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PolSAR image classification based on
Laplacian Eigenmaps and superpixels
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Abstract

This paper proposes a method of polarimetric synthetic aperture radar (PolSAR) image classification using improved
superpixel segmentation and manifold learning. Firstly, a 27-dimension polarimetric feature space is extracted
by simple arithmetic operations of polarimetric parameters and polarimetric target decomposition. Secondly,
Laplacian Eigenmap (LE) algorithm is used to reduce the dimension of the 27-dimension polarimetric features.
This algorithm can reduce redundant information in feature space and extract the main information. Then, the paper uses
SVM which has the best classification performance to classify the low-dimension PolSAR data for the first time. And then,
the superpixel segmentation is obtained by improving SLIC algorithm. At last, the majority voting principle is used to
classify the superpixel blocks, which is the second classification and final classification of PolSAR data.
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1 Introduction
Polarimetric synthetic aperture radar (PolSAR) is an
active microwave remote sensing imaging radar, which
emits electromagnetic pulses with different polarimet-
ric states and then receives echoes reflected by
ground objects, so as to obtain the scattering charac-
teristics of the ground object target objects. PolSAR
imaging principle and conventional optical remote
sensing imaging principle is essentially different.
PolSAR data is different from the common optical
image in characteristic performance; moreover, it
contains different information. The polarimetric syn-
thetic aperture radar can be used to classify polari-
metric SAR images based on the obtained scattering
characteristics.
According to scatter characteristics, PolSAR image

classification methods can be divided into two categor-
ies: the classification method based on statistical model
and the polarimetric target decomposition method. The
mathematical methods based on the statistical method
of statistical model are statistical modeling and Bayes
theory [1]. Whether the statistical model is correctly
established or not determines the accuracy of the

classification method. The polarimetric target decom-
position method can classify the PolSAR image without
the probability distribution of data [2], such as H/ɑ, H/A/
ɑ decomposition [3], Pauli decomposition [4], and Kroga-
ger decomposition [5].
There are some other ways to classify PolSAR images

from other perspectives.
According to whether or not selecting the training

samples with class labels in advance, the PolSAR
target classification method can be divided into super-
vised classification [6–15] and unsupervised classifica-
tion [16–23]. The supervised classification requires
the selection of labeled training samples and the
handling of unlabeled PolSAR image data based on
the characteristics of the sample. For unsupervised
classification, the required prior knowledge is our em-
pirical information and model description of the
backscatter characteristics of the feature.
The most common use of PolSAR in supervised classifi-

cation is based on the statistical distribution of Bayes distri-
bution and Wishart distribution. The maximum likelihood
method based on the complex Gaussian distribution pro-
posed by Kong and others is the embryonic form use of
Bayes of the PolSAR classification. Due to the influence of
speckle, Lee and others proposed a multi-look ML classifi-
cation based on the Whishart distribution. Many subse-
quent studies were based on the above classification model.
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In the whole process of the unsupervised classifica-
tion, there is no classification of sample participation,
and the common used algorithms are K-Means and
ISODATA.
At present, the use of machine learning to classify Pol-

SAR images has become the mainstream method, such
as classification based on neural networks and fuzzy
clustering [24], classification based on neural networks
and principal component analysis [25], and classification
based on Support Vector Machine [26].
There are several problems in the above classification

method: Firstly, in some methods, only a little polarimet-
ric information has been used. Secondly, in some
methods, much polarimetric information has been used
to deal with the polarimetric data; however, the high-
dimension data can only be reduced to the human-
defined low dimension in these methods. Whether the
polarimetric data will be lost or not during the dimen-
sion reduction has not been considered. Thirdly, many
classification methods are based on the pixels, but when
the impact of noise is significant, it can easily lead to
wrong classifications.
The method proposed in this paper can solve the

above problems effectively. Firstly, 27-dimension polari-
metric information has been used to classify, both the
arithmetic parameters extracted by the polarimetric pa-
rameters and the polarimetric parameters after the po-
larimetric target being decomposed. The 27-dimension
polarimetric information basically includes all the infor-
mation of PolSAR, and it overcomes the fact that some
polarimetric features extracted in some methods are
only a few. Secondly, the maximum likelihood estima-
tion (MLE) method is used to estimate the intrinsic di-
mension of the data. This method preserves the
polarimetric information and reduces the data dimen-
sion. Thirdly, the combination of superpixel classifica-
tion and the use of the majority of voting principle can
effectively inhibit the coherent noise on the classifica-
tion. What is more, the classification result is more
accurate.
The rest of this paper is organized as follows. The sec-

ond part is mainly about the data preprocessing, and the
third part is mainly about feature extraction and dimen-
sion reduction. Moreover, the fourth part is mainly
about classification based on SVM and superpixels, and
the fifth part is mainly about the experimental result
and analysis. At last, the sixth part is mainly about
conclusion.

2 Preprocessing of polarimetric SAR data
According to the original data of PolSAR, the scattering
matrix of each pixel point of PolSAR image can be
obtained.

S ¼ shh shv
svh svv

� �
ð1Þ

The two target scattering vectors are respectively

KL ¼ shh shv svvð ÞT

KP ¼ 1ffiffiffi
2

p shh þ svv shh−svv 2shvð ÞT

According to the upper expression, the polarimetric
covariance matrix C and polarimetric coherence matrix
T can be obtained.

C ¼ KLK
H
L

� � ð2Þ

T ¼ KPK
H
P

� � ð3Þ
The characteristic parameters needed in this paper can

be obtained by using the above polarimetric covariance
matrix C and the polarimetric coherence matrix T.

3 Polarimetric features and LE algorithm
3.1 Polarimetric features extraction
In this paper, according to [27], the 27 polarimetric param-
eters are extracted for each pixel of the PolSAR image, as
shown in Table 1. The first 11 polarimetric features are the
polarimetric parameters extracted by performing simple
arithmetic operations. Its advantage is that the calculation
is simple, and it can reflect some polarimetric information.
The latter 16 polarimetric parameters are the polarimetric
parameters after polarimetric target decomposition, and

Table 1 Twenty-seven feature parameters

Features Expression

Span |shh|
2 + 2|shv|

2 + |svv|
2

Amplitude of HH-VV correlation coefficient
〈shhs�vviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
shhj j2 svvj j2

p
����

����
Ratio of HV/VV (db)

10 log(|shv|
2/|svv|

2)

Co-polarized ratio (db) 10 log(|svv|
2/|shh|

2)

Cross-polarized ratio (db) 10 log(|shv|
2/|shh|

2)

Co-polarized HH backscattering coefficient shhs�hh
� �

Co-polarized VV backscattering coefficient svvs�vv
� �

Co-polarized HV backscattering coefficient shvs�hv
� �

Phase of HH-VV arg shhs�vv
� �� 	

Phase of HH-HV arg shhs�hv
� �� 	

Phase of HV-VV arg shvs�vv
� �� 	

Pauli decomposition |a|2, |b|2, |c|2

Krogager (SDH) decomposition ks, kd, kh

Cloud decomposition H, ∂, A

Freeman-Durden decomposition Ps, Pd, Pv

Yamaguchi decomposition fh, fs, fd, fv
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these polarimetric parameters can describe the scattering
information and geometrical structure information of the
target [28].
Extracted features include scattering coefficient,

polarization ratio, total power, phase, Pauli decompos-
ition, Krogager decomposition, Cloud decomposition,
Freeman decomposition, and Yamaguchi decompos-
ition. Among them, the Pauli decomposition provides
three scatter intensities, and the Krogager decompos-
ition provides the three components of three scatter-
ing. Cloud decomposition provides scattering entropy,
scattering angle, and inverse entropy. Moreover, the
Freeman decomposition provides three scattered pow-
ers, and the Yamaguchi decomposition provides four
scattering mechanisms.

3.2 LE algorithm
The dimension reduction methods can be divided into
two categories: linear method and nonlinear method.
In this paper, the MLE algorithm is used to compute
the intrinsic dimension of the above 27-dimension
polarimetric parameters in low dimensions. The MLE
method means obtaining the maximum likelihood es-
timation of the intrinsic dimension by establishing the
likelihood function between the nearest neighbors. In
some articles, the dimension after data reduction is

set arbitrarily, so it will inevitably cause the informa-
tion loss. The MLE method can preserve the essential
features of the original data in the maximum extent
and can make the original data be expressed in low
dimensions. LE algorithm is used to reduce the di-
mensions, and this approach can make high-
dimension polarimetric features to be represented in
low dimensions while retaining the main polarimetric
information. It can be seen that this method can
make full use of the polarimetric information and re-
duce the computational complexity of the subsequent
processing. LE algorithm adopts local nonlinear
method, and compared with the linear method, it can
better express the real corresponding relation between
the data. What is more, LE algorithm has low compu-
tational complexity and is often used to deal with the
data of PolSAR image.
Let X = {x1, x2⋯xN} ∈ R

D ×N, where C represents the
dimension of X and N represents the number of data
in the X. Low dimension Y which is embedded in
high-dimension X space can be found when using the
LE algorithm, that is Y ¼ y1; y2⋯yNf g∈RDr�N . Among
the expressions, N represents the number of data in
the X and Dr <D, where Dr represents the dimension
of Y.
The objective function of the LE algorithm is to

minimize the following cost function, and it can en-
sure that the adjacent sample points are still neigh-
bors after projection.

min
X
ij

yi−yj



 


Wij ð4Þ

where Wij ¼ e−
xi−xjk k2

t , and it reflects the relationship
between samples. In order to ensure that the above
function have only one solution, the scaling

Fig. 1 LE dimension reduction. a The manifold of source data in three dimensions. b Nonlinear mapping in two-dimension space

Fig. 2 The diagram of PolSAR image classification based on SVM
classification and the majority voting principle. Different colors
represent the labels of pixels. a SVM classification result in a
superpixel. b Classification result after majority voting
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normalization condition must be added. Then, the
objective function changes into

argmin YLYT
� 	 ð5Þ

where L is Laplacian matrix, and L =D −W, Dii is the di-
agonal matrix, and Dii ¼

P
j W ij . The above function can

be transformed into a generalized eigenvalue problem,
that is

LY ¼ λDY

The lower dimension embedding Y takes the eigenvec-
tors of the corresponding eigenvalues of the Laplacian
matrix

Y ¼ y1; y2⋯yNf g∈RDr�N ð6Þ

The dimension reduction process is shown in Fig. 1.
Figure 1a, b shows the raw data and the data after di-
mension reduction, respectively, by using the LE
algorithm.

4 Classification based on SVM and superpixels
4.1 Support vector machine
The function of the support vector machine (SVM) is to
use the hyperplane to separate each category. SVM the-
ory is proposed by Vapnik and Cortes in 1995, and it is
used to solve the problem of pattern recognition prob-
lem. At that time, SVM belonged to a linear classifica-
tion model, and then, Boser, Guyon, and Vapnik
introduced the kernel function, and they proposed non-
linear SVM. SVM is a new learning machine built on
VC (Vapnik-Chervonenkis) dimension and structural
risk minimum principle of SLT, and it is mainly used for
classification and regression analysis. SVM has peculiar
advantages in solving nonlinear and high-dimension pat-
tern recognition, and it has better generalization ability
than that of the general learning machine.
Suppose that (xi, yi), where i = 1,2...,n denote a linear

separable sample set, and x ∈ Rd, y ∈ {+1, −1}. Linear dis-
criminant function in D dimension space is g(x) =wx + b,
and the classification surface function is wx + b = 0.
Make all samples satisfy |g(x)| ≥ 1 by sample
normalization, that is, the nearest sample of distance
classification surface satisfies that |g(x)| = 1. Thus, the
classification interval is equal to 1

2 wk k . Therefore, when
the ‖w‖ (or ‖w‖2) minimum and yi(wxi + b) − 1 ≥ 0, where
i = 1,2...,n are satisfied, the classification surface is the
optimal classification surface.
The optimal classification problem can be transformed

into a constrained optimization problem as follows:

minseφ w; bð Þ ¼ 1
2

wk k2 ð7Þ

st: yi xi⋅wþ bð Þ−1≥0 i ¼ 1; 2;⋯l ð8Þ

Therefore, the optimal classification function can be
obtained as follows:

f xð Þ ¼ sgn w�⋅xþ b�f g
¼ sgn

Xk

i¼1
a�i yi xi⋅xð Þ þ b�

n o
ð9Þ

where a∗ and b∗ are the parameters that define the
hyperplane.
When the data are linearly non-separable, a relaxation

term ξi ≥ 0 can be added to the constraint condition as
follows:

Fig. 3 The basic flow chart of classification
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st: yi xi⋅wþ bð Þ−1þ ξ i≥0 i ¼ 1; 2;⋯l ð10Þ

Change the target to solve the minimum value of 1
2

wk k2 þ C
Pn

i¼1ξ i
� 	

, where C is a constant and C > 0.
The nonlinear classification can be realized by using

proper kernel function K(xi, xj) in the best classification
plane, while its computational complexity will not in-
crease [11]. The corresponding classification function
will change as follows:

f xð Þ ¼ sgn
Xk

i¼1
a�i yiK xi⋅xð Þ þ b�

n o
ð11Þ

And this is the SVM method.
The several frequently used kernel functions are linear

kernel, polynomial kernel, RBF kernel, and Sigmoid ker-
nel. The linear kernel is mainly used in linearly separable
situation. The polynomial kernel can map low-
dimension input space to high-dimension feature space.
However, there are many parameters in polynomial ker-
nel. When the order of polynomial is high, the element
value of kernel matrix tends to be infinite or infinitesi-
mal. The computational complexity will be too large to
calculate. RBF kernel is a kind of kernel function with

strong locality, and it can map a sample into a more
higher dimension space. It is the most widely used ker-
nel. Whether or not the amount of the samples are large
or small, it has great performance. And comparing with
polynomial kernel, the parameter of RBF kernel is fewer.
Therefore, SVM uses RBF kernel preferential in the ma-
jority of cases. The non-positive semi-definiteness of Sig-
moid kernel makes its application limited. So, SVM
selects RBF kernel in this paper.

4.2 Improvement of SLIC algorithm
The original PolSAR image has huge amounts of data,
but the subsequent computation of the data can be
greatly reduced by using the superpixels method. At the
same time, superpixels can provide adaptive neighbor-
hood information and reduce the influence of speckle on
PolSAR image. At present, various superpixel generation
algorithms are widely used in dealing with optical image,
such as watershed algorithm [29], mean shift algorithm
[30], and K-mean algorithm [31].
With the technology development for obtaining re-

mote sensing data, the resolution of remote sensing
image is increasing. While the resolution has improved,

oat winter wheat coniferous forests black wheat

a
c

b

Fig. 4 The PolSAR image and truths plots in Foulum. a The color image of the Pauli decomposition of RGB. b The ground reference map. c The
image of colored objects

Fig. 5 The result of SVM classification. a The SVM classification of three polarimetric parameters. b The SVM classification of polarimetric
parameters after reducing dimension
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the amount of remote sensing image data and the re-
dundant information is also increasing, and it is not con-
ducive to the processing of remote sensing image.
However, the introduction of superpixels can solve those
problems effectively, so the application of superpixels in
remote sensing image is also increasing. The superpixel
blocks generated by the SLIC method are more suitable
for the boundary than other methods by comparing the
effects of different superpixels. Therefore, the method
based on SLIC superpixel generation has been chosen to
improve the effect in this paper.

The general steps of the SLIC algorithm are as follows:
Firstly, initialize the seed points (clustering centers).
Secondly, select the center of the superpixels. The

choice is based on the spatial distance ds and the lαβ
color space distance dc between pixels and superpixels.

ds i; jð Þ ¼ xj−xi
� 	2 þ yj−yi

� �2

 �1

2

ð12Þ

dc i; jð Þ ¼ lj−li
� 	2 þ αj−αi

� 	2 þ βj−βi
� �2


 �1
2

ð13Þ

DSLIC i; jð Þ ¼ d2
c i; jð Þ þ ds i; jð Þ

Smax


 �
η2


 �1
2

ð14Þ

where Ns is the maximum spatial distance within class,
and the η is the weight.
Finally, update the center of the superpixels and itera-

tive optimization.
Because the SLIC algorithm is used to deal with lαβ

color spaces, it cannot deal with PolSAR image. The
color distance of optical image dc should be transformed
into gray scale as follows:

d
0
c i; jð Þ ¼ gj−gi

� �2

 �1

2

ð15Þ

DSLIC i; jð Þ ¼ d’
c2 i; jð Þ þ ds i; jð Þ

Smax


 �
η2


 �1
2

ð16Þ

where gi is the grayscale value of the ith pixels.

4.3 The majority voting principle
SVM classifies polarimetric information with the single
pixel without considering properties of adjacent pixels.
The way proposed in this paper makes the classification
more accurate by making full use of superpixels and in-
formation of the surrounding pixels [15]. The way to use
the majority voting principle to classify superpixel blocks
is as follows:
Firstly, each superpixel block is considered as a set,

and the pixels in the set are classified by SVM to obtain
the multiple labels.
Secondly, count the number of different labels in the

superpixel blocks. The label with the largest number is
the label of this set. Finally, the purpose to classify the
superpixel blocks is achieved. The diagram is shown in
Fig. 2, and each small box represents a pixel, while the
large box represents a superpixel block.
The basic flow chart of classification is shown in

Fig. 3.

5 The result and analysis of the experiment
The data used in the paper is the full PolSAR data in C
band. The data was obtained from the EMISAR system

Fig. 6 The superpixels generated with different parameters. a a = 7,
p = 3. b a = 11, p = 5. c a = 14, p = 6. d a = 16, p = 7

Fig. 7 The result of classification by using the majority voting
principle in the superpixel blocks. a a = 7, p = 3. b a = 11, p = 5. c a
= 14, p = 6. d a = 16, p = 7
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in the area of Foulum in Denmark in April of 1988. In
this paper, the size of experimental area is 211 × 244.
The RGB reference map after Pauli decomposition and
ground reference map are shown in Fig. 4a, b, respect-
ively. The image contains four types of ground features:
oats, winter wheat, coniferous forests, and black wheat.

5.1 The result of SVM classification
Ten percent of each class of data were selected as train-
ing samples, and all data were used as test samples.
SVM is used to classify the data with only three polari-
metric parameters and the data with polarimetric pa-
rameters after reducing dimension, respectively. In this

paper, the MLE is used to estimate the intrinsic dimen-
sion of the 27-dimension polarimetric feature informa-
tion. Finally, the intrinsic dimension of five dimensions
has been obtained. In this paper, five cross-validation
methods are used to obtain the optimal parameters of
SVM, and the SVM uses RBF kernel function. The range
of kernel parameter is [2−8, 28]. The range of penaliza-
tion factor is [2−8, 28]. Figure 5a, b, represents the classi-
fication by using the three polarimetric parameters and
the polarimetric parameters after reducing dimension.
As is shown in Fig. 5, by using only a few polarimetric

parameters may not obtain the correct classification re-
sult. The effect of classification with polarimetric fea-
tures after reducing dimension is better, and it can
distinguish the categories. In Fig. 5a, black wheat and
coniferous forests cannot be distinguished, and some oat
are divided into coniferous forests. So, reducing the di-
mension of multiple polarimetric data can improve the
classification accuracy. The classification result of the
SVM is not intuitive and affected greatly by noise.
Therefore, it needs to be further processed.

5.2 The classification result of combining superpixels with
majority voting principle
The result of the SVM classification is combined with
superpixels to classify again. The parameter setting of
superpixels affects the classification result directly. Only
with optimal parameter can the optimal classification re-
sult be gained. Superpixel segmentation is decided by
the superpixel block’s side length a and the central
point’s perturbation range p. Figure 6 shows the super-
pixels generated with different parameters.
Figure 7 shows the result of classification by using the

majority voting principle in the superpixel blocks, and
the LE algorithm is used to reduce dimension.

Fig. 8 The OA of classification corresponding to different superpixel
generation parameters

Fig. 9 The classification result of the PolSAR image by different
dimension reduction methods. a PCA + SVM + superpixels. b LDA +
SVM + superpixels. c LE + SVM + superpixels.
d MVU + SVM + superpixels

Fig. 10 The OA of classification with different dimension reduction
methods corresponding to Fig. 9
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Figure 8 shows the overall accuracy (OA) of Fig. 7. As
is shown in Fig. 8, when a = 14, p = 6, the OA is the
highest. So, the following analysis selects a = 14, p = 6 to
conduct experiments.
Figure 9 shows the classification result of combining

different dimension reduction methods with superpixels.
The dimension reduction methods include PCA, LDA,
LE, and MVU. Figure 10 shows the overall accuracy
(OA) of Fig. 9.
Figure 10 shows the OA of classification with different

dimension reduction methods. It can be seen that with
LE dimension reduction, the best classification result is
obtained.

6 Summary and conclusions
This paper proposes a PolSAR image classification
method by using the improved superpixel segmentation
and manifold learning. The method combines pixel in-
formation with spatial information for classification. The
paper consists of four steps. Firstly, a 27-dimension po-
larimetric parameter vector is obtained from the polari-
metric SAR data. Secondly, dimension reduction with
LE algorithm is carried out on the polarimetric param-
eter vector. And then, pixels are classified by using the
SVM method. At last, the superpixels are combined to
classify the targets. This paper combines the LE method
and MLE method to reduce dimension of data and the
intrinsic structure in high-dimension data space can be
found, and the dimension of feature parameter can be
reduced. Moreover, the primary polarimetric information
can be remained, and the polarimetric information can
be utilized effectively. For the classification method, clas-
sifying superpixel blocks with majority voting principle
is simple and effective, and it can reduce redundant in-
formation of high-resolution image and noise influence
of SAR image. Moreover, it can save much computation
for subsequent processing. On the whole, the classifica-
tion method in this paper improves the visibility of clas-
sification result and makes the boundaries of the
classified image more obvious. The classification effect is
more accurate, and an accuracy rate over 90% can be
reached.
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