the SBS in terms of the SUE sum rate. In addition, it
is seen that increasing Ppmax leads to higher SUE sum
rate. This indicates that increasing Ppmax is beneficial to
the SUEs.
Figure 4 plots the MUE sum rate against the maximum

transmit power limit of the MUE Ppmax for different values

of Rmin. It is seen that when Rmin is small, the MUE sum
rate keeps constant and is equal to Rmin as P

p
max increases.

This indicates that the proposed schemes can well guaran-
tee the QoS of the MUEs. It is also seen that when Rmin is
large, theMUE sum rate achieved by the proposed scheme
without SIC is lower than Rmin and increases as Ppmax
increases until saturates to the Rmin, while the MUE sum
rate achieved by the proposed schemewith SIC keeps con-
stant and is equal to Rmin as P

p
max increases. This indicates

that although the proposed scheme can not guarantee the
QoS of the MUEs when Rmin is very large, increasing P

p
max

Fig. 3 SUE sum rate against Rmin
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Fig. 4MUE sum rate against Ppmax

can let the proposed scheme achieve the MUE sum rate
equal to Rmin.
Figure 5 plots the SUE sum rate against the maximum

transmit power limit of the MUE Ppmax for different values
of Rmin. It is seen that the SUE sum rate increases as Ppmax
increases. This indicates that higher value of Ppmax is bene-
ficial to the SUEs. It is also seen that the SUE sum rate with
SIC is higher than that without SIC and the gap between
them is almost constant as Ppmax increases. In addition, it is
seen that the SUE sum rate with lower Rmin is higher than

that with higher Rmin and the gap between them is nearly
unchanged as Ppmax increases.

7 Conclusions
We consider a third-party cognitive small cell with wire-
less powered SUEs that processes data traffic offloaded
from a primary macrocell. As long as the QoS of the
primary macrocell is satisfied, the cognitive small cell
is assumed to be able to use remaining resources for
its own purpose. Iterative optimization-based data traffic

Fig. 5 SUE sum rate against Ppmax
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offloading schemes with SIC decoder available or not
available at the SBS are proposed to maximize the
SUE sum rate under the required minimum MUE sum
rate constraint. We show that the proposed data traffic
offloading schemes are effective in improving the perfor-
mance of the MUEs and providing transmission opportu-
nities for the wireless powered SUEs.

Endnotes
1 The case of multi-band is not considered in this paper,

and we leave it in our future work.
2We assume that there are multiple heterogeneous ser-

vices carried by each MUE. Some services are real-time
and the other services are non-real-time, while some ser-
vices generate continuous data and the other services
generate burst data. Thus, simply restricting the mini-
mum rate for each individual MUE is inappropriate for
guaranteeing QoS of the MUEs. So, we try to guarantee
the minimum sum rate for all the MUEs to provide sat-
isfactory QoS to the MUEs. By satisfying such required
minimum MUE sum rate, the QoS of the MUEs can be
satisfied on a long-term basis. The value of Rmin can be
chosen based on long-termmeasurements of the data rate
requirements of the MUEs.
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