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with support diagnosis in FDD massive
MIMO
Wei Lu1* , Yongliang Wang1, Qiqing Fang1 and Shixin Peng2

Abstract

Downlink channel state information (CSI) is critical in a frequency division duplexing (FDD) massive multiple-input
multiple-output (MIMO) system. We exploit the reciprocity between uplink and downlink channels in angular
domain and diagnose the supports of downlink channel from the estimated uplink channel. While the basis
mismatch effects will damage the sparsity level and the path angle deviations between uplink and downlink
transmission paths will induce differences in channel supports, a downlink support diagnosis algorithm based on
the DBSCAN (density-based spatial clustering of applications with noise) which is widely used in machine learning
is presented. With the diagnosed supports of downlink channel in angular domain, a weighted subspace pursuit
(SP) channel estimation algorithm for FDD massive MIMO is proposed. The restricted isometry property (RIP)-based
performance analysis for the weighted SP algorithm is given out. Both the analysis and the simulation results show
that the proposed downlink channel estimation with diagnosed supports is superior to the standard iteratively
reweighted least squares (IRLS) and SP without channel priori or with the assumption of the common supports for
uplink and downlink channels in angular domain.
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1 Introduction
Spectrum and radio resources in the forthcoming new
communication systems are valuable for efficient trans-
mission. Cognitive radio technologies are used for
spectrum sensing to reduce the spectrum idle rate, while
compressed sensing technologies are applied to improve
utilization efficiency of radio resource [1, 2]. Compressed
sensing (CS) can be applied into a massive multiple-input
multiple-output (MIMO) system for efficient transmis-
sion. It is crucial to have accurate channel state informa-
tion (CSI) at transmitter for downlink beamforming in
massive MIMO. In a time division duplexing (TDD)
massive MIMO system, downlink CSI can be obtained by
exploiting the channel reciprocity from the uplink chan-
nel. In frequency division duplexing (FDD) massive
MIMO system, downlink CSI feedback is challenging
since the training and feedback overhead are proportional
to the antenna number at the base station (BS) if the

feedback scheme in LTE is adopted [3]. Motivated by the
framework of CS and the sparsity of massive MIMO chan-
nel in angular domain also known as spatial domain, ap-
plications of CS to massive MIMO channel estimation
and feedback have been intensively studied.
In the compressive channel estimation, it can benefit

from the CS technology to reduce the training and feed-
back overhead and profit from the priori knowledge about
the channel support to improve the estimation perform-
ance further. The users feed the compressed training mea-
surements back to the BS to reduce feedback overhead,
and orthogonal matching pursuit (OMP) is used for down-
link CSI recovery in [4]. In [5], the modified basis pursuit
(MBP) is proposed by utilizing the partial priori signal sup-
port information to improve the recovery performance. In
[6], Bayesian estimation of sparse massive MIMO channel
is developed in which neighboring antennas share among
each other their information about the channel support. A
weighted CS-based uplink channel estimation is consid-
ered in TDD massive MIMO, and the previous estimated
channel is used for generating weights for CS recovery in
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[7]. In [8], the previous channel support is used for the
initialization of the estimated support for subspace pursuit.
In [9], the authors consider the incorrect indices in the
previous support set and exclude them adaptively. From
these researches, it can be seen that support priori can im-
prove the recovery performance in massive MIMO, and
compressive channel estimation can benefit from support
priori by channel reciprocity in TDD system.
CS can also be used for channel estimation for FDD

massive MIMO system in single-user (SU) scenario and
multiple-user (MU) scenario. In single-user scenario, in
[10], it makes use of the previous estimated support in-
formation and the burst structured sparsity for massive
MIMO channel estimation. In [11], it separates the
channel vector into a dense vector and a sparse vector
and makes use of the previous channel to predict the
dense vector by least squares algorithm and applies CS
to estimate the sparse vector. In [12], it examines the
impacts on the training overhead in FDD downlink
channel estimation when previous channel support in-
formation is applied into a weighted l1 minimization
framework. In multiuser scenario, in [13], it proposes a
close-loop pilot and CSIT feedback resource adaptation
framework for MU massive MIMO, and the joint spars-
ity among users is used for compressive channel estima-
tion. In [14], a two-stage weighted block l1 minimization
algorithm is proposed for downlink CSI estimation in
FDD massive MIMO system, and the priori knowledge
that MU channels share common supports is used. In
[15], it takes a variational Bayesian inference-based ap-
proach for FDD channel estimation, and the partially
joint sparsity shared by different users is captured. From
the researches above, it can be seen that FDD massive
MIMO channel estimation can benefit from the CS
framework, and the support information from the previ-
ous estimated channel or from the structured sparsity
among multiusers can improve the estimation
performance.
On the other hand, in the FDD system, the propaga-

tion environment is almost the same for the uplink and
downlink transmissions in short interval. The number of
significant multipaths, path delays, and path angles are
almost the same for uplink and downlink [16]. There ex-
ists reciprocity for uplink and downlink in massive
MIMO in angular domain which can also be used for ef-
ficient compressive channel estimation. In [17], it ex-
plores the reciprocal channel characteristics of the
dominant propagation path in FDD for channel feed-
back; however, the CS framework is not adopted. In [18],
the joint overcomplete dictionary learning for uplink
and downlink is proposed to get better channel estima-
tion performance, and the dictionary learning is based
on the assumption that the supports for uplink and
downlink are common. It can be seen that reciprocity in

angular domain exists, and the reciprocity can also be
used in compressive channel estimation.
From the researches above, it can be concluded that

the priori information, such as channel supports among
neighboring antennas, or in adjacent time frames, or be-
tween uplink and downlink, can all improve the channel
estimation performance. However, most of them rarely
consider the basis mismatch effects which will deterior-
ate the sparsity. In [19], a sparsity-enhancing algorithm
is discussed for compressive estimation of doubly select-
ive multicarrier channels, while the leakage effect is dis-
cussed but not for massive MIMO. It is not practical to
assume the common supports for uplink and downlink
channels in the FDD system. On the other hand, the
reciprocity for massive MIMO uplink and downlink
channel in the angular domain is not discussed
adequately.
In this paper, we present an efficient channel estima-

tion algorithm in massive MIMO FDD system. Specially
inspired by priori knowledge of channel reciprocity in
angular domain for uplink and downlink channels, we
propose a weighted SP channel estimation with the diag-
nosed supports from the uplink channel. Moreover, the
impacts on the sparsity caused by basis mismatch and
angle deviation in massive MIMO are discussed. Ac-
cording to [20], the radio paths are arriving in clusters
with angle spread. By utilizing the cluster properties, we
apply the DBSCAN algorithm (density-based spatial
clustering of applications with noise) to extract the sup-
port information of the uplink channel, and a DBSCAN-
based support diagnosis algorithm is proposed to get the
probable support of downlink channel, then a weighted
subspace pursuit channel estimation is presented.
The contributions of the paper are listed as follows:

� A channel support diagnosis algorithm based on
DBSCAN is proposed, in which the reciprocity
between uplink and downlink channels in angular
domain is used.

� A weighted SP algorithm is proposed for massive
MIMO channel estimation, and the RIP-based
performance analysis for weighted SP is proposed,
which shows the superiority of the weighted SP
compared with the standard SP.

The rest of the paper is organized as follows. The sys-
tem model is described in Section 2. The support ana-
lysis of massive MIMO channel in angular or spatial
domain is given out in Section 3. In Section 4, the
weighted SP for massive MIMO channel estimation
based on the diagnosed support is presented. The RIP-
based performance analysis and simulations are illus-
trated in Sections 5 and 6. Finally, the conclusions are
drawn in Section 7.
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Notation: AT is a matrix composed of the columns of
the matrix A of the set T. Tc symbolizes the
complementary set of T. resid(·) is the residue vector
after projection operation, for example, resid(y,A) = y −
AA†y, where A† is the pseudoinverse of the matrix A. δk
is the parameter for k-RIP condition.

2 System model
We consider a scenario of a single user in massive
MIMO FDD and assume the BS is equipped with N an-
tennas and the user terminal (UT) has a single antenna.
For the uplink channel estimation, the uplink training
received by the BS can be written as

yu ¼ ffiffiffiffiffi
ρu

p
huaþ nu ð1Þ

where hu ∈ℂN × 1 is the uplink channel, a∈ℂ 1�Tu
is the

uplink pilots, Tu is the pilot length, ρu is the uplink
received power, nu∈ℂN�Tu

is the received noise with
each element to be i.i.d Gaussian with mean 0 and
variance σ2, and yu∈ℂN�Tu

is the received signal at BS.
For the downlink channel estimation in the FDD sys-

tem, the BS transmits the pilots to UT. The UT receives
the pilots and feeds the received signal back to the BS
directly as in [21]. The received signal yd at the UT can
be written as

yd ¼
ffiffiffiffiffi
ρd

q
Ahd þ nd ð2Þ

where hd ∈ℂN × 1 is the downlink channel, A∈ℂTd�N is
the downlink pilots, Td is the pilot length, ρd is the
downlink received power, nd∈ℂTd�1 is the received noise
with each element to be i.i.d Gaussian with mean 0 and
variance σ2, and yd∈ℂTd�1 is the received signal at UT.
Since the massive MIMO channel exhibits spatial

sparsity in angular/spatial domain, CS can be applied to
the compressive channel estimation with much less mea-
surements which means that Td <N. In the compressive
channel estimation, the uplink channel estimation in (1)
can be represented as

ĥ
u
a ¼ argmin hua

�� ��
0; subject to yu−

ffiffiffiffiffi
ρu

p
Duhuaa

�� ��
2≤ε

ð3Þ
where Du ∈ℂN ×Nis the channel basis matrix for uplink
channel, hua is the sparse spatial representation with hu¼
Duhua , and ĥ

u
a is the estimated uplink channel in the

spatial domain. Similarly, the downlink channel
estimation in (2) can be represented as

ĥ
d
a ¼ argmin hda

�� ��
0; subject to yd−

ffiffiffiffiffi
ρd

q
ADdhda

����
����
2

≤ε

ð4Þ
where Dd ∈ℂN ×N is the channel basis matrix for

downlink channel, hda is the sparse representation with
hd¼Ddhda , and ĥ

d
a is the estimated downlink channel in

the spatial domain.
In most existing literature problems, (3) and (4) are

solved separately. A more effective method is to solve
(3) and (4) jointly. Channel support refers in particu-
lar to the set comprised by the locations of nonzero
elements of channel representation in the angular/
spatial domain in this paper. In [18], it is assumed
that hua and hda have the same supports and get the

sparse solutions ĥ
u
a , ĥ

d
a and the dictionary matrices

Du,Dd iteratively. The uplink and downlink channel
estimation benefits from the joint dictionary learning.
However, the assumption of common supports of hua
and hda is not practical because of basis mismatch and
angle deviation between uplink and downlink. In the
following, we will discuss the partial common
supports of hua and hda based on the reciprocity in
angular domain in massive MIMO channel and then
propose a support diagnosis algorithm which can
provide support priori information for compressive
channel estimation.

3 Channel supports in massive MIMO spatial
channel
We discuss the basis mismatch and leakage effects
on the support in massive MIMO spatial channel
first and then take the angle deviation between up-
link and downlink into considerations for support
analysis.

3.1 Mismatch of MIMO channel basis
In massive MIMO, the dominant physical paths between
the transmitter and the receiver are relatively small com-
pared to the number of antennas. For example, in the
proposed channel model in the report 3GPP TS36.900
[12], the number of dominating physical path is six. So
there is channel sparsity in angular domain. Similarly, as
we did in [22], the massive MIMO channel can be given
by

H ¼
Xp

i¼1
aier Ωrið Þet Ωtið ÞH ð5Þ

where H is the physical channel model of MIMO, ai is
the attenuation of the ith path, and θti and θri are the
angle of departure and the angle of arrival (Ωti:=cosθti,
Ωri:=cosθri), respectively; er and et are the steering vec-
tors of the receiving and transmitting antenna arrays, re-
spectively, and are given by

ai≔ βi
ffiffiffiffiffiffiffiffiffiffiffi
NtNr

p
exp −

j2πdi

λc

� �
ð6Þ
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er Ωð Þ≔ 1ffiffiffiffiffiffi
Nr

p 1 exp − j2πΔrΩð Þ ⋯ exp − j2π Nr−1ð ÞΔrΩð Þ½ �T

ð7Þ

et Ωð Þ≔ 1ffiffiffiffiffiffi
Nt

p 1 exp − j2πΔtΩð Þ ⋯ exp − j2π Nt−1ð ÞΔtΩð Þ½ �T

ð8Þ
where di and βi are the distance and large scale fading of
the ith path, respectively, and Δr and Δt are the normal-
ized separation at the receiving and transmitting antenna
arrays by the wavelength λc of the transmitted signal,
respectively.
We formulate the uplink and downlink channel basis

matrices as in [22]:

U t ¼ et 0ð Þ; et 1
Lt

� �
;⋯; et

Nt−1
Lt

� �� �
ð9Þ

U r ¼ er 0ð Þ; er 1
Lr

� �
;⋯; er

Nr−1
Lr

� �� �
ð10Þ

where Lt =NtΔt, and Lr =NrΔr. Then, the spatial massive
MIMO channel can represented as

H 0 ¼ UH
r HUt ð11Þ

where H′ is the MIMO channel in the angular/spatial
domain. Then, the (kth, lth) entry in channel matrix H′

is

h0kl ¼ eHr
k
Lr

� � XP
i¼1

aier Ωrið Þet Ωtið ÞH
 !

et
l
Lt

� �

¼
XP
i¼1

aieHr
k
Lr

� �
er Ωrið Þet Ωtið ÞHet l

Lt

� �

¼
XP
i¼1

ai f r
k
Lr

−Ωri

� �
� f t Ωti−

l
Lt

� �

ð12Þ
where fr(∙) and ft(∙) have the forms as below:

f r Ω−Ω0ð Þ ¼ eHr Ωð Þer Ω0ð Þ ð13Þ
f t Ω−Ω0ð Þ ¼ eHt Ωð Þet Ω0ð Þ ð14Þ

If Ωrj and Ωtj are not equal to m/Lr and n/Lt in (12),
there are leakage effects on the entries of H′; then, we
have

h0mn ¼ aj þ
XP

i¼1;i≠ j

ai f r
k
Lr

−Ωri

� �
� f t Ωti−

l
Lt

� �
ð15Þ

where the second part of (15) is the leakage effects of
other paths. If the angle of departure (AOD) and angle of
arrival (AOA) of the paths are integer multiples of 1/Lr
and 1/Lt, most of the entries of channel matrix in angular/

spatial domain are 0. Otherwise, some entries of chan-
nel matrix in angular/spatial domain are not 0 be-
cause of the leakage effect even though there are no
paths in the corresponding directions of the entries in
channel matrix. It should be noticed that in the
paper, the UT is equipped with single antenna; how-
ever, the analysis is also valid.

3.2 Support difference between uplink and downlink
massive MIMO channel
In [23], it is assumed that the propagation environment
is static during uplink-downlink transmissions in FDD;
hence, the same multipaths, UE positions, and DOA for
uplink are also valid for downlink; however, the assump-
tion is not always valid in practical scenarios. As shown
in Fig. 1, the DOA and AOA for uplink and downlink
channels are not exactly the same but with some devia-
tions. Based on the analysis of channel basis mismatch,
the supports of uplink and downlink spatial channels are
not exactly the same as shown in Fig. 1. However, the
probable support of downlink channel can be inferred
from the uplink channel, which we call support diagno-
sis in the paper.
In the practical scenario, the angle of transmission

path for uplink and downlink will change slightly be-
cause of UE movement and environment change. On
the other hand, in the spatial channel model in 3GPP
TS36.900 report, it assumes that there are six paths, but
it demonstrates that the mean angle spread is 5° in sub-
urban macrocell. Hence, it is practical to assume that
the channel supports for uplink and downlink are par-
tially common because of the angle deviation between
uplink and downlink. Next, we will discuss the effects of
angle deviation for uplink and downlink transmission on
the channel supports.
Property 1: If the angle deviation for one path in up-

link and downlink is Δ at BS as shown in Fig. 1, the de-
viation of the support center is bounded by

Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
.

Proof: If we consider the angle difference for one
transmission path and the AOA in the uplink at the BS
is Ωti:=cosθti, the DOA in the downlink at the BS is Ωri:
=cosθri. In a practical scenario, θti and θri are not equal
and with the difference Δ. Then, we have

cosθri− cosθti ¼ cos θti þ Δð Þ− cosθti
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
sin φ−θtið Þ ð16Þ

where tanφ = (cosΔ − 1)/ sin Δ. Then, if the angle differ-
ence is Δ, we have

cosθri− cosθtij j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
ð17Þ

If the channel basis matrices are given as (9) and (10),
the sampling interval in channel basis is 1/Lr; the
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position change of the support center will be ⌈|cosθri −
cos θti|/(1/Lr)⌉ and can be bounded as

cosθri− cosθtij j= 1=Lrð Þ≤Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
ð18Þ

■
From property 1, it can be seen that support position

is related to the antenna array size Lr. The deviation of
the support center is shown as Fig. 2b. In the following,
we discuss the sparsity deterioration because of basis
mismatch.
Property 2: The path angle arriving at the BS is θ, and

Ω = cosθ. The channel basis matrices are defined as (9)

and (10). If path angle Ω ¼ i
.
Lr

, i ∈ [1,⋯,N], then in

the spatial channel, only the (i + 1)th element is nonzero

and there is not energy leakage; otherwise Ω ¼ k
.
Lr

þΩ0 , k ∈ [1,⋯,N] and jΩ0j≤1
.
2Lr

, then there is energy

leakage to the neighborhood elements in the spatial

channel, and at most a percentage of 1
.
πðΔk−1Þ of the

energy is outside a region comprised by [k − Δk,⋯, k,
⋯, k + Δk ] in the spatial channel.

Proof: For Ω ¼ i
.
Lr
, there is no energy leakage which

has been discussed in the previous section. Now, we

consider Ω ¼ k
.
Lr

þΩ0 and analyze the energy leakage

to the (k′ + 1)th atom in the channel basis. We define
ΔΩ =Ω − k′/Lr =Ω′ + k/Lr − k′/Lr =Ω′ +Δk/Lr, Δk = k −
k′, and we have

f r ΔΩð Þ ¼ f r Ω−k 0=Lrð Þ ¼ er Ωð ÞHer k 0=Lrð Þ
¼ 1

Nr
exp jπΔrΔΩ Nr−1ð Þð Þ sin NrπΔrΔΩð Þ

sin πΔrΔΩð Þ
ð19Þ

The absolute value of fr(ΔΩ) is given by

Fig. 1 Angle deviation and sparsity in spatial channel

Fig. 2 a Sparsity in spatial channel and b uplink and downlink supports with angle deviation
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f r ΔΩð Þj j ¼ f r Ω0 þ Δk 0=Lrð Þj j
¼ 1

Nr

sin πLr Ω0 þ Δk 0=Lrð Þð Þ
sin πLr Ω0 þ Δk 0=Lrð Þ=Nrð Þ
����

���� ð20Þ

Let Γ2k 0þ1 ¼ j f rðΩ0 þ Δk 0=LrÞj2, we have

Γ2k 0þ1 ¼
1

N2
r

sin2 πLr Ω0 þ Δk 0=Lrð Þð Þ
sin2 πLr Ω0 þ Δk 0=Lrð Þ=Nrð Þ ð21Þ

By utilizing the cyclic symmetry of Γ2k 0þ1 , the sum
leakage energy which is outside the region comprised
by [k−Δk,⋯, k,⋯, k+Δk ] in the spatial channel are given by

Γ2Δk þ ::: þ Γ2Nr−Δk
¼ 2

N2
r

XNr=2

i¼Δk

sin2 πLr Ω0 þ i=Lrð Þð Þ
sin2

πLr Ω0 þ i=Lrð Þ
Nr

� �

≤
2

N2
r

XNr=2

i¼k

1

sin2
πLr Ω0 þ i=Lrð Þ

Nr

� �

≤
2

N2
r

Z Nr=2

Δk−1

di

sin2
πLri
Nr

� �

¼ 2
πNr

cot π Δk−1ð Þ=Nrð Þð Þ

≤
1

π Δk−1ð Þ
ð22Þ

Since
PN

i¼1 Γ
2
i ¼ 1 by the Parseval theory, property 2 is

proofed. ■
From property 2, it can be seen that although there ex-

ists energy leakage because of basis mismatch, most of
the energy is allocated around the support correspond-
ing to the angle direction, and the leakage energy de-
creases in the rate of 1

πðΔk−1Þ.
To illustrate these properties, we assume that the an-

tenna number is 100; there are only three dominant paths.
In Fig. 2, it can be seen that the channel basis index or so-
called the channel taps in the spatial domain are located
in cluster. If the channel basis matches the channel angle
perfectly, the sparsity is relatively good such as path 1 in
Fig. 2a; otherwise, the sparsity deteriorates such as path 2
and path 3. Meanwhile, if the angles of two paths are
close, the amplitudes of the channel taps in spatial domain
for them are superpositioned because of the leakage ef-
fects. In the ideal assumption, the AOA and DOA for up-
link channel and downlink channel are common, but in
the practical scenario, they are not the same. We assume
the angle deviation for one path in uplink and downlink is
within 5° randomly as [20, 24]; then, as shown in Fig. 2b,
it can be seen that the channel taps or channel supports
for uplink and downlink in the spatial domain change
slightly and are partially common as property 1. In the

following, we will utilize these properties for downlink
spatial channel support diagnosis.

4 Proposed methods
In this section, the support diagnosis algorithm is first
proposed based on the reciprocity in angular domain for
uplink and downlink channels; then, the downlink
massive MIMO channel estimation algorithm based on
the diagnosed support is proposed.

4.1 Channel support diagnosis algorithm
In this subsection, we propose the channel support diag-
nosis algorithm based on the analysis of basis mismatch
and support difference between the downlink channel and
uplink channel. Although the AOA and DOA for uplink
and downlink are not exactly the same, the multipath
number is common for uplink and downlink. Inspired by
the clustering property of channel support in spatial do-
main, for example, there are three clusters in Fig. 2b, we
apply the DBSCAN (density-based spatial clustering of ap-
plications with noise) algorithm to extract the multipath
information in the spatial domain. Then, we infer the
probable channel supports of downlink channel. The de-
tails of the support diagnosis algorithm are presented in
Algorithm 1.

In step S1, the estimated uplink spatial channel is uti-
lized for path number estimation by DBSCAN
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algorithm. The DBSCAN algorithm is a data clustering
algorithm proposed by Martin Ester which is widely
used in machine learning [25]. It is a density-based clus-
tering algorithm in which it groups together points that
are closely allocated and marks those as outlier points
which lie in low-density regions. In DBSCAN algorithm,
the points are classified as core points, density reachable
points, and outliers. A point p is a core point if at least
minPts points are within distance ε, and ε is the max-
imum radius of the neighborhood from p. A point q is
reachable from p if there is a path p1, ..., pn with p1 = p
and pn = q, where each pi + 1 is directly reachable from pi.
If p is a core point, then it forms a cluster together with
all points that are reachable from it. For example, in Fig.
4, p3 is reachable from p1, and p1, p2, p3, and p4 are
comprised as cluster 2. The detailed algorithm can be
found in [26].
By step S1, we can capture the multipaths in most

conditions by DBSCAN except if the channel basis
matches the path angle well or the leakage channel taps
are not selected, for example, only one channel tap alone
for the path is selected such as path 1 in Fig. 2a; then, by
DBSCAN algorithm, this alone channel tap will be omit-
ted because it is in the low-density region such as point
pn in Fig. 3 which is the inherent characteristic of
DBSCAN. In order to avoid this situation, we add these
channel supports manually in step S2. In this way, we
can capture most of the channel supports and get the
multipath information.
In the spatial channel, each path is corresponding

to one cluster set. If the channel basis matches the
path angle well, then there is no energy leakage, and
the corresponding cluster set has only one element;
otherwise, there are multiple elements in the cluster
set. In step S3, we estimate the central support for
each path by averaging the index value of each cluster
set. For example, in Fig. 2a, the central support is 44
for path 2.

In step S4, we consider how to get the probable sup-
port of the downlink channel from the uplink channel
support. If we consider the angle deviation between up-
link and downlink, the change of channel tap index is

within about �Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
as property 1. If the an-

tenna number is 100 and antennas are half-wave allo-
cated, then Lr = 50. If the angle deviation is about 5°, the
channel index deviation is about ± 4.36. From the leak-
age effect analysis in the previous section, at most a per-

centage of 1
.
πðΔm−1Þ of the energy is located outside

a rectangular neighborhood of the central channel sup-
port with interval of ±Δm. For example, if we consider
about 90% energy, then Δm = 4.
We can diagnose the downlink channel supports in

step S4 based on the uplink channel support informa-
tion. The diagnosis procedure is as follows: firstly, we
find the multipath number and the center support index
pi of each path in the spatial domain; then, taking the
angle deviations into account, it can be inferred that the
center support index of each path change is within the

range of ½pi−Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
; pi þ Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p �; following,
taking the basis mismatch effect and 90% energy criter-
ion into consideration, the probable support index is

within the range of ½pi−Lr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−2 cosΔ

p
−Δm;⋯; pi þ Lrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2−2 cosΔ
p þ Δm�; then, we can get the probable down-
link channel support set.

4.2 Compressive downlink channel estimation with
support priori
Firstly, the BS utilizes CS recovery algorithm for the
uplink channel estimation, and UT feeds back the
received pilot signal to the BS. At the BS, the chan-
nel support diagnosis procedure is carried out as Al-
gorithm 1. In order to integrate the support
diagnosis information of downlink channel into the
CS algorithm, we assign a weighting matrix W =
diag([w1,⋯, wN]) based on the diagnosed support in-
formation. The weights are given by

w ið Þ ¼ fw1 ¼ 1; if i∈Ωd

w2 ¼ σ; if i∉Ωd ð23Þ

where 0 < σ < 1 is the penalty parameter and Ωd is the
estimated downlink spatial channel support set. In the
paper, we merge the weighting matrix into the
subspace pursuit (SP) algorithm, and the details for
the modified SP with support priori are presented in
Algorithm 2. Compared with the standard SP, the
main difference is the candidate support selection in
step S1. In the standard SP, the n′ largest magnitude
entries are selected in the vector AHVk − 1, while in
the proposed weighted SP algorithm, the weighting
matrix W takes into consideration which contains the

Fig. 3 Illustration of DBSCAN algorithm
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priori information from uplink channel. It should be
noted that the diagnosed support information can be
merged into other CS recovery algorithms
equivalently.

5 RIP-based performance analyses
In this section, we study the RIP-based performance of
the proposed algorithm. The basic idea for the analysis
mainly stems from Dai and Milenkovic in [27] but is
with the consideration of the weights in (23). Compared
with the standard SP algorithm, the main difference in
the proposed algorithm is the support updating step (S1)
in Algorithm 2. In the following, for brevity yd is de-
noted as y and hda is denoted as h.
The following analysis uses several propositions from

[27]. We bring these in this subsection first to keep the
analysis complete. According to the definition of residue
vector of Vk − 1, we can get

V k−1 ¼ resid y;AΓk−1ð Þ
¼ resid AT−Γk−1hT−Γk−1 þ AT∩Γk−1hT∩Γk−1 þ n;AΓk−1ð Þ

¼ resid AT−Γk−1hT−Γk−1 ;AΓk−1ð Þ þ resid AT∩Γk−1hT∩Γk−1 ;AΓk−1ð Þ þ resid n;AΓk−1ð Þ
¼ resid AT−Γk−1hT−Γk−1 ;AΓk−1ð Þ þ resid n;AΓk−1ð Þ
¼ AT−Γk−1hT−Γk−1 þ AΓk−1hp;Γk−1 þ resid n;AΓk−1ð Þ

ð24Þ

where T is the actual support of h, hp;Γk−1 ¼ −
ðAH

Γk−1AΓk−1Þ
−1
AH
Γk−1AT−Γk−1hT−Γk−1 . The fourth line in (24)

is according to the definition of residual. The fifth line
in (24) is according to the definition of projection. One
can write

V k−1 ¼ AT∪Γk−1hr;k−1 þ resid n;AΓk−1ð Þ
¼ AT−Γk−1 ;AΓk−1½ � hT−Γk−1

hp;Γk−1

� �
þ resid n;AΓk−1ð Þ:

Proposition 1 [(25) in [27]]: khp;Γk−1k2≤
δ2k

1−δ2k
khT−Γk−1k2,

where T is the correct support set and Γk − 1 is the
estimated support during the (k − 1)th iteration in step
(S3) of Algorithm 2.

Proposition 2 [(16) in [27]]: khT−Γkk2≤ 1þδ3k
1−δ3k

kh
T−~Γ

kk
2

þ 2
1−δ3k

knk2 , where T is the actual support set and ~Γ
k

and Γk are the support sets during the kth iteration in
steps S1 and S3 of Algorithm 2, respectively.
In step S4 of Algorithm 2, the residue vector is calcu-

lated after the new support set is obtained in step S2.
The residue vector is shown as (24). Proposition 1 and 2
give out the inequalities that hT−Γk−1 and hp;Γk−1 in (24)

will satisfy. Since in our proposed algorithm only step S1
is different from the standard SP, propositions 1 and 2
can be applied directly. Then, we will consider the im-
pacts of step S1 only on the estimation error.
Theorem 3: By using the weighing matrix W in (23),

the proposed SP solution at the lth iteration satisfies the
inequality as

hT−Γk
�� ��

2
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2

w2
1

s
δ3k 1þ δ3kð Þ

1−δ3kð Þ3 hT−Γk−1
�� ��

2

þ 4 1þ δ3kð Þ
1−δ3kð Þ2 nk k2:

Proof: According to the definition of Ω in S1 in
Algorithm 2, then

WΩA
H
ΩV k−1

�� ��
2≥ WTA

H
TV k−1

�� ��
2 ð25Þ

Removing the common columns between Ω and T on
both sides of (25) and applying kresidðn;AΓk−1Þk2≤knk2
from the definition of residue operation, we arrive at

WΩ−TA
H
Ω−TV k−1

�� ��
2≥ WT−ΩA

H
T−ΩV k−1

�� ��
2

≥ WT−ΩA
H
T−ΩAT∪Γk−1hr;k−1

�� ��
2− WT−ΩA

H
T−Ωresid n;AΓk−1ð Þ�� ��

2

≥ WT−ΩA
H
T−ΩAT∪Γk−1hr;k−1

�� ��
2
−w1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δk

p
resid n;AΓk−1ð Þ�� ��

2

≥ WT−ΩA
H
T−ΩAT∪Γk−1hr;k−1

�� ��
2
−w1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δk

p
nk k2

ð26Þ

The second line of (26) is from the triangle inequality
and the expression of Vk − 1. The third line is from the
definition of W in (23) and RIP property. On the other
hand, by applying the triangle inequality, we have

WΩ−TA
H
Ω−TV k−1

�� ��
2
≤ WΩ−TA

H
Ω−TAT∪Γk−1hr;k−1

�� ��
2
þ WΩ−TA

H
Ω−Tresid n;AΓk−1ð Þ�� ��

2

≤ WΩ−TA
H
Ω−TAT∪Γk−1hr;k−1

�� ��
2 þ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δk

p
nk k2

ð27Þ

Combining (26) and (27), we have

WΩ−TA
H
Ω−TAT∪Γk−1hr;k−1

�� ��
2

þ 2w1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δk

p
nk k2≥ WT−ΩA

H
T−ΩAT∪Γk−1hr;k−1

�� ��
2

ð28Þ

Then, we have
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WΩ−TA
H
Ω−TAT∪Γk−1hr;k−1

�� ��2
2
¼ W Ω−Tð Þ∩T̂A

H
Ω−Tð Þ∩T̂AT∪Γk−1hr;k−1

��� ���2
2

þ W Ω−Tð Þ−T̂A
H
Ω−Tð Þ−T̂AT∪Γk−1hr;k−1

��� ���2
2
¼ w2

1 AH
Ω−Tð Þ∩T̂AT∪Γk−1hr;k−1

��� ���2
2

þw2
2 AH

Ω−Tð Þ−T̂AT∪Γk−1hr;k−1
��� ���2

2
≤w2

1δ
2
3k hr;k−1
�� ��2

2
þ w2

2δ
2
3k hr;k−1
�� ��2

2

¼ w2
1 þ w2

2

	 

δ23k hr;k−1
�� ��2

2

ð29Þ

where T̂ is the diagnosed support set and the weight is
given by (23). Similarly, we have

WT−ΩA
H
T−ΩAT∪Γk−1hr;k−1

�� ��2
2
≥ WT− ΩþΓk−1ð ÞAH

T− ΩþΓk−1ð ÞAT∪Γk−1hr;k−1

����
����
2

2

¼ W
T−~Γ

kAH
T−~Γ

kAT−~Γ
k hr;k−1
	 


T−~Γ
k

��� ���2
2
þ W

T−~Γ
kAH

T−~Γ
kA

T∪Γk−1− T−~Γ
k

	 
 hr;k−1
	 


T∪Γk−1− T−~Γ
k

	 
����
����
2

2

≥w2
1 1−δkð Þ2 hr;k−1

	 

T−~Γ

k

��� ���2
2
þ W

T−~Γ
kAH

T−~Γ
kA

T∪Γk−1− T−~Γ
k

	 
 hr;k−1
	 


T∪Γk−1− T−~Γ
k

	 
����
����
2

2

≥w2
1 1−δkð Þ2 hr;k−1

	 

T−~Γ

k

��� ���2
2

ð30Þ

where the second line in (30) is according to step S1 in
Algorithm 2 and the third line is according to Algo-
rithm 1 and RIP properties.
Combining (29) and (30) into (28), we can get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2

q
δ3k hr;k−1
�� ��

2

þ 2w1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δk

p
nk k2≥w1 1−δkð Þ hr;k−1

	 

T− ΩþΓð Þ

��� ���
2

ð31Þ

Noting the explicit form of ‖hk − 1‖2 and applying the
triangle inequality, one has

hr;k−1
�� ��

2≤ hT−Γk−1
�� ��

2 þ hp;Γk−1
��� ���

2

≤ 1þ δ2k
1−δ2k

� �
hT−Γk−1
�� ��

2

≤
1

1−δ3k
hT−Γk−1
�� ��

2

ð32Þ

where the second line in (32) is obtained by using
proposition 1. Note that V k−1 ¼ AT∪Γk−1hr;k−1 þ resid
ðn;AΓk−1Þ¼ ½AT−Γk−1AΓk−1 �

hT−Γk−1
hp;Γk−1

� �
þ residðn;AΓk−1Þ; then

ðhr;k−1ÞT−ðΩþΓÞ ¼ hT−Γk
.

Then, we get

hT−Γk−1
�� ��

2≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

2

w2
1

s
δ3k

1−δ3kð Þ2 hT−Γk−1
�� ��

2 þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δk

p
1−δk

nk k2

ð33Þ

Combining proposition 2 with (33), we complete the
proof. ■
In the standard SP algorithm as shown in [27], at the

lth iteration it satisfies

hT−Γk
�� ��

2
≤
2δ3k 1þ δ3kð Þ

1−δ3kð Þ3 hT−Γk−1
�� ��

2
þ 4 1þ δ3kð Þ

1−δ3kð Þ2 nk k2
ð34Þ

As in the weighting matrix (23),

ffiffiffiffiffiffiffiffiffiffiffi
w2
1þw2

2
w2
1

r
<

ffiffiffi
2

p
, so the

proposed algorithm can converge faster than the stand-
ard SP and have better estimation accuracy. When δ3k =
0.083 as required in [27] and assuming w1 = w2 = 1 for
the worst case, in our proposed algorithm, we have
khT−Γkk2≤0:164khT−Γk−1k2 þ 5:152knk2 while in the
standard SP khT−Γkk2≤0:232khT−Γk−1k2 þ 5:152knk2 .
When σ = 0.1 in the proposed algorithm, we have
khT−Γkk2≤0:117khT−Γk−1k2 þ 5:152knk2 . In this way, our
proposed algorithm converges faster than the standard
SP and has better recovery performance. In other words,
the restriction of δ3k is weakened in the proposed algo-
rithm. The performance improvement can be explained
by that the SP algorithm can benefit from the priori sup-
port information.

6 Simulation results
In this section, simulations are carried out to evaluate the
performance of the proposed downlink channel estima-
tions with priori information. The BS is equipped with
100 antennas, and the UT is equipped with a single an-
tenna. The channel model is generated according to
spatial MIMO channel in 3GPP TS36.900. The same SNR
is assumed for both uplink and downlink. Since we focus
on the impacts of the priori information on the perform-
ance of downlink channel estimation, the gain of multiple
pilots in uplink channel is not discussed, and the pilot
length is set to 1. The estimation accuracy of uplink chan-
nel can benefit from the increase of pilot number.
In Fig. 4, the penalty value σ in the weighting matrix is

0.1, the downlink pilot length is 50, and the SNR for up-
link and downlink are equal. We compare the perform-
ance of downlink channel estimation among four
algorithms ((1)SP algorithms with no priori information
as done in [4, 14], (2) weighted SP with the same sup-
ports as uplink as in [18], (3) weighted SP with the pro-
posed diagnosed supports, and (4) standard iteratively
reweighted least squares (IRLS) in [28]). It can be seen
that in the low-SNR region algorithms, (1), (2), and (3)
have almost the same MSE performance; the perform-
ance of algorithm (4) fluctuates around them. However,
in the high-SNR region, the proposed algorithm has bet-
ter performance, which can be explained by that the
support information from uplink channel is more accur-
ate in the high-SNR region since we assume the com-
mon SNR for uplink and downlink. The proposed
support diagnosis information can improve the channel
estimation MSE because it considers the basis mismatch,
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the leakage effect, and the slight deviation of AOA and
DOA for uplink and downlink.
In Fig. 5, the penalty value σ in the weighting matrix is

0.1. We compare the performance of the downlink chan-
nel estimation with different pilot lengths. It can be seen
that with the increase of the downlink pilot length, the
MSE performance for the four algorithms ((1) SP algo-
rithms with no priori information as done in [4, 14], (2)
weighted SP with the same supports as uplink in [18],

(3) weighted SP with the proposed diagnosed supports,
and (4) standard iteratively reweighted least squares
(IRLS) in [28]) are all improved which are in accordance
with the results in the CS theory. The proposed recovery
algorithm with diagnosed support has the best recovery
performance and has higher MSE improvement gain by
pilot increasing in the high-SNR region.
In Fig. 6, we compare the performance of downlink

channel estimation with different penalty values in

Fig. 4 MSE performance of the weighted SP recovery based on the diagnosed supports

Fig. 5 Weighted SP recovery based on the diagnosed supports with different pilot lengths
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weighting matrix in the proposed support diagnosis al-
gorithm. It can be seen that weighting matrix with
smaller penalty value in the proposed algorithm has bet-
ter performance especially in the high-SNR region.
From the simulation results, above it can be con-

cluded that (1) the uplink channel can offer support
information for downlink channel estimation. The
support information is useful for the downlink chan-
nel recovery. (2) The assumption of common support
for downlink and uplink channels is not practical.
The estimation accuracy will deteriorate if the sup-
port difference is ignored. The proposed support diag-
nosis algorithm considers the basis mismatch and
angle deviation for uplink and downlink which can
improve the downlink channel estimation further. (3)
The weighting matrix value is important for the pro-
posed weighted SP algorithm; smaller penalty value in
weighting matrix is preferred especially in the high-
SNR region. In brief, the proposed support diagnosis
algorithm is sufficient and beneficial for the downlink
compressive channel estimation.

7 Conclusions
In this paper, we propose a downlink compressive chan-
nel estimation based on weighted SP for FDD massive
MIMO systems, and the weighted SP makes use of the
priori support information to improve the estimation
performance. The reciprocity between uplink and down-
link channels in angular domain is used for diagnosing
the support priori information of downlink channel. The
proposed support diagnosis algorithm considers the

basis mismatch, leakage effect, and angle deviation for
uplink and downlink channels and applies the DBSCAN
algorithm used in machine learning to the channel sup-
port diagnosis. RIP-based analysis shows a better conver-
gence and error performance of the proposed algorithm
compared with the standard SP. Simulation results verify
that the proposed algorithm improves the downlink
channel estimation accuracy compared to the IRLS, the
SP algorithm which does not utilize the uplink priori in-
formation, and the weighted SP which assumes that the
downlink and uplink channels have common supports.
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