
RESEARCH Open Access

Real-time positioning of a specific object in
the big data environment
Hejun Zhu1,2* and Liehuang Zhu1

Abstract

Real-time positioning of a specific object in the big data environment can improve the monitoring and
management capacity for network data. For the real-time positioning of the specific object, it is necessary to
quickly search the network data representing a specific object and match its pattern strings and compare the
corresponding Internet protocol (IP) address of the matched network data with the IP address library in real time,
so as to determine the position of the specific object. When a traditional method is used for pattern string
matching, it will occupy a lot of memories and network resources, thereby reducing the positioning effect of the
specific object in the big data environment. A positioning method for a specific object of high performance and
multi-pattern matching based on three indexes in the big data network environment is proposed in this paper.
Firstly, the initialization of Modified Wu-Manber (MWM) algorithm was carried out, and the algorithm was used to
match the network data continuously. Secondly, the three indexes were used to improve the MWM algorithm, and
the real-time and fast positioning of a specific object in the big data environment was completed by the Third
Index Modified Wu-Manber (TMWM). The experimental results show that compared with the traditional method,
the proposed algorithm reduces the pattern string matching scope of network data representing the specific
object, improves the search speed of the specific object, and locates the specific object in the big data
environment in an effective and rapid manner.

Keywords: Big data, Specific object, TMWM, Positioning

1 Introduction
With the popularization of network application, the net-
work scale has been expanded, the services carried in
the network have also become more and more abundant,
and network users enjoy much more conveniences.
However, the enlarged network application scope and
the increasingly serious information disclosure problem
have negative impacts on the social and personal secur-
ity. As a result, it is crucial to monitor the spread of
illegal and harmful information, mine the hidden dan-
gers behind big data, improve the information process-
ing technology, and maintain the network security.
Under such a background, the accurate and fast posi-
tioning of a specific object in the big data environment
can improve the monitoring and management

capabilities of network data, and this is one of the most
difficult problems in the field of network security [1–3].
The typical single-pattern matching algorithm mainly

included the Knuth-Morris-Pratt (KMP) algorithm [4, 5]
and Boyer-Moore (BM) algorithm [6, 7]. The two most
popular typical pattern-matching algorithms were Aho-
Corasick (AC) algorithm [8, 9] and Wu-Manber (WM)
algorithm [10–13], which were exactly an extension of
these two single-pattern matching ideas. AC algorithm is
an automation algorithm, in which firstly a search tree
based on pattern string sets was established, and then,
the text is progressively scanned from front to back;
since the size of search tree was related to the size of the
character set, AC algorithm needed larger memory
resources. Later, some researchers’ improved algorithms
also focused on the compression of the storage space
and shifting to accelerate the comparison speed. For
Wu-Manber algorithm, the jumping thought and HASH
hashing method in BM algorithm were applied to firstly
jump by virtue of bad character table or bad block table

* Correspondence: xjd_hjzhu@163.com
1School of Computer Science, Beijing Institute of Technology, Beijing 100081,
China
2Esafenet Corp, Building A, No.39, Xi’erqi Street, Haidian District, Beijing
100085, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking
 (2018) 2018:43
https://doi.org/10.1186/s13638-018-1043-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1043-3&domain=pdf
mailto:xjd_hjzhu@163.com
http://creativecommons.org/licenses/by/4.0/

and then utilize HASH table to screen the starting pos-
ition that should to be matched, and finally compare the
pattern strings one by one.
For multi-pattern string matching, AC algorithm was

much more efficient than KMP, BM, and other single-
pattern matching algorithms, but AC algorithm fails to
jump the character string in searching and the character
is inputted by order, and the algorithm cannot skip
unnecessary comparison; the major disadvantages of
dependence on character set and large memory occupa-
tion resulted in the poor performance of AC algorithm.
While the execution time of Wu-Manber algorithm did
not increase proportionally with the increase of pattern
string, it is much less than the sum of the time of
matching each text with each keyword and BM
algorithm. In addition, the time complexity of such
algorithm can reach O (B n/m) under the best condition
(n is the size of text, m is the shortest pattern length,
and B is the length of block character). By contrast,
Wu-Manber, with its insensitive characteristics to the
pattern quantity and character set and lower time
complexity, is more suitable for the requirement of
clue keyword search.
A fast positioning method for network data with

Modified Wu-Manber (MWM) high performance and
multi-pattern matching based on three indexes in the
big data network environment is proposed in this
paper. Firstly, the initialization of the MWM algo-
rithm was carried out, and the algorithm was used to
match the network data continuously. Secondly, the
three indexes were used to improve the MWM algo-
rithm, and the real-time and fast positioning of a spe-
cific object in the big data environment was
completed by TMWM. The experimental results show
that compared with the traditional method, this
improved algorithm reduces the pattern string
matching scope of network data representing the
specific object and improves the search speed of the
specific object and can effectively and rapidly locate
the specific object in the big data environment.
In view of the similarity with the network content

security industry, the MWM algorithm from the snort
feature matching module is extracted in this paper,
which is an improved Wu-Manber algorithm [14–18].

2 Principle
In order to match the multi-keyword list in the big data
environment more rapidly, it is necessary to apply effi-
cient multi-pattern matching algorithm but not simple
single-pattern matching. Through many practices and
researches, it is found that the improved multi-pattern
matching algorithm can solve the keyword list matching
at the level over ten thousands under the big data traffic
environment. The multi-keyword matching actually is to

search all positions of all pattern strings in the pattern
string set P in the text T.
As shown in Fig. 1, based on the keyword matching

model of multi-pattern matching, firstly, the network
traffic is collected in real time and the data contents of
the network are analyzed by the big data traffic. After-
wards, based on the multi-pattern matching search algo-
rithm, a quick and real-time comparison is made
between the pattern string sets P formed by the multi-
keyword list and the real-time analytical big data net-
work traffic; if matched, the researcher shall output a list
of hit keywords and their corresponding texts T, other-
wise continue to the next big-data network traffic ana-
lyzed in real time and compare with the pattern string
sets P formed by the keyword list.
In this paper, a multi-pattern matching algorithm is

used to quickly find and position the network data in
the big data environment. Generally, it is an extension of
single-mode matching algorithm in the multi-pattern
environment. The basic idea is as follows:

Σ ¼ E1;E2;⋯; Enf g ð1Þ
P ¼ P1; P2;⋯; Pkf g ð2Þ
T ¼ T 1⋯n½ � ð3Þ

The character set Σ in Eq. (1) is composed of character
strings. P in Eq. (2) is a set of pattern sets, and each pat-
tern P consists of character strings coming from the

Fig. 1 Multi-keyword matching model based on multi-pattern
matching. The network flow is real-timely collected and analyzed,
and then, the pattern string set P formed by the multi-keyword list
and the network flow real-timely analyzed are rapidly and real-timely
compared and searched

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 2 of 10

character set Σ. In Eq. (3), the text string T with a given
length of n is indicated, and each character of the text
string also comes from the character set Σ. The multi-
pattern matching is to find the emergence of each pat-
tern in the pattern set P:

X ¼ x1; x2;⋯; xBf g ð4Þ
index ¼ hash Xð Þ ð5Þ

SHIFT index½ � ¼

m−Bþ 1; if X doesn
0
t appear in

any pattern

min m− jjX k½ � ¼ Pi j−Bþ k½ �;∀k; 1≤k≤B
n o

;

if X appears in some patterns

8>>>>><
>>>>>:

ð6Þ
where, in Eq. (4), X is a substring with a length of B to
be compared in T, and an index value is obtained
through mapping by a hash function. The index value is
taken as an offset to obtain the value in the SHIFT table,
and the value is decided to read the number of bits that
can be skipped after the current substring X, suppose
that X is mapped to the entry whose index is the entry
of the SHIFT table, i.e., Eq. (5). In Eq. (6), it is necessary
to map the substring with a length of B in each pattern
to the SHIFT table, in which the mapping function is
the same hash function as Eq. (5).

2.1 Algorithm initialization
Before TMWM matching algorithm is used, it is neces-
sary to carry out initialization processing for the rapid
research algorithm of network data, and the realization
process is described as follows:

Step 1: Input all pattern strings of network data
representing the specific objects into a pattern string
array and quickly sort them from small to large
according to the size of ASCII code of character
(American Standard Code for Information
Interchange).
Step 2: Take the length m of the shortest pattern string
in the network data representing the specific object as
the size of the matching window (window matching
having the character string to be matched) and, at the
same time, as the maximum distance of jumping to
initialize the jump table.
Step 3: Utilize the information about the first n
character of pattern string of all network data to
rewrite the jump table (see the following algorithm for
detailed construction process of jump table), and take
the jump block (length of B) as the basic unit of
searching the jump table to obtain one or more
characters (in general, two or three characters).
Step 4: Build up HASH table according to the prefix
(the first one to two characters) information about the

pattern string of each network data, and take subscript
of the first pattern string started with such prefix as the
table item in HASH table. While building up HASH
table, create a prefix array to store the number of
pattern strings having the same prefix.

2.2 Matching process of algorithm
Based on the initialization processing of network data
representing specific object above, the pattern strings of
the network data is matched, and the detailed imple-
mentation process is described as follows:

Step 1: Firstly, take the initial address of the network
data as the initial address of the matching window;
search for the jump table according to the suffix of the
matching window in Chinese text (length of the jump
block) to obtain the maximum distance of the jump
searching and jump until the jump fails.
Step 2: When the jump fails (that is, the table item of
jump table is zero), obtain the prefix of the matching
window to search for HASH table, in order to obtain
the initial positioning of network data customer pattern
with the same prefix in the pattern string array.
Step 3: According to the initial starting positioning
information obtained in the previous step and the
number of network data service client mode strings of
the prefix in the prefix array, the network data service
client in the matching window is compared with the
mode strings on a byte-by-byte basis to move the
matching window one byte backwards for re-matching,
whether finding out or not, until the end of the text.
The detailed matching code is described as follows:
Step 1: Use m − B + 1 to fill in Shift [] table.
Step 2: For each pattern string

3 Results and discussion
3.1 Results and discussion of MWM algorithm
In order to better test the performance of MWM algo-
rithm and the current existing STRFINDUNI algorithm,
these two algorithms are separately extracted to put in
the same Linux environment for testing.

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 3 of 10

The hardware environment of the test: Server Intel (R)
Xeon (R) CPU 5120@ 1.86 GHz 4 kernel 4 G memory.
Test samples: SOGOU Chinese Thesaurus, the test

samples are taken from the thesaurus.
Test method: The network data matching process is

simulated in real environment, without any text change,
and the number of network data pattern strings progres-
sively increases in a linear form, resulting in the propor-
tional change of the hit times. The initialization time
consumption and time consumption of network data
matching of these two algorithms are respectively mea-
sured as in Figs. 2 and 3, respectively.
According to the comparison results made between

Figs. 2 and 3, it is obvious that the MWM algorithm
spends much more time than the STRFINDUNI algo-
rithm both in the initialization process and in the
pattern matching process. The time consumption of
MWM algorithm is far more than that of STRFIN-
DUNI algorithm regardless of initialization process or
pattern matching process. However, in terms of the
extensive application of such algorithm in snort appli-
cation, the main factors of researches in this paper
cause the above differences to be concluded and sum-
marized as follows:
Influence factors concerning the network data service

client matching:

(a)Different HASH methods: HASH in STRFINDUNI
applies the 1-stage HASH followed by two stages of
indexing to construct. During the search process,
the first 6 bytes of the head address of chain list of
the network data service client pattern string list are
found through the screening process and then
matched to the network data service client pattern
string in the linked list one by one. However, the
HASH process in MWM uses only 1-stage HASH
level to accelerate the finding, matching them one
by one in the network data service client pattern

string array. This difference in HASH approach is
magnified by testing with dictionary files because the
number of phrases that begin with the same first
2 bytes is too large, often up to more than 100, and
the number of words beginning with the same first
6 bytes is greatly reduced, usually less than three.

(b)Different basic units of matching of network data:
Because STRFINDUNI is used to match the text
with Unicode coding method, the basic unit of
matching is the word, and the shifting, HASH, and
other operations in the algorithm are carried out in
the word unit. However, MWM is carried out in
byte, and for MWM algorithm known for reducing
the number of comparison times by jumping, the
differences in the basic unit of pattern string
matching for such network data will at least cause a
half distance reduction of movement in jumping.

Influence factors concerning initialization:

(a) Influence of sorting operation. After the pattern
string of network data is read in the MWM, all the
network data service client mode strings are quickly
sorted. This operation is not obvious when the
number of pattern strings is small, but when the
number of pattern strings of network data is very
large, this operation will seriously affect the
initialization speed. The most important thing is that
such a large overhead operation is not well used
later.

(b)The overhead for pattern string copy of network
data. The pattern string of STRFINDUNI is read
during initialization, and the pattern string of
network data is stored in the form of memory copy.
However, the pattern string of network data in
MWM is only carried out by the pointer passing,
reducing the overhead of application for memory
and copy.

Fig. 2 Test results of the initialization process in real environment. The abscissa indicates the mode number, and the unit is ten thousand. The
ordinate indicates the time, and the unit is millisecond

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 4 of 10

3.2 Results and discussion of TMWM algorithm
Considering the above defects is not a serious problem
in the idea of MWM algorithm itself, but rather, the idea
of MWM algorithm is not fully utilized in a specific
environment and under specific conditions. Therefore,
under the premise of retaining the core idea of the algo-
rithm, this paper proposes an improved algorithm
TMWM, and the main modified items are as follows:

(a)Modification of basic unit of matching of network
data. The jump table of MWM algorithm is carried
out with word as the unit, and the jump operation is
completely adopted in the form of word jumping.

(b)Modification of HASH method. The pattern string
array of network data upon sorting is fully utilized
and two-stage index is added behind HASH table
with the minimum cost in combination with two
index arrays, and the retrieval of each stage index is
carried out by means of binary search.

(c)Modification of sorting operation. Because the index
operation and pattern string comparison operation
of specific network data only use the first 6 bytes of
the pattern string array, it is rather redundant for
the quick sorting of the whole pattern string array,

and in terms of later application, only the first
6 bytes need to be sorted.

In order to more clearly display the main retrieval
process, all table items in Fig. 4 only display two data
items, including the number required to be matched at
the next stage and the initial positioning of matching at
the next stage.
In order to verify the effectiveness of the positioning

method of network data with high performance and
multi-pattern matching based on pattern string TMWM
proposed in this paper, the simulation experiments
require to be carried out to compare with the traditional
STRFINDUNI algorithm, and the main influence factors
of these two algorithms include: number of pattern
strings of network data, the size of text of network data,
the mean length of pattern string of network data, and
the hit times of network data.
In the following, four parameters, including the num-

ber of pattern strings, text size, mean length of pattern
string, and the hit times, are utilized for testing and cor-
responding analysis.

(a)Number of pattern strings

Fig. 4 Part structure of HASH table in TMWM algorithm. All table items only display two data items, including the number required to be match
at next stage and the initial location of matching at next stage

Fig. 3 Test results of matching process in real environment. The abscissa indicates the mode number, and the unit is ten thousand. The ordinate
indicates the time, and the unit is millisecond

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 5 of 10

Test method: The effect of number of the tested pat-
tern string on the matching time and the initialization
time is tested under the condition that the mean length
of pattern string is unchanged (6 bytes) with unchanged
text size and basically constant hit times.
The results are respectively shown in Figs. 5 and 6. As

can be seen from the comparison of Figs. 5 and 6, the
initialization time of the TMWM algorithm is propor-
tional to the number of pattern strings under other con-
ditions unchanged, whereas the matching time slightly
increases with the number of pattern strings.

(b)Text size

Test method: The effect of text size on the matching
time and initialization time is tested under the condition
that the pattern strings are constant and the hit number
of times is basically unchanged.
The results are respectively shown in Figs. 7 and 8. As

can be seen from the comparison of Figs. 7 and 8, the
matching time of these two algorithms is proportional to
the text size under other conditions unchanged, and the
initialization time remains constant because the pattern
string remains unchanged.

(c)Average length of pattern strings

Test method: The effect of the average length of the
pattern string on the matching time and initialization
time is tested when the number of pattern strings, the
text size, and the number of hit times remain
unchanged.
The results are respectively shown in Figs. 9 and 10.

As can be seen from the comparison of Figs. 9 and 10,
the TMWM algorithm is less affected by the length of
the pattern string, whereas the STRFINDUNI algorithm
is greatly affected by the length of the pattern string, and
it has a big time change especially when matching.

(d)Hit times

Test method: The effect of the hit number of times on
the matching time and initialization time is tested when
the number of pattern strings, the average length of the
pattern strings, and the text size remain unchanged.
The results are respectively shown in Figs. 11 and 12.

According to the results of the effects of hit number of
times on the initialization process in Figs. 11 and12, the
TMWM algorithm has a relatively small effect on the hit

Fig. 5 Test results of the influence of the number of pattern strings on matching process. The abscissa indicates the mode number, and the unit
is ten thousand. The ordinate indicates the time, and the unit is millisecond

Fig. 6 Test results of the influence of the number of mode strings on initialization process. The abscissa indicates the mode number, and the unit
is ten thousand. The ordinate indicates the time, and the unit is millisecond

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 6 of 10

Fig. 7 Test results of the influence of text size on matching process. The abscissa indicates the text size, and the unit is megabytes. The ordinate
indicates the time, and the unit is millisecond

Fig. 8 Test results of the influence of text size on initialization process. The abscissa indicates the text size, and the unit is megabytes. The
ordinate indicates the time, and the unit is millisecond

Fig. 9 Test results of influence of pattern string length on matching process. The abscissa indicates the average length of mode string, and the
unit is byte. The ordinate indicates the time, and the unit is millisecond

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 7 of 10

Fig. 10 Test results of influence of pattern string length on initialization process. The abscissa indicates the average length of mode string, and
the unit is byte. The ordinate indicates the time, and the unit is millisecond

Fig. 11 Test results of the influence of hit times on matching process. The abscissa indicates the hit times, and the unit is ten thousand. The
ordinate indicates the time, and the unit is millisecond

Fig. 12 Test results of the influence of hit times on initialization process. The abscissa indicates the hit times, and the unit is ten thousand. The
ordinate indicates the time, and the unit is millisecond

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 8 of 10

number of times, and the invariant pattern strings lead
to no change in the initialization time, so the
initialization time of the TMWM algorithm is improved
by about 50% as compared with the STRFINDUNI algo-
rithm and the matching time of the TMWM algorithm
is increased by about 100% as compared with the
STRFINDUNI algorithm.
The above results are obtained through a lot of

experiments and analysis. Meanwhile, as the price of
hardware resources decreases and more complex regular
expressions are used, AC algorithm will have more
applications.

4 Conclusions
A real-time positioning method based on the pattern
string TMWM with high performance and multi-
pattern matching in the network big data environ-
ment is proposed. Firstly, the algorithm was
initialized, the MWM algorithm was used to con-
tinuously match the network data, and the TMWM
algorithm was used to improve it. Afterwards, the IP
and IP address databases corresponding to the
matched network data were compared to complete
the positioning of specific objects in the big data
environment. Compared with the traditional MWM
and STRFINDUNI matching methods, the improved
TMWM algorithm may reduce the matching range
of the target pattern strings, accelerate the search
speed of the pattern strings, and enhance the clue
and keyword search speed of about 100%, thus
solving the problem of efficiently searching the
desired pattern strings in the big data environment.
Finally, the effectiveness and feasibility of the pro-
posed algorithm in terms of pattern string matching
speed and matching efficiency are verified by com-
paring and analyzing the number of pattern strings,
text size, average length of pattern strings, and the
hit number of times.

5 Additional files

Additional file 1: Test samples from the SOGOU Chinese Thesaurus
that contains 200 thousand phrases. (TXT 1564 kb)

Additional file 2: Test samples from the SOGOU Chinese Thesaurus
that contains 250 thousand phrases. (TXT 1956 kb)

Additional file 3: Test samples from the SOGOU Chinese Thesaurus
that contains 300 thousand phrases. (TXT 2350 kb)

Abbreviations
AC: Aho-Corasick; ASCII: American Standard Code for Information
Interchange; BM: Boyer-Moore; IP: Internet Protocol; KMP: Knuth-Morris-Pratt;
MWM: Modified Wu-Manber; TMWM: Third Index Modified Wu-Manber;
WM: Wu-Manber

Acknowledgements
Many thanks to my colleagues, including Zhang C., Zhou H., Wan Y.L., and Dai
H.W., who helped me do some experiments, and they gave many suggestions.

Funding
Funding information is not applicable.

Availability of data and materials
These test samples were taken from the SOGOU Chinese Thesaurus, mainly
including patternstring-20w.txt, patternstring-25w.txt, and patternstring-
30w.txt (Additional files 1, 2, and 3).

Authors’ contributions
HZ proposed the improvement method, and the method was tested,
compared and summarized by HZ. LZ made an improvement on the
method. Both authors read and approved the final manuscript.

Authors’ information
Zhu Hejun is a Doctor of Network Information Security and studies at Beijing
Institute of Technology as an in-service doctor. His research interests include
network information security and big data processing and mining.
Zhu Liehuang is a Doctor of Computer Science and Technology and
Professor. He graduated from the Beijing Institute of Technology in 2004. He
worked in Beijing Institute of Technology. His research interests include
cryptographic algorithms and security protocols, Internet of things security,
and cloud computing security.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 22 November 2017 Accepted: 27 January 2018

References
1. A Dainotti, A Pescape, K Claffy, Issues and future directions in traffic

classification. IEEE Netw. 26(1), 35–40 (2012)
2. L Peng, B Yang, Y Chen, Z Chen, Effectiveness of statistical features for early

stage internet traffic identification. Int. J. Parallel Prog. 44(1), 181–197 (2016)
3. S Faro, T Lecroq, The exact online string matching problem: a review of the

most recent results. ACM Comput. Surv. 45(2), 1–42 (2013)
4. Aygün S, Güneş EO, Kouhalvandi L, Advances in Information, Electronic and

Electrical Engineering IEEE, Python based parallel application of Knuth-
Morris-Pratt algorithm (IEEE, Vilnius, 2017), pp. 1–5.

5. Tsarev RY, Chernigovskiy AS, Tsareva EA, Brezitskaya VV, Nikiforov AY,
Smirnov NA, Combined string searching algorithm based on Knuth-Morris-
Pratt and Boyer-Moore algorithms (IOP, Krasnoyarsk). 122(1), 012034 (2016).

6. TH Tsai, Average case analysis of the Boyer-Moore algorithm. Random
Struct. Algoritm. 28(4), 481–498 (2010)

7. F Bassino, J David, C Nicaud, Average case analysis of Moore’s state
minimization algorithm. Algorithmica 63(1-2), 509–531 (2012)

8. Vakili S, Langlois JMP, Boughzala B, Savaria Y, Symposium on Architectures
for NETWORKING and Communications Systems, Memory-efficient string
matching for intrusion detection systems using a highprecision pattern
grouping algorithm (IEEE, Santa Clara, 2016), pp. 37–42.

9. Arudchutha S, Nishanthy T, Ragel RG, IEEE International Conference on
Industrial and Information Systems, String matching with multicore CPUs:
performing better with the Aho-Corasick algorithm (IEEE, Peradeniya, 2014),
pp. 231–236.

10. Li X, Wu L, Proceedings of the 2015 Chinese Intelligent Automation
Conference, A multi-modal searching algorithm in computer go based on
test (Springer, Heidelberg), 336, 143-149 (2015).

11. Ng T, Rappaport D, Kai S, Developments in language theory, State
complexity of neighborhoods and approximate pattern matching (Springer
International Publishing, Switzerland, 2015), pp. 389-400.

12. Aldwairi M, Al-Khamaiseh K, Web Applications and NETWORKING, Exhaust:
optimizing Wu-Manber pattern matching for intrusion detection using
Bloom filters (IEEE, Sousse, 2015), pp. 1–6.

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 9 of 10

https://doi.org/10.1186/s13638-018-1043-3
https://doi.org/10.1186/s13638-018-1043-3
https://doi.org/10.1186/s13638-018-1043-3

13. Alkhathami M, Alazzawi L, Elkateeb A, Models and techniques analysis of
border intrusion detection systems. Global Journal of Research in
Engineering. 15(7), 35–43 (2015)

14. N Tuck, T Sherwood, B Calder, G Varghese, Deterministic memory efficient
string matching algorithms for intrusion detection. IEEE INFOCOM. 4(11),
2628–2639 (2004)

15. Patel B, Efficient string matching algorithm for intrusion detection,
International Journal of Computer Engineering and Science. 1(1), 9-17
(2015).

16. Kouzinopoulos CS, Michailidis PD, Margaritis KG, Multiple string matching
on a GPU using cuda. Scalable Computing. 16(2), 121-137 (2015).

17. G Navarro, NR-GREP: a fast and flexible pattern-matching tool. Software
Pract Experience 31(13), 1265–1312 (2010)

18. CN Modi, DR Patel, A Patel, R Muttukrishnan, Bayesian classifier and snort
based network intrusion detection system in cloud computing. International
Conference on Computing Communication & NETWORKING Technologies.
IEEE 90, 1–7 (2012)

Zhu and Zhu EURASIP Journal on Wireless Communications and Networking (2018) 2018:43 Page 10 of 10

	Abstract
	Introduction
	Principle
	Algorithm initialization
	Matching process of algorithm

	Results and discussion
	Results and discussion of MWM algorithm
	Results and discussion of TMWM algorithm

	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	References

