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Abstract

The main challenges for massive machine type communication in 5G system are to support random access for
massive users and to control signaling overhead and data processing complexity. To address these challenges, we
propose a novel compressed sensing (CS)-based non-orthogonal multiple access (NOMA) scheme, called CS-NOMA,
which introduces low coherence spreading (LCS) signatures to enable joint activity and data detection without
requiring the activity information of users in advance. We present a sufficient condition for the construction of the LCS
signatures to ensure that a CS-based multi-user detection (CS-MUD) can be effectively deployed in base station.
Furthermore, we study the CS-NOMA scheme with imperfect channel state information (CSI) and present a bound for
the performance of the CS-NOMA scheme. Simulation results show that the proposed scheme achieves a relatively
high system overload (up to 4) when the active users are relatively sparse with an activity ratio of 1%, which implies
that the CS-NOMA scheme can significantly improve the spectral efficiency, avoid the control signaling overhead, and
reduce the transmission latency.

Keywords: Non-orthogonal multiple access, Compressed sensing, Sparse multi-user detection, Massive machine
type communication, Channel state information

1 Introduction
Massive machine type communication (MMTC) char-
acterized by the requirements of low data rates, small
packet sizes, and in some cases, tight delay constraints is
expected to be one of the major drivers for the 5th gen-
eration (5G) wireless communication system. In the 5G
system, a single base station will serve 10 to 100 times
more machine type devices (MTDs) than the personal
mobile phones, which poses great challenges to efficiently
support massive users random access [1–3]. According to
the statistics of mobile traffics [4], the number of active
users is usually much smaller than the number of all
possible users even in the busy hours in cellular commu-
nications, especially for 5G MMTC applications, where
users can sporadically access or leave the system. Thus,
the sparsity of user activity naturally exists in massive
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connectivity. In order to reduce the overhead of the MTD
transmission, the sparse multi-user detection in the base
station (BS) is expected to be deployed without requir-
ing the activity knowledge of MTD, thereby reducing the
control signaling overhead [5].
Recently, compressive sensing (CS) theory [6–8] has

been widely used to recover sparse signals and also shows
that reliable signal reconstruction far below the Nyquist
sampling rate is possible provided that the signal is sparse.
In order to address the challenge in future MMTC, the
authors in [9–12] propose a novel physical layer signal
processing scheme, called CS-based multi-user detection
(CS-MUD), which takes advantage of the CS technol-
ogy to detect the received sparse multi-user signals. The
CS-MUD enables joint activity and data detection, which
facilitates a reliable detection of direct random access.
In [9, 13], the CS-MUD is deployed in a code division
multiple access (CDMA) system. Then, a CS-MUD algo-
rithm designed for single-carrier orthogonal frequency
division multiplexing (SC-OFDM) systems is proposed in
[10]. To improve the flexibility and scalability of accessing
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both time and frequency resources, Monsees et al. [11]
and Bockelmann et al. [12] apply the CS-MUD to multi-
carrier transmissions. However, all these multiple access
schemes belong to the category of orthogonal multiple
access (OMA), which are difficult to meet the require-
ments of massive connectivity for MMTC in 5G systems.
To address the challenge of spectrum scarcity in 5G

communications, recently some novel non-orthogonal
multiple access (NOMA) schemes [14–20], e.g., the power
domain NOMA [14], the low-density spreading (LDS)
[15, 16], the sparse code multiple access (SCMA) [17],
and the multi-user shared access (MUSA) [18], are pro-
posed. In these well-known NOMA schemes, MUD is
implemented using the successive interference cancella-
tion (SIC) or the message passing algorithm (MPA), which
requires the receiver to be exactly notified about the
activity information of users in advance, resulting in high-
transmission latency and control signaling overhead. In
order to address this problem, the authors in [21, 22]
proposed grant-free NOMA schemes for the OFDM sys-
tem without requiring the activity information of users,
which significantly reduces the signaling overhead and
transmission latency.
However, nearly all the prior works on CS-based

NOMA typically use the pseudo random noise (PN)
sequence as the spread signatures and do not consider

the general construction method for the spread signatures
to ensure the sufficient recovery for users’ signals in CS-
based multi-user detection. In our recent work [23], we
propose a novel CS-based NOMA scheme for the CDMA
and /or the OFDM systems in which CS-MUD is deployed
to enable joint activity and data detection without knowl-
edge of the activity information of the users in advance.
In this paper, we further extend the previous work to
the more general case. We present a sufficient condition
for the construction of the spreading signatures of users
to ensure the successful CS-based multi-user detection.
We also consider the case when the channel state infor-
mation (CSI) is not perfect and present a bound on the
performance of the CS-based NOMA scheme. In order to
facilitate the understanding of different NOMA schemes
in the literature, we compare them for the main different
features in Table 1. Note that in the table |X| denotes the
cardinality of the constellation set X, and w is the max-
imum number of nonzero signals superimposed on each
chip or subcarrier. In addition, K, S, and N are the num-
ber of users, the number of active users, and the spreading
factor, respectively.
We summarize the main contribution of this paper as

follows:
1) We propose a CS-based NOMA scheme, called CS-

NOMA, and introduce a new version of spreading

Table 1 Comparison of different NOMA schemes
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signature, called low coherence spreading (LCS)
signature. We also present a sufficient condition for
the construction of the LCS signatures and then
theoretically prove the reliability of this condition.

2) We present a generating algorithm for the LCS
matrix that consists of the LCS signatures of all users.

3) We present a bound on the performance of signal
reconstruction under the case when the channel
state information is not perfect.

The rest of the paper is structured as follows. In
Section 2, we introduce the systemmodel. In Section 3, we
provide sufficient condition for the design of LCS signa-
tures to ensure that CS-MUD can be effectively deployed
in the BS, and present the generating algorithm for the
LCS matrix. In Section 4, we discuss the CS-NOMA
scheme under imperfect CSI. In Section 5, we present
the simulation results. Finally, we draw the conclusions in
Section 6.
Notation: Throughout this paper, vectors and matrices

will be represented by boldfaced lowercase and uppercase
letters (e.g., x and X), respectively. All vectors are defined
as column vectors. Variables and constants are denoted
in lowercase and uppercase letters (e.g., x and X), respec-
tively. Superscript ᵀ and † represent the transpose and
the Moore-Penrose pseudoinverse of a matrix, respec-
tively. The notation N (0, 1) is denoted as the Gaussian
distribution with zero mean and unit variance, and E {x}
represents the mean of x.

2 Systemmodel
We consider an MMTC scenario where a set of users (i.e.,
MTDs), K = {1, ...,K}, sporadically accesses to a single
BS over multi-path wireless channels in the presence of
additive white Gaussian noise (AWGN). All users share N
(N � K) CDMA chips at the same time, whichmeans that

the gain of the spreading signature is N. Furthermore, we
consider that at most S (S � N) users are active in a given
time, and let ρa = S/K (ρa � 1) and β = K/N (β > 1)
denote the activity ratio and the system overload, respec-
tively. We assume that the active users transmit symbols
from a symbol alphabetA, and the inactive users transmit
nothing, i.e., the transmitted symbols are equal to zero.
In the following, we present the proposed CS-NOMA
scheme for the CDMA system.
In a conventional CDMA system, user separation can

be achieved by uniquely assigning orthogonal spreading
signature to each user. However, given the gain N, the
number of orthogonal spreading signatures cannot exceed
N, which means that the total number of users that the
system can support at the same time cannot be greater
than N. In our proposed CS-NOMA scheme shown in
Fig. 1, we introduce a new version of spreading signa-
ture, called low coherence spreading (LCS) signature, to
achieve the system overload. Unlike orthogonal spreading
signatures whose mutual coherence is equal to zero, the
mutual coherence between the LCS signatures is non-
zero, but is very low, such as far less than 1. Specifically,
given the gainN, the number of LCS signatures can exceed
N, resulting in a system overload, i.e., β > 1. Let xk ∈ X

be the transmitted symbol of user k ∈ K, where X =
{A ∪ 0}, then let x = [x1, . . . , xK ]ᵀ ∈ X

K×1 be the multi-
user transmitted signal vector. We assume that at most
S users are active at a given time, which means that up
to S users transmit symbols while other users transmit
nothing at a given time. Thus, based on the CS theory
[6], the multi-user transmitted signal vector x is an S-
sparse signal vector, i.e., there are at most S non-zero
elements in x. Symbol xk spreads over the LCS signature
fk = [

f1,k , . . . , fN ,k
]ᵀ ∈ R

N×1 for user k. Then, the LCS
matrix is defined by F = [f1, . . . , fK ] ∈ R

N×K , which
contains the LCS signatures of all users.

Fig. 1 The CS-NOMA scheme for the CDMA system
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The proposed CS-NOMA scheme is essentially a typical
asynchronous CDMA uplink transmission scheme simi-
lar to [24]. Furthermore, the spread symbols of each user
are distorted by a user-specific frequency-selective chan-
nel with impulse response hk = [

h1,k , . . . , hL,k
]ᵀ ∈ C

L×1

(k ∈ K) of length L which is constant for a whole frame,
and let H = [h1, . . . ,hK ] ∈ C

L×K denote the channel
response matrix of all users with the same number of
channel paths L. Then, considering the effect of convolu-
tion operation of the channels on users’ signals, we can
model the channel matrix for user k as

Hk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1,k
h2,k h1,k
... h2,k

. . .

hL,k
...

. . .
hL,k h1,k

h2,k h1,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N×N

, (1)

where the values of the entries which are not shown in
the matrix Hk in (1) are zeros, and such typical channel
model has been widely used in machine-type communica-
tion (MTC) [9, 13]. In the BS, the received signal formed
by N chips is denoted by y = [

y1, . . . , yN
]ᵀ ∈ C

N×1, and
the noise vector is defined as v = [v1, . . . , vN ]ᵀ ∈ C

N×1.
Thus, the received signal vector is given by

y =
K∑

k=1
Hkfkxk + v (2)

= Bx + v, (3)
where the effective channel matrix B can be written as

B = [H1f1, . . . ,HK fK ] ∈ C
N×K . (4)

In order to enable joint activity and data detection
without requiring the activity knowledge of users, the CS-
MUD is deployed in the BS to recover the sparse signal
x in (3). In Fig. 1, x̂ = [

x̂1, . . . , x̂K
]ᵀ ∈ X

K×1 is the
estimation of x; and it can be achieved by the orthog-
onal matching pursuit (OMP) algorithm [25, 26], which
is a typical greed algorithm for CS-MUD. Based on the
CS theory [6, 7], the effective channel matrix B in (3) is
expected to be an effective sensing matrix which guar-
antees the recovery of the sparse signal x. In (4), B is a
synthetic matrix generated by the channel matrices (i.e.,
H1, . . . ,HK ) and the LCS signatures (i.e., f1, . . . , fK ) of all
users. Specifically, due to the physical propagation prop-
erty of the channel, the channel matrices naturally exist
in some form and can not be artificially controlled. Thus,
we expect that the effective channel matrix B is an effec-
tive sensing matrix. Therefore, in the next section, we
will discuss how to design the LCS signatures (i.e., the
design of F ) to ensure that the effective channel matrix B
guarantees the recovery of the sparse signal x.

3 Design of the LCS signatures
In this section, we discuss how to design the LCS signa-
tures to ensure that the effective channel matrix B in (4)
to be an effective sensing matrix which can guarantee the
recovery of the sparse signal x. According to the CS the-
ory [27, 28], coherence of the sensing matrix (i.e., B) can
provide sufficient condition for guaranteeing recovery of
the sparse signal. Therefore, by analyzing the coherence
of matrix B, we present sufficient conditions at which the
LCS signatures should satisfy. Then, based on these con-
ditions for the design of the LCS signatures, we present a
generating algorithm to construct the LCSmatrixF . Note
that in this section we only consider the design of LCS
signatures and the effective channel matrix in real num-
ber value, which can be extended directly to the complex
number value case.

3.1 Coherence of the effective channel matrix
Now, we first give the definition of the mutual coherence
between two nonzero vectors a1, a2 ∈ R

N×1, i.e.,

μ (a1, a2) = |〈a1, a2〉|
‖a1‖2‖a2‖2 , (5)

where 〈a1, a2〉 denotes the inner product between a1 and
a2, i.e., 〈a1, a2〉 = aᵀ1 a2. Then, the coherence of A =
[a1, . . . , aK ] ∈ R

N×K , denoted by μ (A), is defined as
[28–31]

μ (A) = max
i�=j

μ
(
ai, aj

)
. (6)

It can be shown thatμ(A) ∈
[√

K−N
N(K−1) , 1

]
[32, 33]. Note

that when K 	 N , the lower bound, known as the Welch
bound [32], is approximately μ(A) ≥ 1

/√
N .

In order to facilitate analysis, we rewrite (4) as

B = [F1h1, . . . ,FKhK ] ∈ R
N×K , (7)

where Fk ∈ R
N×L (1 ≤ k ≤ K) is generated by fk in the

following form, i.e.,

Fk =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

f1,k 0
f2,k f1,k 0

f3,k f2,k
. . .

...
... f1,k

...
...

...
fN ,k fN−1,k · · · fN−L+1,k

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

N×L

. (8)

Then, we denote the inner product between themth col-
umn of Fk and the nth column of Fj (1 ≤ m, n ≤ L, 1 ≤
k, j ≤ K) as

μ
kj
m,n = 〈

Fk(:,m),Fj(:, n)
〉
, (9)

where the notation A(:, t) represents the tth column of A.
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In the sequel, we first present a theorem to clarify the
conditions at which the LCS signatures should satisfy to
ensure the sparse signal x can be recovered, then based on
this theorem, we propose a construction algorithm for the
LCS matrix F in Section 3.2.

Theorem 1 Given two matrices H = [h1, . . . ,hK ] ∈
R
L×K and F = [f1, . . . , fK ] ∈ R

N×K , 2 < L < N. F
has unit-norm columns, i.e., ‖fk‖22 = 1, and hk �= 0,
1 ≤ k ≤ K. Fk ∈ R

N×L is full rank and generated by fk in
(8). If there exist constants μ1,μ2, θ ∈ [0, 1) satisfying the
following properties for 1 ≤ m, n ≤ L and 1 ≤ k, j ≤ K:

•
L∑

n=1,n�=m

∣
∣
∣μkk

m,n

∣
∣
∣ ≤ μ1, ∀m, k; (10)

•
L∑

m=1

∣
∣
∣μ

kj
m,n

∣
∣
∣ ≤ μ2, k �= j, ∀n, k, j; (11)

•
L−1∑

l=1
f 2N−l+1,k ≤ θ , (12)

then, for arbitrary θ + μ1 < 1, the coherence of B =
[F1h1, . . . ,FKhK ] ∈ R

N×K , i.e., μ (B), satisfies the follow-
ing inequality

μ (B) ≤ μ2
1 − θ − μ1

. (13)

The proof of Theorem 1 is presented in Appendix 1.

From Theorem 1, we have an upper bound for the
coherence of B, which is denoted as

μup = μ2
1 − θ − μ1

. (14)

Moreover, from the proof of Theorem 1 in Appendix 1,
we have that the upper bound μup is only determined by
the LCS signatures f1, . . . , fK (i.e., matrixF ) and has noth-
ing to do with the channel response vectors h1, . . . ,hK
(i.e., matrix H). In [27, 28], the authors have proved that
the coherence of a sensing matrix B (i.e., μ(B)) can guar-
antee the recovery of S-sparse signal when S satisfies

S <
1
2

(
1 + 1

μ(B)

)
. (15)

Based on Theorem 1, the LCS signatures satisfying the
properties (10)-(12) ensure that μ (B) ≤ μup = μ2

1−θ−μ1
,

so we have the minimum sparsity determined by B as
follows

Smin = 1
2

(
1 + 1

μup

)
≤ 1

2

(
1 + 1

μ(B)

)
. (16)

From (15), we have that when S < Smin, the effective
channel matrix B absolutely guarantees the recovery of
the S-sparse signal x.

In summary, Theorem 1 presents a sufficient condition
for the construction of the LCS signatures. Specifically,
when the LCS signatures or the matrixF satisfy the prop-
erties in (10)-(12), based on the above discussion, we can
ensure that the effective channelmatrixB in (3) is an effec-
tive sensing matrix which can guarantee the recovery of
Smin-sparse signal x.
In order to further interpret the proposed CS-NOMA

scheme with the LCS signatures satisfying Theorem 1, we
introduce the restricted isometry property (RIP)[7] which
is another necessary and sufficient condition for guaran-
teeing the recovery of the sparse signal x in the presence
of noise [7, 27]. First, we give the definition of RIP, i.e.,
a matrix A satisfies the RIP of order S if there exists a
δS ∈ (0, 1) such that

(1 − δS) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δS) ‖x‖22 (17)

holds for all S-sparse signal x. In the following, we present
a corollary of Theorem 1, which analyzes the RIP of B
consisting ofH with unit-norm columns.

Corollary 1 In Theorem 1, when H has unit-norm
columns, i.e., ‖hk‖22 = 1, 1 ≤ k ≤ K, then B has the RIP of
order S with constant δS = θ +μ1+(S−1)μ2 for arbitrary
S < 1 + 1/μup, i.e.,

(1 − δS) ‖x‖22 ≤ ‖Bx‖22 < (1 + δS) ‖x‖22 , (18)

where x ∈ R
K×1 is an S-sparse signal.

The proof of Corollary 1 is presented in Appendix 2.
In this paper, we assume that each user has the same

transmit power and then normalize the channel response
vectors of all users h1, . . . ,hK , then the channel response
matrixH will have unit-columns. In addition, the authors
of [34, 35] have proved that amatrixA satisfying the RIP of
order 2S can guarantee the recovery of the S-sparse signal.
Thus, in our CS-NOMA scheme, from Corollary 1, the
LCS signatures satisfying Theorem 1 ensure that B has the
RIP of order 2S < 2Smin = 1 + 1/μup which guarantees
the recovery of S-sparse signal in the presence of noise.
Based on the above analysis, the LCS signatures satis-

fying Theorem 1 can guarantee the recovery of a sparse
signal either in terms of the coherence property or RIP. In
the following, we present a generating algorithm for the
LCS matrix F based on Theorem 1.

3.2 Generating algorithm of the LCS matrixF
Based on the results in Theorem 1, the LCS matrix F ∈
R
N×K can be obtained by system searching over the set

{ξ} by using Algorithm 1, where the entries of ξ ∈ R
N×1

are independent realizations of random variables with
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following distribution

ςn :=

⎧
⎪⎨

⎪⎩

+ 1√
M , with probability M

2N
0, with probability N−M

N− 1√
M , with probability M

2N ,
(19)

where ςn is the nth entry of ξ . In this paper, we consider
N = M, which implies that the entries of ξ are inde-
pendent realizations of± Bernoulli random variables with

ςn :=
{ + 1√

M , with probability 1
2

− 1√
M , with probability 1

2 .
(20)

Thus, from Theorem 1, we have θ = L/M. In the
following, we give some interpretation on Algorithm 1.

Algorithm 1 Construction of the LCS matrix F
Input: K ,N ,M, L, μ1, μ2.
Output: The LCS matrix F ∈ R

N×K ;
1: procedure 1:
2: μ

jj
max = 1;

3: while μ
jj
max > μ1 do

4: Randomly generate ξ , and set fj = ξ ;
5: Fj is generated by fj as in (8);

6: Compute μ
jj
max = maxm

L∑

n=1,n�=m
|μjj

m,n|;
7: end while
8: end procedure 1
9: procedure 2:

10: Initialization: Kiter = 1, F = fj;
11: while Kiter < K do
12: k = 1,Nexce = 0;
13: Implement procedure 1, update fj and Fj;
14: while k ≤ Kiter&&Nexce < 1 do
15: fk = F(:, k), Fk is generated by fk as in (8);

16: Compute μ
kj
max = maxn

L∑

m=1
|μkj

m,n|;
17: if μ

kj
max > μ2 then

18: Nexce = Nexce + 1;
19: end if
20: k = k + 1;
21: end while
22: if Nexce == 0 then
23: F = F ∪ fj, Kiter = Kiter + 1;
24: end if
25: end while
26: end procedure 2

In Algorithm 1, procedure 1 and procedure 2 ensure that
the designed LCS signatures satisfy the properties in (10)
and (11), respectively. In procedure 1, we randomly gener-
ate ξ and let fj = ξ , repeating this process until finding a

solution of ξ that ensures μ
jj
max = maxm

L∑

n=1,n�=m
|μjj

m,n| ≤
μ1, so the property in (10) is satisfied. In procedure 2, the
LCS matrix F is initialized as fj obtained in procedure 1.
Kiter denotes the number of the columns of F and is ini-
tialized as 1.Nexce is defined as the number of the columns

of F that makes μ
kj
max = maxn

L∑

m=1
|μkj

m,n| > μ2 with fj
and is initialized as 0 in each repeat of the while at line 11.
Then, fj and Fj are updated by implementing procedure 1.
We compute the μ

kj
max between fk (1 ≤ k ≤ Kiter) and fj. If

μ
kj
max > μ2, i.e., Nexce = 1, we stop the while at line 14 and

then repeat the while at line 11. If μkj
max ≤ μ2 for arbitrary

k, i.e., Nexce = 0, we update F = F ∪ fj, Kiter = Kiter + 1,
and then repeat the while at line 11. We repeat the above
operations until K = Kiter , and finally output the LCS
matrix F .

4 Effect of the imperfect channel state
information (CSI)

Since the CS-MUD is applied to perform joint activity
and data detection, the BS needs to know the sensing
matrix B = [F1h1, . . . ,FKhK ] based on the CS theory
[7]. Because the LCS matrix F is designed in advance,
i.e., Fk (1 ≤ k ≤ K) is known to the BS. The channel
response vector hk (1 ≤ k ≤ K) is generally obtained by
using a channel estimation algorithm in BS. However, the
channel state information (CSI) is generally not perfect,
which means that there exists some error in the estima-
tion of hk in BS. Let ĥk and ek denote the estimated
channel response vector and the error vector of user k,
respectively. Then, we have

ĥk = hk + ek , ∀k. (21)

Correspondingly, let B̂ = [
F1ĥ1, . . . ,FK ĥK

]
denote the

estimated matrix of B in the BS. From Theorem 1, we
know that the upper bound of μ(B), i.e., μup, is only
determined by the LCS signatures f1, . . . , fK (i.e., the
LCS matrix F ) and has nothing to do with the chan-
nel response vectors h1, . . . ,hK (i.e., the channel response
matrix H). Specifically, the differences between B and B̂
only exist in the channel response vectors, i.e., B and B̂
have the same upper bound of coherence μup. Then, the
coherence of B̂, i.e., μ(B̂), satisfies the inequality

μ
(
B̂
)

≤ μup = μ2
1 − θ − μ1

, (22)

which implies that B̂ is also an effective sensing matrix.
In the sequel, we analyze the performance of sig-

nal reconstruction under the imperfect CSI case for
the CS-NOMA scheme. We first introduce Theorem
2 which plays an important role in analysis of the
performance.
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Theorem 2 (Theorem 3.1 in [36]). Suppose that the
coherence of A ∈ R

N×K (N � K) is μA and x ∈ R
K×1

is an S-sparse signal, where S < (1/μA + 1) /4. Further-
more, suppose that the measurement y ∈ R

N×1 is obtained
by y = Ax+n, where n ∈ R

N×1 is a noise vector. Then, the
estimation of x is given by

x̂ = arg
z
min ‖z‖1, subject to z ∈ B (y) , (23)

whereB (y) = {
z :

∥
∥Az − y

∥
∥
2 ≤ ε

}
. Then, we have that

∥
∥x − x̂

∥
∥
2 ≤ ‖n‖2 + ε√

1 − μA (4S − 1)
. (24)

Theorem 2 provides a bound for the worst-case perfor-
mance given a bounded noise n, i.e., ‖n‖2 ≤ C, where C is
an absolute constant [36, 37]. Note that this theorem holds
for the case when ε = 0 as well as ‖n‖2 = 0. Thus, it also
applies to the noise-free setting. Furthermore, there is no
restriction on ‖n‖2 ≤ ε. In fact, this theorem is valid even
when ε = 0 but ‖n‖2 �= 0 [37]. However, as noted in [36],
Theorem 2 is the result of a worst-case analysis and will
typically overestimate the actual error.
In the perfect CSI case, from Theorem 2, the CS-

NOMA scheme has a coherence-based bound on the
performance for the bounded noise v, which is given by

∥
∥x − x̂

∥
∥
2 ≤ ‖v‖2 + ε√

1 − μB (4S − 1)
≤ ‖v‖2 + ε

√
1 − μup (4S − 1)

,

(25)

where μB is the coherence of B, and S <
(
1/μup + 1

)
/4.

In this paper, we denote the perfect LCS signatures as ones
that are designed with the parameters μ1 → 0, μ2 →
0, and θ �= 1 (i.e., μB → 0). From (25), the CS-NOMA
scheme using the perfect LCS signatures has a bound, i.e.,

∥
∥x − x̂

∥
∥
2 ≤ ‖v‖2 + ε. (26)

In fact, the channel response estimation error can
eventually be considered as a noise error. Thus, based
on Theorem 2, we analyze the bound on the perfor-
mance of the CS-NOMA scheme under imperfect CSI
for bounded ek , 1 ≤ k ≤ K . For the correspond-
ing B̂ = [

F1ĥ1, . . . ,FK ĥK
]
, we rewrite it as B̂ =[

F1h1 + F1e1, . . . ,FKhK + FKeK
]
. Thus, the received sig-

nal in (3) is rewritten as

y = B̂x + v
= Bx + Bex + v, (27)

where Be = [F1e1, . . . ,FKeK ]. Let n = Bex + v denotes
the total noise. From Theorem 2, when μ(B) and S are
fixed, the upper bound of

∥
∥x − x̂

∥
∥
2 is determined by the

upper bound of ‖n‖2, i.e., ‖Bex + v‖2. Thus, based on the
triangle inequality [38], we have

‖n‖2 = ‖Bex + v‖2 ≤ ‖Bex‖2 + ‖v‖2 . (28)

In order to obtain an upper bound for ‖n‖2, we need
to analyze the upper bound of ‖Bex‖2. Similar to (46) in
Appendix 1, the bound of ‖Bex‖22 is given by

λDmin‖x‖22 ≤ ‖Bex‖22 ≤ λDmax‖x‖22, (29)

where λDmin and λDmax are the minimum and maximum
eigenvalues of D = Be

ᵀBe ∈ R
K×K , respectively. D is

represented by
⎡

⎢
⎢
⎢
⎣

(F1e1)TF1e1 (F1e1)TF2e2 · · · (F1e1)TFKeK
(F2e2)TF1e1 (F2e2)TF2e2 · · · (F2e2)TFKeK

...
...

. . .
...

(FKeK )TF1e1 (FKeK )TF2e2 · · · (FKeK )TFKeK

⎤

⎥
⎥
⎥
⎦
.

(30)

Since (Fkek)TFkek = ‖Fkek‖22 , 1 ≤ k ≤ K , from (48) in
Appendix 1, we have the bound for ‖Fkek‖22, i.e.,

(1 − θ − μ1)
∥
∥ek

∥
∥2
2 ≤ ‖Fkek‖22 ≤ (1 + μ1)

∥
∥ ek

∥
∥2
2 ,∀k.
(31)

Furthermore, because |(Fkek)TFjej| = ∣
∣〈Fkek ,Fjej

〉∣∣, 1 ≤
k, j ≤ K , k �= j, from (54) in Appendix 1, we have

|(Fkek)TFjej| ≤ μ2‖ek‖2
∥
∥ej

∥
∥
2 ≤ μ2‖e‖22, (32)

where ‖e‖2= maxk‖ek‖2. Let dk,j denote the (k, j)th entry
of D, then dk,j satisfies the following properties:

• (1 − θ − μ1) ‖e‖22 ≤ dk,k ≤ (1 + μ1) ‖e‖22, ∀k;
• K∑

j=1,j �=k

∣∣dk,j
∣∣ ≤ (K − 1)μ2‖e‖22, ∀k.

From Theorem 3 in Appendix 1, we have that

λ (D) ≤ (1 + μ1 + μ2(K − 1)) ‖e‖22 = ϕ ‖e‖22 , (33)

where ϕ = 1 + μ1 + μ2(K − 1). This implies that λDmax ≤
ϕ ‖e‖22. Therefore, we have

‖Bex‖2 ≤ √
ϕ‖e‖2‖x‖2. (34)

Insert (34) into (28), we have

‖n‖2 ≤ √
ϕ‖e‖2‖x‖2 + ‖v‖2. (35)

Thus, from Theorem 2, we have the coherence-based
bound on the performance of the CS-NOMA scheme in
the case that CSI is not perfect, i.e.,

∥
∥x − x̂

∥
∥
2 ≤

√
ϕ‖e‖2‖x‖2+‖v‖2+ε√

1−μB(4S−1)
≤

√
ϕ‖e‖2‖x‖2+‖v‖2+ε√

1−μup(4S−1)
,

(36)

where S <
(
1/μup + 1

)
/4. Furthermore, when μ1,μ2 →

0, from (36), we have
∥
∥x − x̂

∥
∥
2 ≤ ‖e‖2‖x‖2 + ‖v‖2 + ε, (37)



He et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:81 Page 8 of 14

which is supported by the perfect LCS signatures. Note
that (36)-(37) are the results of the worst-case analysis and
typically overestimate the actual error.

5 Simulation results
In our simulations, we consider an MMTC scenario in
which K users sporadically access to a single BS over the
multi-path wireless channels in the presence of AWGN.
All users share N CDMA chips, i.e., the gain of LCS
signature is N. We adopt BPSK modulation and assume
that all users’ wireless channels have L paths. Here, we
consider that the entries of the channel response vec-
tor hk (1 ≤ k ≤ K) follow i.i.d. N (0, 1) for user k.
Furthermore, we also discuss the case that the CSI is
not perfect and assume that the entries of the channel
response estimated error vector ek (1 ≤ k ≤ K) are i.i.d.
Gaussian variables with N

(
0, σ 2) (σ 2 � 1). In addition,

the LCS matrix F ∈ R
N×K is generated by Algorithm 1

with the predetermined parameters M,μ1,μ2. The OMP
[25, 26] are employed to demonstrate the effectiveness of
the proposed scheme.We evaluate the mean-square-error
(MSE) performance, which is defined as

MSE = ‖x̂−x‖2‖x‖2 , (38)

where x̂ is an estimate of x.
Based on the analysis in Section 4, we present the MSE

performance for the cases that the CSI is perfect and
imperfect.
In the case that CSI is perfect, from (25) we have
∥∥x − x̂

∥∥
2

‖x‖2
≤ MSEμ = ‖v‖2 + ε

‖x‖2
√
1 − μup (4S − 1)

, (39)

where S < (1/μup + 1)/4. For the CS-NOMA scheme
using the perfect LCS signatures (i.e., μB → 0), we have

MSE1 = ‖v‖2 + ε

‖x‖2 . (40)

In the case that CSI is not perfect, from (36) we have
∥
∥x − x̂

∥
∥
2

‖x‖2 ≤ MSEσ = √
ϕ‖e‖2 + MSEμ. (41)

When μ1,μ2 → 0, from (37) we have

MSE2 = ‖e‖2 + MSE1. (42)

Note that (39)-(42) are the worst-case results and typi-
cally overestimate the actual MSEs. In addition, we con-
sider ε = 0 for these MSEs in (39)-(42).

5.1 Validation for the coherences with different LCS
signatures

For ease of reference, we denote μ(B)max as the maxi-
mum coherence of different B that consist of different
H and a fixed F , and μ(B̂)max is defined as the maxi-
mum coherence of different B̂ which consist of different

Ĥ =
[
ĥ1, . . . , ĥK

]
and a fixed F . Furthermore, for com-

parison, we give a counterexample of the LCS matrix F ,
which is given by

F̄ = [I,F ] , (43)

where I and F are the identity matrix and the LCS matrix
generated by Algorithm 1, respectively. For the identity
matrix I, we have that θ = 1 and μ2 = 1, which implies
that the LCS signatures in F̄ do not satisfy the properties
(11) and (12) in Theorem 1.
Figure 2 shows μ(B) versus μ1, μ2 with N = M = 800,

β = 1.5, L = 4. Note that BF and BF respectively rep-
resent the cases that consist of F and F , and B̂F denotes
the matrix B̂ that consists of F in the imperfect CSI case
with 1/σ 2 = 10 dB. From the figure, we see that, for dif-
ferent μ1,μ2, the plane of μup is higher than the planes
of μ (BF )max and μ

(
B̂F

)

max
, but lower than the plane of

μ
(
BF

)
max. Thus, whenμ1 andμ2 are given (i.e., givenF ),

μ (BF )max and μ
(
B̂F

)

max
are always less than μup, i.e.,

μup is the upper bound of μ (B) and μ
(
B̂
)
. These results

verify that the designed LCS matrix F can ensure that
the coherence of the effective channel matrix, i.e., μ(B),
has an upper bound μup that has nothing to do with the
channel response matrixH. Since the differences between
B̂ and B only exist in the channel response matrix, μ(B̂)

and μ(B) have the same upper bound μup. In addition,
since the LCS signatures in F do not satisfy Theorem 1,
μ
(
BF

)
max is always equal to 1 for different μ1 and μ2. In

summary, these simulation results verify the validity of the
designed LCS signatures based on Theorem 1.

5.2 Performance in perfect CSI case
Figure 3 shows the MSE versus μ1,μ2 for different spar-
sities with N = M = 800, L = 4, β = 1.5, and SNR
= 25 dB. In the figure, the notation MSE_F represents
the MSE performance of the CS-NOMA scheme using
the LCS matrix F in (43) with ρa = 1%. Note that the
CS-NOMA scheme always adopts the LCSmatrixF satis-
fying Theorem 1 unless otherwise specified in this paper.
It can be seen from the figure that for different μ1 and
μ2 (within a certain range, e.g., 0.03 ≤ μ1 ≤ 0.09 and
0.26 ≤ μ2 ≤ 0.32), the MSE performances are almost the
same when the sparsity of the signal x is given. In addition,
theMSE performance of the CS-NOMA scheme using the
LCS matrix F is the best when the sparsity of x is Smin,
and it decreases with the increase of ρa; when ρa = 6%,
it is worse than the MSE1 performance which is achieved
by using perfect LCS signatures. As for comparison, the
MSE_F performance is the worst, which implies that the
CS-NOMA scheme using F can not work.
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Fig. 2 μ(B) versus μ1 and μ2 with N = M = 800, β = 1.5, and L = 4

Furthermore, we also simulate the MSE versus SNR for
different sparsities with N = M = 800, L = 4, β = 1.5,
μ1 = 0.03, and μ2 = 0.26, as shown in Fig. 4. It can be
seen that theMSE performance of the CS-NOMA scheme
with F improves with the increase of SNR and decreases
with the increase of ρa; when ρa ≥ 5%, it is close to the
MSE1 performance at high SNR, but always better than
the MSEμ performance. However, as for comparison, the
MSE_F performance is almost unchanged and quite poor
for different SNR, even worse than both MSE1 and MSEμ

performances at high SNR.

In Fig. 5, we show the MSE versus SNR for different β

with N = M = 800, L = 4, ρa = 1%, μ1 = 0.03, and
μ2 = 0.28. From the figure, it can be seen that the MSE
performance of the CS-NOMA scheme improves with the
reduction of β at the same conditions. In addition, the
MSE performance of the CS-NOMA scheme is always
better than theMSE1 performance when β ≤ 4. But, when
β = 5, it is worse than the MSE1 performance at high
SNR, e.g., SNR≥ 20 dB. Thus, the proposed scheme can
achieve a system overload of 4 when the active users are
relatively sparse with an activity ratio of 1%.

Fig. 3 The MSE versus μ1,μ2 for different sparsities with N = M = 800, L = 4, β = 1.5, and SNR = 25 dB
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Fig. 4 The MSE versus SNR for different sparsities with N = M = 800,
L = 4, β = 1.5, μ1 = 0.03, and μ2 = 0.26

In addition, we also provide the BER performance of the
CS-NOMA scheme in Fig. 6 with N = M = 800, L = 4,
β = 1.5, μ1 = 0.03, and μ2 = 0.26. In the figure, we
compare the BER performances of the CS-NOMA scheme
using the LCS signature with that using the PN signature
which is the typical spreading sequence in CS-basedMTC
[9, 13, 21, 22]. Here, after the column vector normaliza-
tion of the PN matrix which contains the PN signatures
of all users, we obtain θ = L/M = 1/200, μ1 = 0.31,
and μ2 = 0.47 for the PN matrix with L = 4, which
indicates that the PN matrix satisfies Theorem 1. There-
fore, these PN signatures used in the simulation are also
LCS signatures, as such the BER performance of the CS-
NOMA schemes using the LCS signature are almost the
same with that using the PN signature at the same spar-
sity. These results further validate the availability of our
proposed scheme.

Fig. 5 The MSE versus SNR for different β with N = M = 800, L = 4,
ρa = 1%, μ1 = 0.03, and μ2 = 0.28

Fig. 6 The BER versus SNR for different spreading signatures with
N = M = 800, L = 4, β = 1.5, μ1 = 0.03, and μ2 = 0.26

From the simulation results in Figs. 3, 4, 5, and 6, we can
see that the designed LCS signatures based on Theorem 1
can provide guarantee for the recovery of at least Smin-
sparse signal x. In addition, bothMSEμ andMSE1 provide
bounds for theMSE for the proposed CS-NOMA scheme.
It also admits the validity of the proposed CS-NOMA
scheme. Furthermore, the proposed scheme achieves a
relatively high system overload when the active users
are relatively sparse, which implies that the CS-NOMA
scheme can significantly improve the spectral efficiency.

5.3 Performance in imperfect CSI case
Figure 7 shows theMSE versusμ1,μ2 in the imperfect CSI
case with N = M = 800, β = 1.5, L = 4, ρa = 1%,
and SNR = 25 dB. In the figure, the notations 15 dB repre-
sents 1/σ 2 = 15 dB. We can see that for different μ1,μ2
(within a certain range, e.g., 0.03 ≤ μ1 ≤ 0.09 and 0.26 ≤
μ2 ≤ 0.32), the MSE performances are almost the same
when 1/σ 2 is given. Additionally, theMSE performance in

Fig. 7 The MSE versus μ1,μ2 in the imperfect CSI case with
N = M = 800, β = 1.5, L = 4, ρa = 1%, and SNR = 25 dB
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Fig. 8 The MSE versus SNR in the imperfect CSI case with
N = M = 800, β = 1.5, L = 4, ρa = 1%, μ1 = 0.03, and μ2 = 0.26

the imperfect CSI case improves with the increase of 1/σ 2

and is better than the MSE2 performances, but it is worse
than the MSE performance in the perfect CSI case with
the same conditions. These results imply that even in the
imperfect SCI case, the LCS matrix F ensures that B is an
effective sensing matrix.
In order to analyze the MSE performance in the imper-

fect CSI case for different SNRs, Fig. 8 shows the MSE
versus SNR with N = M = 800, β = 1.5, L = 4, ρa = 1%,
μ1 = 0.03, and μ2 = 0.26. From the figure, we can see
that the MSE performance improves with the increase of
SNR, and it also improves with the increase of 1/σ 2 in
the imperfect CSI case. Furthermore, theMSE2 results are
better than other MSE results at the same SNR.

Fig. 9 Simulation time of Algorithm 1 versus μ2 for different μ1 with
N = M = 800, L = 4, and β = 1.5

The results in Figs. 7 and 8 imply that the LCS matrix
F designed based on Theorem 1 ensures effective recov-
ery of sparse signal even in the imperfect CSI case. In
addition, the proposed CS-NOMA scheme enables joint
activity users and data detection through CS-MUD, even
if the CSI is not perfect.

5.4 Convergence and computational complexity of the
proposed algorithm

It is hard to theoretically analyze the convergence
performance and the complexity of Algorithm 1; there-
fore, we use simulation approach to numerically quantify
these performances. Figure 9 shows the simulation time
of Algorithm 1 versus μ2 for different μ1. From the figure,
we can see that when μ1 are fixed, the simulation time
slowly increases with decrease of μ2. But it will tend to be
infinite when μ2 is below a certain value, e.g., μ2 < 0.26
for μ1 > 0.03. This indicates that Algorithm 1 may not
be convergent when μ2 is below a certain value. Further-
more, whenμ2 is fixed, the simulation time decreases with
increase of μ1, but is almost saturated when μ1 is greater
than a certain value, e.g., μ1 > 0.03. And, the conver-
gence time of Algorithm 1 also increases with decrease
of μ1. The results imply that the convergence and com-
putational complexity of Algorithm 1 are significantly
affected by μ1 and μ2, especially when μ1 and μ2 take low
values.

6 Conclusions
In this paper, a novel CS-NOMA scheme forMMTC in 5G
was proposed to enable joint detection of active users and
their data. Due to the introduction of the LCS signature,
the proposed CS-NOMA scheme can achieve a relatively
high system overload. Then, we presented a theorem for
guiding the design of the LCS signatures which provided
the theoretical guarantee for ensuring that the CS-MUD
could be effectively deployed in the base station. Further-
more, we presented a construction algorithm for the LCS
matrix. We also discussed the imperfect CSI case and
presented a corresponding bound for the performance
of signal recovery for the CS-NOMA scheme. The sim-
ulation results shown that the CS-NOMA scheme not
only supported massive access, but also had high spectral
efficiency and low transmission latency.

Appendix 1
In order to prove Theorem 1, we first provide Theorem 3
that plays an important role in the proof of Theorem 1.

Theorem 3 (Gershgorin Circle Theorem, Theorem 2 in
[39]). The eigenvalues of an N × N matrix M with entries
mij, 1 ≤ i, j ≤ N, lie in the union of N discs di = di (ci, ri),
1 ≤ i ≤ N, centered at ci = mii and with radius ri =∑

i�=j
∣∣mij

∣∣.
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Now, we prove Theorem 1 in the following.

Proof Based on the definition of coherence for a matrix,
μ (B) can be written as

μ (B) = max
k �=j

μ
(
Fkhk ,Fjhj

)
, 1 ≤ k, j ≤ K . (44)

From (44), in order to obtain the upper bound of μ (B),
we need to analyze the upper bound of μ

(
Fkhk ,Fjhj

)

which is given by

μ
(
Fkhk ,Fjhj

) =
∣∣〈Fkhk ,Fjhj

〉∣∣

‖Fkhk‖2
∥
∥Fjhj

∥
∥
2
, k �= j, ∀k, j. (45)

Therefore, we first analyze the bound of ‖Fkhk‖2
∥
∥Fjhj

∥
∥
2

in Step 1. Then the upper bound of
∣
∣〈Fkhk ,Fjhj

〉∣∣ will be
discussed in Step 2.

Step 1. For arbitrary k ∈ {1, . . . ,K}, the bound of
‖Fkhk‖22 satisfies

λkmin‖hk‖22 ≤ ‖Fkhk‖22 ≤ λkmax‖hk‖22, (46)

where λkmin and λkmax are the minimum and maximum
eigenvalues of Gk = Fᵀk Fk ∈ R

L×L, respectively. Let gkm,n
denotes the (m, n)th entry of Gk , 1 ≤ m, n ≤ L. Since we

have
L∑

n=1,n�=m

∣
∣μkk

m,n
∣
∣ ≤ μ1,∀m, and

L- 1∑

l=1
f 2N−l+1,k ≤ θ , ∀k,

then gkm,n satisfies the following properties:

• 1 − θ ≤ gkm,m ≤ 1, 1 ≤ m ≤ L, ∀k;
• L∑

n=1,n�=m

∣
∣gkm,n

∣
∣ =

L∑

n=1,n�=m

∣
∣μkk

m,n
∣
∣ ≤ μ1, ∀m, k.

From Theorem 3, all the eigenvalues of Gk satisfy the
following inequality

1 − θ − μ1 ≤ λ
(
Gk) ≤ 1 + μ1, ∀k, (47)

where λ (A) represents the eigenvalues of A. This implies
that 1−θ−μ1 ≤ λkmin < λkmax ≤ 1+μ1. Thus, for arbitrary
k, from (46), the bound of ‖Fkhk‖22 is given by

(1 − θ − μ1) ‖hk‖22 ≤ ‖Fkhk‖22 ≤ (1 + μ1) ‖hk‖22 , ∀k.
(48)

Therefore, we have the bound of ‖Fkhk‖2
∥
∥Fjhj

∥
∥
2, i.e.,

(1 − θ − μ1) ‖hk‖2
∥
∥hj

∥
∥
2 ≤ ‖Fkhk‖2

∥
∥Fjhj

∥
∥
2≤ (1 + μ1) ‖hk‖2

∥
∥hj

∥
∥
2, ∀k, j. (49)

In addition, since all columns of Fk are linearly inde-
pendent (i.e., Fk is full rank), Gk is a Gram matrix which
means that Gk is positive definite. Thus, from Theorem 3,
the inequality θ + μ1 < 1 is necessary to be held.
Step 2. Now, we discuss the upper bound of∣

∣〈Fkhk ,Fjhj
〉∣∣ which can be rewritten as

∣
∣〈hk ,F

ᵀ
k Fjhj

〉∣∣,

then we have
∣
∣〈Fkhk ,Fjhj

〉∣∣ ≤ ‖hk‖2
∥
∥Fᵀk Fjhj

∥
∥
2 ≤

√
λ
kj
max‖hk‖2

∥
∥hj

∥
∥
2,

(50)

where λ
kj
max represents the maximum eigenvalue of Pkj =

(
Fᵀk Fj

)ᵀFᵀk Fj ∈ R
L×L. Let pkjt,r denotes the (t, r)th entry of

Pkj, 1 ≤ t, r ≤ L, then pkjt,t =
L∑

l=1
(μ

kj
l,t)

2 ≥ 0 and pkjt,r =
L∑

l=1
μ
kj
l,tμ

kj
l,r ≤

L∑

l=1

∣
∣
∣μ

kj
l,t

∣
∣
∣
∣
∣
∣μ

kj
l,r

∣
∣
∣, r �= t. Let

∑
t denotes the

sum of the absolute values of elements in t-row of Pkj, i.e.,
∑

t
=

L∑

r=1

∣
∣∣pkjt,r

∣
∣∣ ≤

L∑

r=1

L∑

l=1

∣
∣∣μ

kj
l,t

∣
∣∣
∣
∣∣μ

kj
l,r

∣
∣∣. (51)

From Theorem 3, we know that λ
kj
max ≤ mint

∑
t . Fur-

thermore, from the root-mean square-arithmetic mean-
geometric mean (RMS-AM-GM) inequality [40], we have

L∑

l=1

∣
∣
∣μ

kj
l,t

∣
∣
∣
∣
∣
∣μ

kj
l,r

∣
∣
∣ ≤

( L∑

l=1
al

)2/
L (52)

when a1 = a2 = · · · = aL, where al =
(
|μkj

l,t| + |μkj
l,r|

)
/2. Since

L∑

l=1

∣
∣
∣μ

kj
l,t

∣
∣
∣ ≤ μ2 for arbitrary t, (52)

is rewritten as
L∑

l=1

∣
∣
∣μ

kj
l,t

∣
∣
∣
∣
∣
∣μ

kj
l,r

∣
∣
∣ ≤ μ2

2/L, ∀t, r. Then, we have

∑

t
≤

L∑

r=1

L∑

l=1

∣
∣
∣μ

kj
l,t

∣
∣
∣
∣
∣
∣μ

kj
l,r

∣
∣
∣ ≤ μ2

2, ∀t, (53)

which implies λ
kj
max ≤ μ2

2. From (50), the upper bound of∣
∣〈Fkhk ,Fjhj

〉∣∣ is given by
∣
∣〈Fkhk ,Fjhj

〉∣∣ ≤ μ2‖hk‖2
∥
∥hj

∥
∥
2, k �= j, ∀k, j. (54)

Therefore, combining (49) and (54), we have the upper
bound of μ

(
Fkhk ,Fjhj

)
for arbitrary k, j, k �= j, i.e.,

μ
(
Fkhk ,Fjhj

) ≤ μ2
1 − θ − μ1

, k �= j, ∀k, j, (55)

which implies that μ (B) ≤ μ2
1−θ−μ1

. Thus, we complete
the proof of Theorem 1.

Appendix 2
Now we prove Corollary 1 using the similar tricks in the
proof of Theorem 1 as follows.

Proof Let � be an arbitrary subset of {1, . . . ,K} and
|�| =S, then B� ∈ R

N×S is obtained by only keeping
the columns of B corresponding to �. Similar to this,
H� and F� are obtained by only keeping the columns of
H and F corresponding to �, respectively. Thus, B� is
generated by H� and F�. Let hs and fs be the s-column
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(1 ≤ s ≤ S) of H� and F�, respectively. Accordingly, Fs
is generated by fs in the form of (8). Hence, we have that
B� = [F1h1, . . . ,FShS]. Now, we analyze the bound of the
eigenvalues of C = Bᵀ

�B� ∈ R
S×S.

Let ci,s be the (i, s)th entry of C, 1 ≤ i, s ≤ S, then
ci,i = ‖Fihi‖22 and ci,s = 〈Fihi,Fshs〉, i �= s. From (48) and
(54), and recall ‖hk‖22 = 1, ∀k, the entries of C satisfy the
following properties:

• 1 − θ − μ1 ≤ ci,i ≤ 1 + μ1, 1 ≤ i ≤ S;
• ∣

∣ci,s
∣
∣ ≤ μ2, i �= s, 1 ≤ i, s ≤ S.

Then,
S∑

s=1,s�=i

∣
∣ci,s

∣
∣ ≤(S−1)μ2, 1 ≤ i ≤ S, from Theorem 3,

we have

1−θ−μ1−(S−1)μ2 ≤ λ(C) ≤ 1+ μ1+ (S−1)μ2, (56)

which implies that

(1 − δS) ‖x‖22 ≤ ‖B�x‖22 < (1 + δS) ‖x‖22 , (57)

where δS = θ + μ1+ (S − 1)μ2 and x ∈ R
S×1. Note that

Theorem 3 needs the inequality 1 − δS > 0 to be held,
which implies S < 1 + (1 − θ − μ1) /μ2, i.e., S < 1+
1/μup. In addition, because (57) holds for arbitrary � ∈
{1, . . . ,K} with |�| = S, so (1 − δS) ‖x‖22 ≤ ‖Bx‖22 <

(1+ δS) ‖x‖22, where x ∈ R
K×1 is an S-sparse signal. Thus,

we complete the proof.
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