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Abstract

Receivers based on 1-bit quantization and oversampling with respect to the transmit signal bandwidth enable a
lower power consumption and a reduced circuit complexity compared to conventional amplitude quantization. In
this work, the achievable rate for systems using such analog-to-digital conversion with different modulation schemes
is studied. The achievable rate and the spectral efficiency with respect to a given power containment bandwidth are
considered. The proposed sequence-based communication approach outperforms the existing methods known from
the literature on noisy channels with 1-bit quantization and oversampling at the receiver. It is demonstrated that the
utilization of 1-bit quantization and oversampling can be superior in terms of the spectral efficiency in comparison to
conventional amplitude quantization using a flash converter with the same number of comparator operations per
time interval.
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1 Introduction
The achievable rate in case of Nyquist rate sampling is lim-
ited by the quantization resolution of the analog-to-digital
converter (ADC). In this regard, a flash converter consist-
ing ofNComp comparators limits the maximum achievable
rate to log2(NComp + 1) bits per Nyquist interval [1].
Differently, by time interleaving NComp comparator oper-
ations per Nyquist interval, 2NComp quantization regions
exist, which enhances the limit of the achievable rate to
NComp bits per Nyquist interval. In this regard, employ-
ing 1-bit quantization and oversampling at the receiver
is promising in terms of the achievable rate. Moreover,
a 1-bit ADC at the receiver is robust against amplitude
uncertainties such that the automatic gain control can be
simplified, and linearity requirements of the analog fron-
tend are relaxed. Last but not least, a 1-bit ADC requires
only simple circuitry and does not need much headroom
for amplitude processing, which makes it appropriate for
low supply voltages and with this low energy consump-
tion. All these motivate us to study the achievable rate of
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channels with 1-bit output quantization and oversampling
at the receiver.
A first study of the achievable rate with 1-bit quanti-

zation and oversampling at the receiver has been carried
out by Gilbert [2] showing a marginal benefit in terms
of the achievable rate by oversampling. Subsequently,
by using a Zakai bandlimited channel input processes,
Shamai [3] has shown that oversampling can significantly
increase the achievable rate. Both of these works consider
a noiseless channel. For noisy channels, in [4] a benefit of
oversampling has been proven in the low signal-to-noise
ratio (SNR) regime by studying the capacity per unit cost.
Moreover, in [5] the achievable rate at high SNR has been
studied by considering generalized mutual information,
which did not confirm the high rates promised in [3].
Besides these papers on strictly bandlimited channels,

also cases with less strict spectral constraints on the trans-
mit signal have reported benefits from 1-bit quantization
and oversampling. For example, in [6, 7], where the chan-
nel is treated as memoryless, it has been observed that
random processes such as additive noise and intersym-
bol interference can yield an increase of the achievable
rate due to dithering. The same strategy, namely treating
the channel as memoryless, has been applied for the uti-
lization of faster-than-Nyquist (FTN) signaling [8, 9] for
channels with 1-bit quantization and oversampling at the
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receiver [10]. An alternative strategy for communication
with 1-bit quantization and oversampling at the receiver
is to transmit sequences which generate a unique output
signal after 1-bit quantization. In this regard, a waveform
design supporting a unique detection of symbols with
16 quadrature amplitude modulation (16-QAM) has been
proposed in [11]. Without being exhaustive, the named
papers show some benefit of oversampling when using
1-bit channel output quantization. Nevertheless, none of
these approaches provide achievable rates comparable to
those which are presented in [3] for the noiseless channel.
In addition, 1-bit quantization—not necessarily with

oversampling—received increased attention in the con-
text of multiple-input multiple-output (MIMO) systems,
where the low SNR regime is discussed in [12, 13], and the
high SNR case is investigated in [14]. It is shown that the
power penalty for the 1-bit quantization in the low SNR
regime is less than 2 dB. For the high SNR regime, channel
state information can be exploited at the transmitter for a
channel inversion strategy for the construction of receive
signals appropriate for 1-bit quantization. Moreover, the
sequence design approach described in [11] for the single-
input single-output channel has been recently extended
for the massive multiple-input single-output scenario in
[15] and for the massive MIMO scenario in [16].
Furthermore, 1-bit quantization is considered in the

context of phase quantization [17] and a related con-
cept named overdemodulation [18], where the received
signal is down-converted with more than two carrier
phases, different to 90 degrees. The increased number of
carrier phases provides additional information in cases
where a coarse quantization at the receiver is consid-
ered. Another study is presented in [19], where mul-
tidimensional quantizer designs are investigated in the
context of channels with memory. The proposed quan-
tizers in [19] are optimized for channels with memory
whose quantization regions incorporate multiple receive
samples.
The channel with 1-bit quantization and oversampling

at the receiver is implicitly a channel with memory. In
this regard, we have to consider sequence detection based
receivers to approach the channel capacity [20]. As the
capacity of finite state channels can be approached by
Markov sequences [21], we consider different channel
input processes of this class. In this regard, we study
sequences based on:

• QAM and phase-shift keying (PSK) symbols at
Nyquist rate

• Faster-than-Nyquist signaling with quadrature
phase-shift keying (QPSK) and QAM symbols

i.e., we either design transmit sequences correspond-
ing to a conventional modulation or with an increased

signaling rate. Moreover, we study specific signal design
approaches, (1) reconstructible 4 amplitude-shift keying
(4-ASK) / 16-QAM sequences for conventional signal-
ing rate and (2) runlength-limited (RLL) sequences for
FTN signaling. We also propose a sequence optimization
strategy, based on the approach in [22], which maximizes
the achievable rate by optimizing the transition probabil-
ities of a Markov source model. The present work goes
clearly beyond the studies we have presented before on
this subject. The main extensions are the consideration
of PSK signaling, the consideration of the spectral effi-
ciency with different out-of-band power thresholds, the
extended description of the sequence optimization strat-
egy including the explanation of the lower bound on
the achievable rate and the overall performance compar-
ison for a large number of transmit signaling schemes
under the same conditions. Moreover, in the present
work, we describe the constraints on the waveform for
the reconstructable 16-QAM sequences and discuss the
zero-crossings in sequences composed of weighted cosine
pulses.
In [23], we treat the channel with 1-bit quantization and

oversampling at the receiver and root-raised-cosine (RRC)
transmit and receive filters with infinite memory. The
study serves as a proof of concept for strictly bandlimited
channels. The results in [23] in terms of the achievable
rate are comparable to [3]. However, the utilization of RRC
filters is impractical for many applications. In this regard,
consider that the use of RRC filters implies an exten-
sive memory of the channel when having 1-bit quantiza-
tion and oversampling at the receiver, which dramatically
increases the computational complexity of the sequence
demapping, e.g., by utilizing a trellis receiver. Differently
to [23], in the present work, we consider transmit pulses
with a shorter length in time domain such as the cosine
pulse and the Gaussian pulse. These waveforms provide
a good trade-off between spectral efficiency and channel
memory. We rely on the assumption that the residual out-
of-band radiation can be tolerated for specific applications
such as board-to-board communication at sub-Terahertz
carrier frequencies and intra-chipstack communications,
e.g., using through-silicon vias. Our results show that the
proposed methods outperform the existing methods in
terms of the spectral efficiency. Furthermore, our results
show that 1-bit quantization with oversampling at the
receiver can yield comparable and even superior spectral
efficiency than conventional methods based on ampli-
tude quantization when operating in the low quantization
regime with the same number of comparator operations
per time interval.
In the present work, we consider sequences with infi-

nite length and optimal receivers which rely on the
true or an auxiliary channel law. Alternative approaches
based on fixed-length sequences and receive strategies
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with a lower complexity are presented in our prior
work [24, 25].
The rest of the paper is organized as follows. Section 2

introduces the system model. In Section 3, we recall a
method to lower-bound the achievable rate for channels
with memory, which we will subsequently apply to eval-
uate the performance of the studied signaling schemes.
Afterwards, in Section 4, we present an approach to gen-
erate reconstructible 4-ASK/16-QAM sequences. More-
over, the application of RLL sequences, which are used
in combination with FTN signaling, is described in
Section 5. In Section 6, we propose an optimization strat-
egy for sequence design, which maximizes the given lower
bound on the achievable rate. We discuss the numerical
results in Section 7, and finally, a conclusion is given in
Section 8.
Notation: Bold symbols, e.g., yk , denote vectors, where

k indicates the k-th symbol, or more specifically, the sam-
ples which belong to the k-th input symbol time interval.
yk is a column vector with M entries, where M is the
oversampling factor w.r.t. a transmit symbol. Sequences
are indicated with xn =[ x1, . . . , xn]T , and sequences of
vectors are denoted as yn = [

yT1 , . . . , yTn
]T . A segment

of a sequence is written as xkk−L =[ xk−L, . . . , xk]T and

ykk−L =
[
yTk−L, . . . , y

T
k

]T
. Random quantities are denoted

by upright letters, e.g., yk is random vector. A simpli-
fied notation for probabilities of random quantities is
used with P

(
yn|xn) = P

(
yn = yn|xn = xn

)
. Exceptions

are explicitly declared.

2 Systemmodel
We consider the single carrier communication system
model shown in Fig. 1. The digital-to-analog converter
(DAC) in Fig. 1 is considered as ideal such that its out-
put is described by a sequence of weighted Dirac delta
pulses

∑∞
k=−∞ xkδ

(
t − k Ts

MTx

)
, with xk being the k-th

channel input symbol and MTx
Ts

describes the symbol rate
depending on the unit time interval Ts and the integer
parameterMTx. The complex baseband receive signal r(t)
corresponds to the complex transmit signal x(t), which is
given as a weighted sum of time shifted transmit pulses
h(t), disturbed by additive white Gaussian noise n(t). At
the receiver, r(t) is processed by the receive filter with the
impulse response g(t) such that the ADC input signal is
given by

z(t)=
∫ ∞

−∞

⎛

⎝
∞∑

k=−∞
xk h

(
τ −k

Ts
MTx

)
+n(τ )

⎞

⎠ g(t − τ)dτ .

(1)

MTx larger than 1, e.g., MTx = 2 or 3, corresponds to
faster-than-Nyquist signaling following the principle in [8,
9]. In this regard, a compression of channel input symbols
in time is given, such that MTx channel input symbols are
emitted in the unit time interval Ts. The compression of
input symbols in time provides additional degrees of free-
dom which can be exploited for the waveform design. In
order to avoid extensively complex trellis-based receivers,
a transmit filter h(t) with short impulse response is favor-
able. In this context, different standard pulses (Gaussian
pulse, cosine pulse, and rect pulse) will be examined
in terms of the spectral efficiency for the considered
channel.
Instead of considering matched filtering,1 we consider

an integrate-and-dump receiver, whose integrator over the
time interval Ts serves as the receive filter

g(t) =
{√

1
Ts
, 0 ≤ t < Ts

0, otherwise,
(2)

whose short impulse response is favorable for a trellis-
based sequence detection. The system impulse response
is denoted as v(t) = (h ∗ g)(t).
Finally, the output signal of the low-pass filter z(t) is

sampled at rate MMTx
Ts

and quantized by the ADC. Here,M
denotes the oversampling factor with respect to the trans-
mit symbol rate. The channel with the transmit symbols
xk as input symbols and the output of the ADC yk is a
discrete-time channel. For describing the input and out-
put relations, we express the length of the overall impulse
response v(t) of the channel in terms of input symbol
durations. The length of the impulse response v(t) is by
definition L+1 symbol durations. The noise n(t) is just fil-
tered by the receive filter g(t) whose impulse response has
a length of ξ symbol durations. Considering the receive
filter in (2) with the length of Ts corresponds to ξ = MTx.
Perfect synchronization is assumed, such that one of the
M samples at the receiver includes the peak of the system
impulse response. With this, the sampling time instances
are case sensitive, such that the sampling vector zk =
[
zk,1, . . . , zk,M

]T is described by

Fig. 1 System model, oversampling factorM, and faster-than-Nyquist coefficientMTx
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zk,m =

⎧
⎪⎪⎨

⎪⎪⎩

z
(

kTs
MTx

+ mTs
MMTx

)
, (L + 1)M is even

z
(

kTs
MTx

+ (m− 1
2 )Ts

MMTx

)
, (L + 1)M is odd

and m ∈ {1, . . . ,M} ,

where M is the oversampling factor with respect to
a transmit symbol. Accordingly, the vector zk con-
tains the M samples corresponding to the transmit
symbol xk . The subsequent quantization is denoted by
yk,m = Q

(
zk,m

)
, where Q

(
zk,m

) = sgn
(
zk,m

)
, such

that yk,m ∈ {
1 + j, 1 − j,−1 + j,−1 − j

}
. The quan-

tization operator applies element-wise with Q {zk} =[
Q
(
zk,1

)
, . . . ,Q

(
zk,M

)]T .
The channel input symbols xk are taken from discrete

modulation alphabets, specifically, a QPSK, QAM, or PSK
symbol alphabet X with the cardinality |X |. While for
QAM we use the standard constellation, for PSK constel-

lations, the input symbols are given by xk = ej2π
mk+ 1

2|X |

with mk ∈ {0, . . . , |X | − 1}.2 The channel including trans-
mit and receive filtering and quantization is a discrete
input discrete output channel with memory, for which
it is known that the channel capacity can be asymptoti-
cally achieved by a stationary Markov source [21]. Thus,
we consider a stationary Markov source model, such that
each channel input symbol xk depends on Lsrc previ-
ous symbols P

(
xk|xk−1) = P

(
xk|xk−1

k−Lsrc

)
= P

(
sk|sk−1

)
,

where for the latter, we use the state variable sk =
xkk−Lsrc+1 to describe the current state of the source. To
simplify the notation, we use the shorthand notation
Pi,j = P

(
sk = j|sk−1 = i

)
. We denote the stationary dis-

tribution of the source states by μi = P (sk = i) for i =
1, . . . , |X |Lsrc .
Due to transmit and receive filtering, the channel output

depends on previous channel inputs and outputs. Accord-
ingly, later in Section 3, we introduce an auxiliary channel
law, which accounts for for the dependency on N pre-
vious channel outputs yk−1

k−N . Thus, we are interested in
the description of N + 1 subsequent channel output sig-
nals ykk−N . The parameter N can be understood as the
trace-back of the sequence, which corresponds to the
truncation length in the receiver processing, i.e., it lim-
its the dependency on prior channel outputs conditioned
on the channel inputs. In the following, we use a matrix-
vectornotationof the channel input/output relation given by

ykk−N = Q
{
zkk−N

}
= Q

{
V (N)U(N)xkk−N−L (3)

+ D(N)G(N)nkk−N−ξ

}
,

cf. the notation introduced at the end of Section 1. Due
to the memory of the channel introduced by transmit and
receive filtering, the subsequence of channel outputs ykk−N
depends on the transmit symbols xkk−N−L. An individual
channel output symbol is given by setting N = 0 in (3)
yielding

yk =Q {zk} = Q
{
V (0)U(0)xkk−L + D(0)G(0)nkk−ξ

}
.
(4)

The convolution with the system impulse response v(t) is
reflected by the multiplication with V (N) and the con-
volution with the receive filter impulse response (2) is
reflected by multiplication with G(N). The filter matrices
V (N) and G(N) with dimensions (M(N+1))×((L+N+2)
M−1) and (MD(N +1))× (MD(1+N +ξ)), respectively,
are structured as follows

V =

⎛

⎜
⎜
⎜⎜
⎜
⎝

[
vTr

]
0 · · · 0

0
[
vTr

]
0 · · · 0

. . .
. . .

. . .
0 · · · 0

[
vTr

]

⎞

⎟⎟
⎟
⎟
⎟
⎠
, G = 1

∥
∥gr

∥
∥
2

⎛

⎜
⎜⎜
⎜
⎜
⎝

[
gTr

]
0 · · · 0 0

0
[
gTr

]
0 · · · 0 0

. . .
. . .

. . .
0 · · · 0

[
gTr

]
0

⎞

⎟⎟
⎟
⎟
⎟
⎠
, (5)

where the receive filter gr is normalized to unit energy3.
The system impulse response function is sampled in reverse
order with rate MMTx

Ts
to express the convolution.

With this, the vector in V is given by vr =
[
v
(
(L+1) Ts

MTx

)
,

v
((
L+M−1

M
) Ts
MTx

)
, . . . , v

(
Ts

MMTx

)]T
when (L+1)M is even

and vr =
[
v
((
L+2M−1

2M
) Ts
MTx

)
,v
((
L+ 2M−3

2M
) Ts
MTx

)
, . . . ,

v
(

Ts
2MMTx

)]T
when (L + 1)M is odd. Moreover, the impulse

response of the receive filter sampled in reverse order
with the rate MMTxD

Ts
is denoted by gr =

[
g
(
ξ Ts
MTx

)
,

g
((

ξD − 1
M
) Ts
MTxD

)
, . . . , g

(
Ts

MMTxD

)]T
. The D fold higher

sampling rate allows to model the aliasing effects
which possibly occur when considering receive filters
with a larger bandwidth as can be described with the
sampling rate of the receiver MMTx

Ts
.4 Accordingly, the

vector nkk−N−ξ
in (3) contains N + ξ + 1 vectors each

containing MD independent and identically distributed
(i.i.d.) complex Gaussian samples with zero mean and
variance σ 2

n modeling n(t). In order to merge the differ-
ent sampling rate domains, the input xkk−N−L is M-fold
upsampled by matrix multiplication with U(N) and the
filtered noise is D-fold decimated by the matrix multi-
plication with D(N). The matrix U(N) with dimensions
((L + N + 2)M − 1) × (L + N + 1) and the matrix
D(N) with dimensions (M(N + 1)) × (MD(N + 1)) have
elements given by

[U(N)]i,j =
{
1 for i = jM
0 otherwise, (6)

[D(N)]i,j =
{
1 for j = (i − 1)D + 1
0 otherwise, (7)

where i and j are positive integers accounting for the row
and the column number, respectively.
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3 Achievable rate
The considered channel in (3) has memory. A channel
output yk depends on previous input symbols and previ-
ous channel outputs yk−1, where the latter is induced by
the correlation of the noise samples. Considering block-
wise stationarity and ergodicity with respect to yk , the
simulation-based methods in [26–29] can be applied for
computing the achievable rate.

3.1 Lower-bounding by considering an auxiliary channel
law

According to [26, 29], the achievable rate for a channel
with memory can be computed with

lim
n→∞

1
n
I
(
xn; yn

) = lim
n→∞

1
n
(− logP

(
yn
)+ logP

(
yn|xn)) ,

(8)

where the right hand side (RHS) can be numerically eval-
uated based on “very long” sequence realizations yn and
xn generated with respect to the distributions P (xn) and
P
(
yn|xn). An auxiliary channel law W (·|·) is introduced

which approximates the actual channel law by limiting
the memory of the channel to N previous channel output
symbols yk−1

k−N , i.e., P
(
yk|yk−1, xk

) ≈ W
(
yk|yk−1, xk

)
with

W
(
yk
∣∣
∣yk−1, xk

)
= P

(
yk
∣∣
∣yk−1

k−N , x
k
k−N−L

)
. (9)

According to the Auxiliary-Channel Lower Bound in
[29], by employing (9), we get

lim
n→∞

1
n
I
(
xn; yn

)≥ lim
n→∞

1
n
(−logW

(
yn
)+logW

(
yn|xn)) ,

(10)

where the limit on the RHS can be numerically
approached based on very long sequences. The probabili-
ties W

(
yn
)
and W

(
yn|xn) are computed recursively with

the forward recursion of the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [30]. Taking into account the memory
of the auxiliary channel law L + N and the memory of the
source model Lsrc the system state sk , cf. Sec. 2 (including
channel and source) becomes sk = xkk−max(Lsrc,L+N)+1. In
this regard, the probability of the output sequence W (yn)
is computed with the recursion given by

W (yk) =
∑

sk

W
(
yk , sk

)
=
∑

sk

μk(sk), (11)

μk(sk) =
∑

sk−1

P
(
yk
∣∣∣yk−1

k−N , sk , sk−1
)
P
(
sk
∣∣sk−1

)
μk−1(sk−1)

=
∑

sk−1

P
(
yk
∣
∣∣yk−1

k−N , x
k
k−L−N

)
P
(
xkk−Lsrc+1

∣
∣∣xk−1

k−Lsrc

)

× μk−1(sk−1),
(12)

which makes use of (9) withμk(sk) as the branchmetric of
the BCJR algorithm, cf. the notation in [29]. For (12), we
have used the fact that yk , given xkk−L−N , is independent of
xk−L−N−1
k−Lsrc if Lsrc > (L + N) applies. Analogously to (12),
the conditional probabilityW (yn|xn) is computed with the
recursion given by

W
(
yk|xn

)
= μ̃k = P

(
yk
∣∣∣yk−1

k−N , sk , sk−1
)

μ̃k−1

= P
(
yk
∣∣∣yk−1

k−N , x
k
k−L−N

)
μ̃k−1. (13)

Using Bayes’ rule, we can write the conditional proba-
bility in (12) and (13) as

P
(
yk
∣
∣∣yk−1
k−N , xkk−L−N

)
=

P
(
ykk−N

∣∣
∣xkk−L−N

)

P
(
yk−1
k−N

∣∣
∣xkk−L−N

) =
P
(
ykk−N

∣∣
∣xkk−L−N

)

P
(
yk−1
k−N

∣∣
∣xk−1
k−L−N

) ,

(14)

where we have used that yk−1 is independent of xk .
Numerator and denominator in (14) can be computed
directly when considering a specific system model.

3.2 Transition probabilities
Because the computation of the transition probabilities
incorporates an integration over a multivariate circularly
symmetric Gaussian distribution, it is favorable in terms
of computational complexity to decompose them into
statistically independent real-valued components. With
Re {zk} = źk and Im {zk} = z̀k , a shorthand notation is
used, which is also applied for the xk and nk .
The real part of the received signal before the quan-

tization follows a multivariate Gaussian distribution
described by

p
(
źkk−N |x́kk−L−N

)
= 1
√

(2π)M(N+1) |RN+1|

× exp
(

−1
2

(
źkk−N − μx

)T
R−1
N+1

(
źkk−N −μx

))
,

(15)

with the mean vector μx = V(N)U(N)x́kk−L−N and the

covariancematrixRN+1=E
{
D(N)G(N)ńkk−N−ξ

(
ńkk−N−ξ

)T

G(N)TD(N)T
}
, where G(N) is real valued.

The transition probabilities for the quantized signal in
(3) are given by the integration over the corresponding
quantization regions5, i.e.,

P
(
ýkk−N

∣
∣∣x́kk−L−N

)
=

∫

z′k
k−N∈Ýk

k−N

p
(
źkk−N

∣
∣∣x́kk−L−N

)
dźkk−N ,

(16)

where Ý
k
k−N =

{
źkk−N

∣∣∣Q
{
źkk−N

}
= ýkk−N

}
. QAM

sequences are described by two independent ASK
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sequences. In case of a PSK input alphabet, the real and
imaginary part of the received signal are independent
when they are conditioned on the input, which allows to
write the probability distribution as a product.

4 Reconstructible ASK sequences
In this section, we discuss the construction of ASK6

sequences which can be distinguished by a receiver using
1-bit quantization and oversampling. For illustration of
our approach, we consider a triangular waveform, i.e.,

v(t) = tri
(
t − Ts
Ts

)
=
⎧
⎨

⎩

t
Ts
, 0 ≤ t < Ts

2 − t
Ts
, Ts ≤ t < 2Ts

0, otherwise.
(17)

Note that the principle can be applied for all waveforms
which fulfill the constraints described in Appendix A,
e.g., when h(t) is a cosine pulse with length 2Ts. For the
illustrating example, we consider a 4-ASK input alphabet,
3-fold oversampling (M = 3), and a signaling rate with
MTx = 1.

4.1 The reconstruction issue of sequences with i.i.d.
symbols

The symbol transitions xk to xk+1 can be classified regard-
ing their properties on sequence reconstruction. The
states A to D in the state machine in Fig. 2 cover all pos-
sible signal evolutions, e.g., when considering sequences
of i.i.d. input symbols xk . The classification of the 16
symbol transitions into the four subclasses is a favorable
illustration, because transmit symbol sequences can be
modeled by arbitrarily combining the states A to D, while
symbol transitions within the subclasses have identical
properties for sequence reconstruction. The illustrations
within the boxes show possible evolutions of the received

A B

C D

Fig. 2 State machine for unconstrained 4-ASK symbol transitions

symbol over the time duration kTs ≤ t ≤ (k + 1)Ts.
The (M + 1) sampling instances within this time inter-
val are indicated by the vertical bars on the x-axis. The
sequence reconstruction properties are determined by the
corresponding channel output patterns given by the signs
at the sampling instances. In this regard, the four states
of the machine themselves represent classes of symbol
transitions which are associated with different properties
regarding sequence reconstruction:

A: xk and xk+1 can be directly reconstructed based on
the currentM + 1 ADC output samples in the time
interval kTs ≤ t ≤ (k + 1)Ts (“decision”)

B: xk+1 can be reconstructed based on the current
M + 1 ADC output samples in case xk is known at
the receiver, or xk can be reconstructed in case xk+1
is known (“forward”)

C: Possible ambiguity with transitions in state D
(“ambiguity1”)

D: Possible ambiguity with transitions in state C
(“ambiguity2”).

4.2 A state machine representation for reconstructible
ASK sequences

In Section 4.1, it has been shown that only a subset of all
possible transmit sequences can be distinguished based
on the current ADC output pattern, when the transmit
symbols xk are i.i.d.. The problem arises from the fact
that the transitions contained in state D cannot be dis-
tinguished from the transitions contained in state C or
vice versa. In the following, we describe how to avoid
this problem by a systematic sequence construction. For
this purpose, we model the transmit sequences by a state
machine. The state machine is designed such that each
possible realization of state transition sequences corre-
sponds to a different output pattern at the receiver, i.e.,
each realization of the machine corresponds to a recon-
structible sequence. We assume that the structure of the
state machine is shared with the receiver. A segment of a
reconstructible sequence is initiated and terminated with
state A. This is due to the fact that with state A, xk
and xk+1 are known, which is employed as starting point
for backtracking. Moreover, the introduction of an addi-
tional constraint allows to some extent the utilization of
both ambiguity states for sequence construction. First,
one of the ambiguity states, e.g., state C, can be termed
as a primary ambiguity state. The primary ambiguity can
be considered for sequence construction nearly uncon-
strained. The residual, state D, is the secondary ambiguity
which involves a constraint, e.g., such that after state D is
visited only state B or state A is allowed, which retains the
sequences segment unique for reconstruction. The corre-
sponding state machine is illustrated in Fig. 3, where the
B state subsequent to state D is termed B*. The adjacency
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A B C

D

Fig. 3 State machine for reconstructible 4-ASK sequences, with dependency on the whole prior sequence, P
(
xk|xk−1

)

matrix, describing the directed connections of the states,
is given by

Aadj =

⎡

⎢⎢
⎢⎢
⎣

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 0 0 0 1
1 0 0 0 1

⎤

⎥
⎥⎥⎥
⎦
, (18)

where the first three rows account for the outgoing con-
nections for states A, B, and C, and the last two rows
account for the outgoing connections from the states D
and B*. The columns represent the incoming states in the
order A, B, C, D, and B*. According to [31], the maximum
entropy rate of sequences generated by this state machine
can be computed with

Hmax = lim
n→∞

1
n
log2

∑

i,j

[
An
adj

]

i,j
= log2 (λmax) (19)

= 1.7716 [bit per symbol], (20)

where λmax is the largest real-valued eigenvalue of Aadj,
and An

adj describes Aadj raised to the power of n. Further-
more, according to [31] the transition probabilities that
maximize the source entropy are computed with

Pi,j = bj
bi

·
[
Aadj

]
i,j

λmax
, (21)

where bj and bi are the ith and jth entry of the right hand
eigenvector belonging to the eigenvalue λmax, respectively.
The proposed state machine models sequences with infi-
nite memory in terms of channel input symbols when
expressing them by the Markov source introduced in
Section 2 with a state corresponding to sk = xkk−Lsrc+1.
To generate finite memory transmit sequences, a minor
modification of the presented state machine is required,
which is described in Appendix B. This modification
leads, depending on the source memory Lsrc, to a slight
reduction of the source entropy rate. However, accord-
ing to Table 1, we already closely approach the maximum
entropy of the state machine with infinite memory given
in (20) by considering a memory of Lsrc = 4.
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Table 1 Source entropy rates of reconstructible sequences

Sequence property Lsrc = 1 Lsrc = 2 Lsrc = 3 Lsrc = 4

limn→∞ 1
nH(xn) [bit/symbol] 1.585 1.7237 1.7583 1.7678

5 Runlength-limited sequences
An alternative approach to model transmit sequences
which can be uniquely reconstructed at a receiver with a 1-
bit ADC is to use runlength-limited (RLL) sequences [32]
in combination with FTN signaling. RLL sequences are a
natural choice because they convey the information in the
distances of zero-crossings or runlengths. As the temporal
positions of a change of the signal should be controlled on
a more fine-grained time-grid than Ts, we have to choose
MTx > 1 in (1), which corresponds to FTN signaling.
RLL sequences can be obtained from the so-called

(d, k)-sequences, where d and k are the parameters which
constrain binary sequences. In a (d, k)-sequence a 1 is
followed by at least d and at most k 0s. The k prop-
erty is introduced for practical purpose such as clock
recovery which is neglected in this work, i.e., we assume
k = ∞. The corresponding state machine for a d-
constrained sequence is illustrated in Fig. 4. The (d, k)
sequence is subsequently transformed into a runlength-
limited sequence by non-return-to-zero inverted (NRZI)
encoding. An example is given as follows

(d) -seq.
[
. . . 1 0 0 1 0 1 0 1 . . .

]

rll-seq.
[
. . . 1 1 1 −1 −1 1 1 −1 . . .

]
,

where d = 1. According to [31], the maximum entropy
rate of such a sequence, which limits the corresponding
achievable rate, depends on the adjacency matrix Aadj
of the state machine and can be calculated by (19). The
adjacency matrix describing the state machine in Fig. 4 is
given by

Aadj,d=1 =
[
0 1
1 1

]
, Aadj,d=2 =

⎡

⎣
0 1 0
0 0 1
1 0 1

⎤

⎦ , (22)

where the rows correspond to the current states and the
columns correspond to the following state. Furthermore,
the transition probabilities for the source with maximum
entropy are computed with (21). With this, the maximum
achievable rates per symbol are given in Table 2.

Fig. 4 State machine describing d-constrained sequences

Table 2 Maximum entropy of d-constrained sources

Run-length constraint d = 1 d = 2 d = 3

Max entropy rate [bit/symbol] 0.6942 0.5515 0.4650

The d constraint implies redundancy within the chan-
nel input sequence. However, in combination with a
higher signaling rate, the RLL sequences can yield a
benefit in terms of spectral efficiency for the case of 1-
bit quantization at the receiver, which is different from
the unquantized FTN [33]. This is due to the fact that
the FTN-caused intersymbol interference cannot be cor-
rected by the trellis-based receivers because of the loss
of the additional amplitude information due to the 1-bit
ADC. In this regard, the sequences need to be well shaped,
such that the intersymbol interference does not induce
a flip of the sign of current symbols. In this regard, the
RLL sequences can tolerate some intersymbol interfer-
ence, e.g., of the considered channel, at a relatively low
cost in redundancy. In addition, the RLL sequences yield
a higher concentration of the signal power of the transmit
symbol sequence at lower frequencies. Depending on the
bandwidth criterion, this might further increase the spec-
tral efficiency. For complex transmit symbol sequences,
we consider independent RLL sequences for the real and
the imaginary part.

6 Maximization of a lower bound on the
achievable rate using an expectation-based
Blahut-Arimoto algorithm

In this section, we study a numerical input sequence opti-
mization approach with respect to the achievable rate. In
this regard, we discuss a strategy to optimize the transi-
tion probabilities of a given Markov source which models
the channel input sequences. The set of transmit symbols
X is given and fixed. The objective of the optimization is
an auxiliary channel based lower bound on the achievable
rate similar to the one introduced in Section 3. The pro-
posed sequence optimization approach [34] follows the
principle of the iterative Markov source optimization sug-
gested in [22]. Rewriting the information rate with the
chain rule yields

lim
n→∞

1
n
I
(
xn; yn

) = lim
n→∞

(
1
n

n∑

k=1
H
(
sk |sk−1

)− 1
n

n∑

k=1
H
(
sk |yn, sk−1

))

(23)

≥ lim
n→∞

(
1
n

n∑

k=1
H
(
sk |sk−1

)− 1
n

n∑

k=1
H
(
sk |yn, sk−1

)
)

(24)

≥ lim
n→∞

⎛

⎝1
n

n∑

k=1
H
(
sk |sk−1

)− 1
n

n∑

k=1
HW

(
sk |yn, sk−1

)
⎞

⎠ ,

(25)
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where we use sk = xkk−L−N+1 on the RHS and with

HW
(
sk|yn, sk−1

) =
∑

skk−1,yn
P
(
skk−1, y

n
)
log2

1
W
(
sk|sk−1, yn

) .

The inequality in (24) holds as conditioning can only
decrease entropy and the inequality in (25) holds accord-
ing to the auxiliary channel lower bound, see Appendix C.
The second term on the RHS of (25) can be expressed as

lim
n→∞

1
n

n∑

k=1
HW

(
sk|yn, sk−1

) =

lim
n→∞

(
1
n

n∑

k=1
log2W

(
sk , sk−1|yn

)
− 1

n

n∑

k=1
log2W

(
sk−1|yn

))

,

(26)

where the RHS can be practically evaluated with very long
sequences. Considering a very long sequence, the argu-
ment of the limit on the RHS of (26) can be rewritten with
the symbol transition probabilities Pi,j and the stationary
distribution7 μi as

1
n

n∑

k=1
log2 W

(
sk , sk−1|yn

)
− 1

n

n∑

k=1
log2 W

(
sk−1|yn

)

=
∑

i,j
μiPi,jlog2 W

(
sk = j, sk−1 = i|yn)−

∑

i
μilog2 W

(
sk−1 = i|yn),

(27)

where (·) denotes the average over the specific state or
state transition based on the number of their occurrences
in the very long sequence realization. The second sum
on the RHS of (27) can be also written as

∑
i,j μiPi,j(·),

such that (27) can be rewritten as
∑

i,j μiPi,jT̂i,j with the
coefficients

T̂i,j=

∑
k
∣
∣∣∣∣
sk−1= i
sk = j

log2W
(
sk , sk−1|yn

)

∑
k
∣∣∣∣∣
sk−1 = i
sk = j

1

−
∑

k − 1
∣∣∣ sk−1= i log2W

(
sk−1|yn

)

∑
k − 1

∣∣∣ sk−1 = i 1
,

(28)

where the denominators account for the number of spe-
cific state transitions and states, respectively, occurring
in the sequence xn. The quantities W

(
sk , sk−1|yn

)
and

W
(
sk−1|yn

)
are computed with the BCJR algorithm [30].

Based on the T̂i,j notation, the lower bound on the achiev-
able rate in (25) is rewritten as

lim
n→∞

1
n
I
(
xn; yn

) ≥
∑

i,j
μiPi,j

(
log2

(
1
Pi,j

)
+ T̂i,j

)
.

(29)

In the following, it is described how to chose Pi,j for max-
imizing the RHS of (29). In this regard, the so-called noisy
adjacency matrix is given by

[
Ãadj

]

i,j
= 2T̂i,j . (30)

With (30), the transition probabilities which maximize
the achievable rate are given by

Pi,j =
⎧
⎨

⎩
bj
bi

[
Ãadj

]

i,j
λmax

, if the transition occurs in xn
0, else,

(31)

where λmax is the largest real eigenvalue of Ãadj and bi
and bj are entries of the corresponding eigenvector. The
method is applied iteratively as T̂i,j itself is a function
of Pi,j, where each iteration involves the generation of
xn and yn.
Note that this optimization procedure does not take into

account the power spectral density (PSD) of the result-
ing channel input signal. Moreover, the optimization has
an influence on the average transmit power and, thus, on
the SNR.

7 Numerical results
In this section, we numerically evaluate the achievable rate
based on the lower bound in (10). The simulation-based
computation of the RHS of (10), i.e., of the argument of
the limit, is carried out based on a sequence of length
n = 106 symbols. Whenever the proposed sequence opti-
mizaton strategy is applied, 19 iterations of the loop in the
algorithm described in Section 6 have been carried out.
The power containment bandwidth and the SNR are post-
computed as the transmit signal bandwidth depends on
the individual Markov source.
The correlation of the sequence of input symbols xn

depends on the used Markov source and determines the
power spectral density of the transmit signal. The coeffi-
cients of the discrete-time auto-correlation function of the
transmit symbol sequence xn are given by

ck = E
{
xlx∗

l+k
}

=
∑

i
μixl (sl = i)

∑

j
x∗
l+k

(
sl+k = j

)

× P
(
sl+k = j|sl = i

)
,

(32)

with the stationary input state distribution μi. Hence,
the corresponding PSD is given by the Fourier transform
Sx(f ) = MTx

Ts

∑∞
k=−∞ cke

j2π kTs
MTx

f , where the infinite sum
can be approximated by considering a very large number
of coefficients. Together with the transfer function H(f )
of the transmit filter h(t), the PSD of the transmit sig-
nal is given by S(f ) = Sx(f )

∣∣H(f )
∣∣2. In the following, we

will refer to the two-sided power containment bandwidth
B90% (or B95%), which implies that a certain amount, e.g.,
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10% (or 5%), of the transmit power is emitted outside the
nominal bandwidth8.
The power containment bandwidth, e.g., B90%, is used

for computing the spectral efficiency as

spectral eff. = Ibpcu · MTx
Ts · B90%

, (33)

where Ibpcu is the achievable rate w.r.t. one symbol sym-
bol duration Ts

MTx
. For numerical evaluation, we define the

oversampling factor w.r.t. the power containment band-
width, e.g., B90%, as

Moversampling = M · MTx
Ts · B90%

. (34)

Moreover, also the SNR depends on the power contain-
ment bandwidth, e.g., B90%, and is defined as

SNR = limT→∞ 1
T
∫
T |x(t)|2 dt

N0 B90%
. (35)

Note that the transmit power depends on the Markov
source modeling the input sequence xn and the transmit
filter h(t). In the sequel, if not otherwise stated, we assume
the 90% power containment bandwidth (B90%).
For different simulations, we use auxiliary channels

with different memory N, cf. (9), as the computational
complexity scales with the number of states sk which
itself increases exponentially with N.9 For computation-
ally extensive cases, e.g., when the length of the channel
impulse response L+ 1 is large because of a high signaling
rate as is for MTx = 3 or when the input symbol alphabet
is large as is forMQAM = 256, it is essential to consider an
auxiliary channel law with a small N, e.g., N = 0, to retain
the computability. For the considered scenarios, we have
observed that the achievable rate practically approaches
its maximum when considering an auxiliary channel law
with N ≥ ξ = MTx. Considering N = ξ = MTx implies
that the condition in the channel law corresponds to the
exact channel outputs yk−1

k−N , whose time instances match
to the noise samples nk−1

k−ξ
which influence the current out-

put yk , cf. (4). Moreover, from our experience, e.g., from
[20], the impact on the lower bound of the achievable rate,
e.g., when choosing N < ξ , is marginal at medium SNR
and vanishes with increasing SNR, which is reasonable
because the channel memory on the channel output arises
from the noise process. An overview on the considered
scenarios with 1-bit quantization at the receiver is given
in Table 3.
To evaluate the burden for the use of 1-bit quantiza-

tion and oversampling, we compare our approach with
the channel without output quantization and RRC filter-
ing with a roll-off factor of 0.3. In terms of FTN signaling,
we compare with a reference system without quantization
and with a roll-off factor equal to 1 and with various com-
pression factors τT , cf. the notation in [33]. Moreover,

Table 3 Overviewon considered scenarios with 1-bit quantization
at the receiver

Modulation alphabet Transmit pulse Sequence design M MTx N

QPSK Cosine i.u.d. 1 1 0

16-QAM Cosine i.u.d. 2,3 1 1

16-QAM Gaussian i.u.d. 2, 3 1 1

16-QAM Rect i.u.d. 2, 3 1 1

16-QAM Cosine Optimized 2,3 1 1

16-QAM Cosine Reconstructible 3 1 1

64-QAM Cosine Optimized 2,3 1 0

256-QAM Cosine Optimized 2,3 1 0

8-PSK Cosine i.u.d. 2,3 1 0

8-PSK Cosine Optimized 2,3 1 0

16-PSK Cosine i.u.d. 2,3 1 0

16-PSK Cosine Optimized 2,3 1 0

QPSK Cosine i.u.d. 1 2,3 1

QPSK Cosine Optimized 1 2 1

16-QAM Cosine Optimized 1 2 0

QPSK Cosine Optimized 1 3 0

QPSK Cosine RLL, d = 1 1 2 1

QPSK Cosine RLL, d = 2 1 3 1

QPSK Cosine RLL, d = 1 1 3 0

we compare our results on the spectral efficiency with
the AWGN channel capacity, normalized with the power
containment bandwidth, assuming a flat spectrum.

7.1 Transmit pulse
Before considering the sequence design, the impact of the
transmit pulse shape h(t) is examined in this section. The
complexity of the trellis-based receiver scales exponen-
tially with the length of the memory of the channel. In
this context, transmit pulses with short duration in time
domain are favorable and considered in this work explic-
itly. Standard transmit pulses are considered, such as the
cosine pulse described by

hcos(t) =
{√

1
3Ts

(
1 − cos

(
2π 1

2Ts
t
))

, 0 ≤ t < 2Ts

0, otherwise.
(36)

Another widely used transmit pulse is the Gaussian
pulse described by

pGauss(t) = e
−π2(t/Ts)2

α2h , (37)

where αh = 1
B3dBTs

√
log 2
2 and B3dBTs = 0.34. As the

transmit pulse h(t), the Gaussian pulse with unit energy
normalization is considered which is given by hGauss(t) =
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(∫∞
−∞ p2Gauss(t)dt

)− 1
2 pGauss(t). As a reference, also the

rectangular pulse shape given by

hrect(t) =
{√

1
Ts
, 0 ≤ t < Ts

0, otherwise,
(38)

is considered. The achievable rate for 16-QAM modula-
tion with independent and uniformly distributed (i.u.d.)
transmit symbols is illustrated in Fig. 5 10. Taking into
account the power spectral density shown in Fig. 6, the
spectral efficiency can be computed. The spectral effi-
ciency w.r.t. B90% and w.r.t. B95% are shown in Figs. 7
and 8, respectively. In terms of spectral efficiency the
Gaussian pulse and the cosine pulse show a compara-
ble performance. Because the cosine pulse has a shorter
duration in time domain, it is considered in the sequel.

7.2 QAM
Based on the lower bound on the achievable rate in (10),
Fig. 9 shows that the use of a higher order transmit
symbol alphabet, namely 16-QAM, is beneficial. While
with 1-bit quantization and without oversampling just
2 bits per channel use can be achieved (1 bit in the real
and 1 bit in the imaginary component), with an increas-
ing oversampling factor M the achievable rate increases.
Moreover, it is illustrated that a sophisticated sequence
design can further improve the achievable rate signifi-
cantly compared to i.u.d. input symbols. In this regard,
it is shown that the proposed method to model recon-
structible sequences (Section 4), which is described for

M = 3, achieves an achievable rate fairly close to the opti-
mized sequences (Section 6). With the approach based on
reconstructible sequences, the achievable rate approaches
the input entropy rate of 2 · 1.7678[bpcu], cf. Table 1, in
the high SNR regime, where the factor 2 is due to the
use of a complex modulation. The corresponding PSDs
are shown in Fig. 10. Note that the sequence optimiza-
tion depends on the SNR and that the illustrated spectra
consider high SNR (30 dB). Figure 11 shows that the
achievable rate can be further increased by utilizing even
larger modulation alphabets, e.g., 64-QAM or 256-QAM.
In this regard, note that the achievable rate for a 256-
QAM alphabet is larger than 2 log2(M + 1), for M = 2
and M = 3.11 This is remarkable, because it is higher
than the upper limit for the noiseless channel without
receive filter described in Appendix D. We explain this by
the circumstance that with the receive filter the system
impulse response is enlarged, such that new signal evolu-
tions are enabled, leading to more zero-crossing patterns.
This is in line with the data processing lemma because the
subsequent quantization is a suboptimal processing step.
Moreover, it is also remarkable, because 2 log2(M + 1) is
the maximum achievable rate for flash ADC based sam-
pling with M comparators. For 64-QAM and 256-QAM,
the achievable rate is lower-bounded by the utilization
of a simplifying auxiliary channel model with N = 0.
The sequence optimization only considers a peak power
constraint and no bandwidth constraint. Because of this
and the circumstance that our SNR definition involves the
bandwidth, we expect that at low SNR the actual capacity
is higher than that computed with our approach.

Fig. 5 The achievable rate for different transmit pulses
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Fig. 6 Power spectral density for different transmit pulses

The spectral efficiency as defined in (33) is shown in
Fig. 12. It can be observed that the spectral efficiency of
i.u.d. input sequences might be higher than with opti-
mized input sequences (Section 6) or with reconstructible
sequences designed according to the approach presented
in Section 4. This effect happens as we do not con-
sider any spectral shaping during the sequence design
approaches besides the choice of the pulse shape. In this
regard, the bandwidth depends on the sequence design

and the spectral efficiency can decrease. However, as the
oversampling factor inversely scales with the bandwidth,
the sequence design is still superior in comparison to
sequences of i.u.d. symbols, as we will point out in detail
in Section 7.5.

7.3 PSK
Figure 13 shows the lower bound on the achievable rate
in (10) for PSK symbol alphabets and 1-bit quantization

Fig. 7 The spectral efficiency w.r.t. B90% for different transmit pulses
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Fig. 8 The spectral efficiency w.r.t. B95% for different transmit pulses

and oversampling at the receiver. The PSK input alphabet
deserves special attention because the corresponding
transmit signal has a relatively low peak to average power
ratio, which is favorable in terms of linearity require-
ments of the transmit power amplifier. The case of 8-
PSK modulation is remarkable, because at high SNR, the
maximum input entropy of 3 bpcu is almost achievable
withM = 3.

Unlike as for QAM, due to the constant modulus trans-
mit symbols, the average transmit power is not strongly
influenced by the applied sequence optimization strategy.
However, as discussed for QAMmodulation, the nominal
bandwidth depends on the PSD of the transmit signal
and, thus, on the applied Markov source which describes
the transmit symbol sequences. Thus, the SNR in (35)
depends on the chosen sequence design, which explains

Fig. 9 Achievable rate with 1-bit quantization andM-fold oversampling, QAMmodulation, and various sequence designs, N = 1
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Fig. 10 Power spectral density for different sequence designs based on cosine transmit pulses

the slight horizontal shift of corresponding markers
in Fig. 13.
The corresponding spectral efficiency (B90%) is shown

in Fig. 14. In some exceptional cases i.u.d. channel input
symbols yield a higher spectral efficiency in comparison
to the optimized sequences design. As explained in
Section 7.2, in these cases sequence optimization

(Section 6) yields an increased bandwidth implying a
reduced effective oversampling factor Moversampling. The
relation between the effective oversampling factor and
the spectral efficiency is evaluated later in Section 7.5.
Comparing 16-PSK and 16-QAM in terms of the spectral
efficiency, it can be observed that 16-QAM is superior for
M = 2 andM = 3.

Fig. 11 Achievable rate for different oversampling rates and QAMmodulation orders; for comparison, upper bound on the achievable rate when
usingM comparators in a flash ADC with the same number of comparator operations per time interval (horizontal lines)
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Fig. 12 Spectral efficiency (B90%) versus SNR considering QAM transmit symbols

7.4 Faster-than-Nyquist signaling
In the following, we evaluate the achievable rate with
FTN signaling, i.e., MTx > 1, on the one hand for RLL
sequences as discussed in Section 5 and on the other hand
also for transmit sequences with i.u.d. symbols and for
optimized sequences (Section 6) with QPSK and 16-QAM
input alphabets. Here, we choose an equal signaling and
sampling rate, i.e.,M = 1.

Regarding the auxiliary channel law utilized for lower-
bounding the achievable rate, the maximum can be
practically approached by considering N = ξ = MTx.
However, we have considered memories of N = 1 or N =
0, not necessarily N = MTx, to limit the computational
complexity.
In Fig. 15, based on (10), lower bounds on the achiev-

able rate per channel use are shown, where a channel use

Fig. 13 Achievable rate versus SNR considering PSK transmit symbols
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Fig. 14 Spectral efficiency (B90%) versus SNR considering PSK transmit symbols

corresponds to a transmit symbol duration Ts
MTx

. In gen-
eral, it can be observed that the achievable rate decreases
with an increasing compression factorMTx. This behavior
is a consequence of the fact that the duration of one chan-
nel use is scaled down withMTx. In this regard, the benefit
of FTN is not reflected in Fig. 15. However, Fig. 15 allows a
comparison of the achievable rate with different sequence
design approaches for an equalMTx.
Figure 15 confirms that the maximum achievable rate

for RLL sequences, cf. Table 2, can be achieved. For a RLL
sequence with d = 1 andMTx = 3, we have observed that
the achievable rate does not approach the source entropy
rate when using the receive filter in (2) (not shown in
Fig. 15). For this special case, we choose a receive filter
with a shorter impulse response

g (t) =
{√

MTx
Ts

, 0 ≤ t < Ts
MTx

0, else,
(39)

which corresponds to a larger receive bandwidth. In the
figures, we refer to this exception by the notation wide-
band Rx. In this case, the achievable rate converges to the
source entropy rate. However, due to the larger bandwidth
of the receive filter, more noise is captured such that the
achievable rate saturates at higher SNR.
Moreover, it can be observed that the optimized

sequences (Section 6) yield a slightly larger achievable rate
than RLL sequences. Compared to the RLL sequences, the

sequence optimization strategy has more degrees of free-
dom for the construction of zero-crossings. Surprisingly,
MTx = 3 yields an even larger achievable rate in the high
SNR as compared to MTx = 2, which is counter intuitive.
On one hand, increasing the signaling rate implies a rela-
tive expansion of the system impulse response w.r.t. Ts

MTx
which in our case strongly attenuates fast signal transi-
tions. This is why at low SNR, MTx = 2 holds a benefit in
the achievable rate w.r.t. to a channel use in comparison to
MTx = 3. At high SNR, utilization of MTx = 3 can effec-
tively exploit more bandwidth for communication. This is
possible due to the fact that the considered transmit pulse
is not strictly bandlimited. Finally, the expansion of the
system impulse response provides more degrees of free-
dom which is in general favorable for the construction of
zero-crossings.
In addition, a 16-QAM alphabet has been considered

for sequence optimization (Section 6) withMTx = 2. Due
to the additional degrees of freedom, this approach shows
a much better performance in terms of achievable rate
compared to the other waveforms withMTx = 2.
We have compared our results with RRC-matched

filtering-based FTN signaling without quantization. The
compression in time is such that the transmit pulses
have a distance of τT · Tx, where Tx would be the con-
ventional transmit symbol duration without FTN. We
have computed a lower bound on the achievable rate
by using a truncation-based auxiliary channel law where
we have used for τT = 0.5, 0.4, and 0.3 a truncated
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Fig. 15 Achievable rate with FTN signaling,M = 1, a channel use corresponds to time interval Ts
MTx

system impulse response of length (L + 1) = 3, 5,
and 6, respectively.
The PSDs of the different sequence designs are shown in

Fig. 16. The consideration of runlength-limited sequences
implies that the signal energy is concentrated at lower
frequencies. To show the benefits of FTN signaling,
we evaluate its performance in terms of the spec-
tral efficiency (B90%) in Fig. 17. This presentation also
enables a fair comparison for different compression fac-
tors MTx, as the achievable rate is normalized with
respect to the 90% power containment bandwidth. In
Fig. 17, it can be observed that with increasing MTx and,
hence, also equally increasing sampling rate, the spec-
tral efficiency significantly increases for all approaches
for the transmit symbol sequence generation. Moreover,
Fig. 17 shows that for a given MTx, RLL sequences
show a superior performance in comparison to the other
approaches in terms of spectral efficiency. This holds
even in comparison to the case where the large 16-
QAM modulation alphabet is used. The additionally
required transmit power in comparison to the unquan-
tized FTN is less than 4 dB when operating at an SNR
below 15 dB.
Moreover, by the comparison of Figs. 17 and 12, we

make the important observation that the communication
based on the FTN signaling scheme requires a signifi-
cantly lower SNR. This can be explained by the fact that
the transmit filter h(t) in (36) is not strictly bandlim-
ited. In this regard, the spectral copies at a signaling rate

of 1
Ts

when MTx = 1 implicitly restrict the sequence
design which cannot be compensated by a large input
alphabet. The faster signaling rate offers more degrees of
freedom for the sequence design at higher frequencies.
However, in a scenario with strict bandlimitation [23], e.g.,
by considering Nyquist pulses, this effect vanishes.

7.5 Relation of the spectral efficiency and the
oversampling factor in the high SNR limit

Figure 18 illustrates the spectral efficiency (B90%) in the
high SNR limit as a function of the effective oversampling
factor (34). Alternatively, the 95% power containment
bandwidth is considered in Fig. 19. Note that spectral effi-
ciency and also the oversampling factor inversely scale
with the bandwidth. The results confirm the intuitive
presumption that in case of 1-bit channel output quan-
tization an increase of the sampling rate can yield an
increase in spectral efficiency. The illustration shows a fair
comparison between the presented approaches because
the considered effective oversampling factor takes into
account the bandwidth of the transmit signal. The results
are compared with the results known from the literature,
which have been adapted w.r.t. the power containment
bandwidth.We also compare our results with the result on
the achievable rate over a bandlimited noiseless channel
with 1-bit output quantization in [3], which we could not
normalize with the power containment bandwidth as the
considered Zakai processes do not have Fourier transfor-
mations. Unlike the existing literature on communication
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Fig. 16 Power spectral density for different FTN sequence designs

over noisy channels with 1-bit quantization at the receiver
[5–7] which indicates only moderate benefits from over-
sampling, the proposed communication schemes show a
clear advantage of oversampling in terms of the spectral
efficiency. The results are also comparable with the recent
results which are based on strictly bandlimited channels
with RRC filtering [23]. Moreover, the proposed methods

are compared to the maximum achievable rate for systems
with a standard flash ADC with Nyquist rate sampling at
the receiver with the same number of comparator opera-
tions per time interval. For a strictly bandlimited channel,
its achievable rate is given by 2 log2

(
Moversampling + 1

)
,

which we normalize w.r.t. the power containment band-
width based on a frequency flat spectrum. Some of the

Fig. 17 Spectral efficiency (B90%) versus SNR, with FTN signaling,M = 1
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Fig. 18 Spectral efficiency (B90%) versus effective oversampling factor (B90%) in the high SNR limit; for FTN (MTx > 1), it holds thatM = 1

Fig. 19 Spectral efficiency (B95%) versus effective oversampling factor (B95%) in the high SNR limit; for FTN (MTx > 1), it holds thatM = 1
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approaches given in the present work are comparable and
even superior in terms of achievable rate in comparison
to the flash ADC approach and the analytical results on
the noiseless channel given in [3]. Note that pipelined
ADCs require less comparators in comparison to the
flash ADCs. However, because of the additional inter-
stage processing in pipelined ADCs, a comparison is not
straightforward.

8 Conclusions
We have studied the achievable rate for an additive Gaus-
sian noise channel with 1-bit output quantization and
oversampling at the receiver, which is promising in terms
of a simplification of circuitry and a reduction of the
energy consumption at the receiver. As the transmit signal
is not strictly bandlimited, we have considered power con-
tainment bandwidth criteria with 90% and alternatively
95% power containment. The transmit sequences are con-
structed based on various QAM and PSK input symbol
alphabets and various signaling rates. Concrete sequence
designs, namely reconstructible 4-ASK (and with this
16-QAM) sequences and runlength-limited sequences for
faster-than-Nyquist signaling rates, are proposed. Fur-
thermore, a sequence optimization strategy is studied
which approaches the Markov capacity in the high SNR
regime. The performance is evaluated in terms of the
achievable rate and the spectral efficiency. We have
observed that the proposed approaches outperform the
existing methods on communication with 1-bit quanti-
zation and oversampling at the receiver. For a number
of methods, it has been shown that 1-bit quantization
and oversampling at the receiver yields a comparable or
even superior spectral efficiency than conventional ampli-
tude quantization using a flash converter with the same
number of comparator operations per time interval.
One key observation is that among the proposed meth-

ods, the spectral efficiency is maximized by FTN sig-
naling. This suggests that for the channel input signal,
the resolution in time is preferable in comparison to the
resolution in amplitude. However, it is known for the
unquantized case that FTN exploits the excess bandwidth
[33], such that it can be expected that the advantage of
FTN vanishes for more strict spectral constraints, cf. [23].
In summary, the results show that the use of receivers
with oversampled 1-bit quantization is promising. The
proposed ideas are a first step to a more complete under-
standing of the achievable rate and of an optimal trans-
mit sequence design for such channels. Aspects like the
robustness of these signaling schemes towards jitter and
timing synchronization errors remain for further study.
It is shown that the presented methods based on 1-bit
quantization and oversampling at the receiver require only
2 − 3 dB more transmit energy (at 5 − 10 dB SNR and
90% power containment bandwidth) in comparison to a

conventional communication system design with Nyquist
sampling and high resolution in amplitude.

Endnotes
1A matched filter would also depend on the sequence

design, i.e., on the statistical dependencies of the individ-
ual xk .

2 Thus, the input symbols are not placed on the real and
imaginary axes which are the thresholds of the applied 1-
bit quantizer.

3 The system impulse response v(t) is normalized
implicitly, because it is considered that h(t) has unit
energy normalization.

4The considered integrate-and-dump receiver is an
exceptional case, where the noise correlation can be per-
fectly described on the sampling grid (D = 1), although
there is no bandlimitation.

5 For the computation, symmetries in the input
sequences can be exploited to reduce the number of
integrations.

6 The case of QAM sequences follows by using the
concept for the real as well as for the imaginary axis.

7 The stationary distribution μi can be computed based
on Pi,j.

8 In case of asymmetric spectra, it is considered that the
power of the out-of-band radiation is equally splitted into
the frequency range towards f = ∞ and the frequency
range towards f = −∞.

9 This is true as long as L + N > Lsrc holds, cf. the state
definition in Sec. 3.1.

10Note that the SNR definition contains the bandwidth,
which then yields a relatively low SNR for scenarios with
hrect(t).

11We expect that for M > 3 a larger input alpha-
bet is required to obtain an achievable rate larger than
2 log2(M + 1).

Appendix A
The system impulse response for reconstructible
sequences
We consider a symmetric system impulse response rang-
ing over 3Ts. With the parameters M = 3 and MTx = 1,
the discrete system impulse response can be described by
nine coefficients, by v = [v4, . . . , v0, . . . , v4]T . The out-
put patterns displayed in the different states in Fig. 2
are functions of two consecutive channel input sym-
bols xk and xk+1 taken from a 4-ASK constellation, e.g.,
xk ∈ {−3,−1, 1, 3}. Because of the length of the system
inpulse response, the neighboring channel input symbols
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xk−1 and xk+2 are also considered. For the interference
from xk−1 and xk+2, we assume a maximum amplitude
and distinguish between positive and negative sign. For
each transition type A. . .D, inequalities can be formu-
lated which describe the signal shape according to the
desired pattern at the output of the ADC (assuming no
noise). Exploiting the symmetry of the impulse response
v, its coefficients have to fulfill the following inequali-
ties to be able to apply the state representation in Fig. 3:
BT
constr. i [v0, . . . , v4]

T > 0, for i = {A, . . . , D}, where 0
denotes a column vector containing 8 zeros and where the
Bconstr. i express the state transition specific constraints
and are given by

Bconstr. A =

⎡

⎢⎢⎢
⎢
⎣

3 3 0 0 0 0 1 1
0 0 3 3 −1 −1 0 0
0 0 −1 −1 3 3 0 0

−4 2 0 0 0 0 −6 0
0 0 3 −3 3 −3 0 0

⎤

⎥⎥⎥⎥
⎦
, (40)

Bconstr. B =

⎡

⎢⎢⎢⎢
⎣

1 1 0 0 3 3 0 0
0 0 1 1 0 0 3 3
0 0 −1 −1 0 0 −3 −3

−4 2 0 0 −6 0 0 0
0 0 −3 3 0 0 −3 3

⎤

⎥⎥⎥
⎥
⎦
,

Bconstr. C =

⎡

⎢⎢⎢⎢
⎣

1 1 0 0 3 3 0 0
0 0 1 1 0 0 3 3
0 0 1 1 0 0 3 3
4 −2 0 0 6 0 0 0
0 0 3 −3 0 0 3 −3

⎤

⎥⎥⎥
⎥
⎦
,

Bconstr. D =

⎡

⎢⎢⎢⎢
⎣

3 3 0 0 0 0 1 1
0 0 3 3 1 1 0 0
0 0 1 1 3 3 0 0
4 −2 0 0 0 0 6 0
0 0 3 −3 3 −3 0 0

⎤

⎥⎥⎥⎥
⎦
,

which describe the combinations of the input sym-
bols. Note that some of the constraints are redun-
dant. Moreover, symmetries have been exploited. Besides
the illustrated triangular waveform with [v0, . . . , v4] =
[1, 0.666, 0.333, 0, 0], the waveformwith the transmit pulse
given in (36) jointly with the assumptions on the receive
filter in Section 2 corresponding to the coefficients
[v0, . . . , v4] = [0.9449, 0.759, 0.387, 0.1037, 0.0042] fulfills
these constraints.

Appendix B
Reconstructable 4-ASK sequences with finite memory
The system model introduced in Section 2 relies on chan-
nel input sequences defined by a Markov process where

the states correspond to sk = xkk−Lscr+1, i.e., the source
has finite memory. Differently, in the state machine in
Fig. 3, a channel input symbol depends on an infinite
number of previous channel input symbols. Thus, we
will modify the state machine such that an output sym-
bol just depends on a finite number of Lscr past output
symbols. For this purpose, we exclude the state transi-
tion from B* to B* in the state machine in Fig. 3. The
loss in terms of the source entropy rate can be compen-
sated by introducing further states like B**, B***, etc. This
implies that the process returns to state A after passing
state D with a maximum number of transitions which can
be easily translated into the state representation used for
Markov sources in this work. The dashed boxes in Fig. 20
show the state machines for reconstructible sequences for
Lscr = 1, . . . , 4. The corresponding adjacency matrices are
given by

Aadj,1 =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ , Aadj,2 =

⎡

⎢⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 0 0 0

⎤

⎥⎥
⎦ , (41)

Aadj,Lscr =
⎡

⎣
13×4 03×(Lscr−2)

[
1Lscr−1 0(Lscr−1)×3

] [ ILscr−2
0TLscr−2

]
⎤

⎦ for Lscr>2.

(42)

Appendix C
A lower bound based on the auxiliary channel law (reverse)
The auxiliary channel lower bound in [29] used in (10) is
introduced as

I
(
x; y

) ≥
∑

x,y
P(x, y) log2

(
W (y|x)
W (y)

)
, (43)

where W (·) is the auxiliary channel law (9). We will
show with similar steps as used in [29] that its re-
verse formulation also applies, also for a conditional
mutual information. The RHS of (25) can be writ-
ten as limn→∞ 1

n
∑n

k=1 IW (sk ; yn|sk−1), and its terms are
given by

IW (sk ; yn|sk−1)=
∑

skk−1,yn
P
(
skk−1, y

n
)
log2

(
W

(
sk|yn, sk−1

)

P
(
sk|sk−1

)

)

.

(44)

To show that IW
(
sk ; yn|sk−1

)
lower-bounds I

(
sk ; yn|sk−1

)
,

we consider the difference given by
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I(sk ; yn|sk−1) − IW (sk ; yn|sk−1)

=
∑

skk−1,yn
P
(
skk−1, y

n
)[

log2

(
P
(
sk , yn|sk−1

)

P
(
sk |sk−1

)
P
(
yn|sk−1

)

)

− log2

(
W (sk |yn, sk−1)

P
(
sk |sk−1

)

)]

=
∑

skk−1,yn
P
(
skk−1, y

n
)
log2

(
P
(
sk , yn|sk−1

)

W (sk |yn, sk−1)P
(
yn|sk−1

)

)

=
∑

sk
P
(
sk−1

)
D
(
P
(
sk , yn|sk−1

) ‖W (
sk |yn, sk−1

)

× P
(
yn|sk−1

))

≥ 0,

(45)

whereD(·‖·) is the Kullback-Leibler divergence [35] which
is always non-negative [36, Th. 8.6.1].

Appendix D
Upper-bounding the capacity of the noiseless channel
without receive filter
We consider a special case with the transmit pulse h(t) =
hcos(t), a receive filter with g(t) = δ(t) and n(t) = 0,
such that the input signal of the ADC is x(t), which is
a weighted sum of time shifted transmit pulses h(t). We
consider a conventional signaling rate withMTx = 1 such
that the transmit signal is denoted by

x(t) =
n∑

k=1
xk · h (t − k · Ts) . (46)

With this, the signal in a time interval of two consecutive
symbols xk−1 and xk is given by

Fig. 20 State machine to generate reconstructible 4-ASK sequences with finite memory
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x (kTs + τ) =
√

1
3Ts

(
xk−1 + xk + (xk−1 − xk) cos

(
2π

τ

2Ts

))
,

0 ≤ τ < Ts,

which describes a raised or lowered cosine function in the
interval with the running time variable τ . Its frequency is
such that x(t) has at max one zero-crossing per time inter-
val kTs ≤ τ < (k+ 1)Ts. Now, we consider that this signal
is quantized with 1-bit and sampling rate M

Ts
. The fact that

there is at most one zero-crossing in the time interval Ts
implies that the maximum output entropy and with this
also the capacity are upper-bounded by 2 log2(M + 1),
where the factor 2 accounts for the complex equivalent.
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