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Abstract

The effective classification methods of the small target objects in the no-fly zone are of great significance to ensure
safety in the no-fly zone. But, due to the differences of the color and texture for the small target objects in the sky,
this may be unobvious, such as the birds, unmanned aerial vehicles (UAVs), and kites. In this paper, we introduced the
higher layer visualizing feature extraction method based on the hybrid deep network model to obtain the higher layer
feature through combining the Sparse Autoencoder (SAE) model, the Convolutional Neural Network (CNN) model, and
the regression classifier model to classify the different types of the target object images. In addition, because the sample
numbers of the small sample target objects in the sky may be not sufficient, we cannot obtain much more local features
directly to realize the classification of the target objects based on the higher layer visualizing feature extraction; we
introduced the transfer learning in the SAE model to gain the cross-domain higher layer local visualizing features and
sent the cross-domain higher layer local visualizing features and the images of the target-domain small sample object
images into the CNN model, to acquire the global visualizing features of the target objects. Experimental results have
shown that the higher layer visualizing feature extraction and the transfer learning deep networks are effective for the
classification of small sample target objects in the sky.
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1 Introduction
Due to the influence of the weather factors, camouflage,
and other factors, it is often difficult to classify the target
objects in the sky timely and accurately. How to effect-
ively classify the target object is the key to defend suc-
cessfully in the no-fly zone. The traditional feature
extracting from the target object images based on the
lower layer visualizing feature methods such as color
and texture can only express the local surface of the
image information, the limitation is larger, the lower
layer features sometimes are difficult to fully express the
global information, and the accuracy of the traditional
lower layer visualizing feature extraction and classifica-
tion algorithm is not high. The Convolutional Neural

Network (CNN) model [1] is a supervised learning
method that achieved good application effect in many
fields, but whether its performance is good or bad de-
pends on the amount of the training sample marked. In
recent years, the unsupervised feature learning of
unmarked big data has become a hot topic at home and
abroad [2], which simulates the intrinsic information of
the human eye perception image. Through the image
features transforming layer by layer, the sample feature
of original space will be transformed to the new feature
space, the higher layer visualizing features can be learnt,
and the target detection and classification accuracy of
the image are enhanced.
Now, the unsupervised learning technology [3] facing

the vast unmarked data features has become the hot
topic of the experts and scholars all over the world.
Through simulating the human eyes to realize image
scanning and perception, the most essential feature
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information of data can be gotten. And through the fea-
ture transformation of the original signal, the feature of
the original space can be transferred into the new feature
space. The features of target image deep hierarchical [4]
can be automatically learnt, which is more conducive to
the target detection and classification. The Sparse Auto-
Encoder (SAE) model [5] acts as a kind of unsupervised
feature learning method; through the unmarked sample
data rehabilitation training, the higher layer visualizing
feature extraction for the target objects can be effectively
generalized into the small sample target object image ap-
plications [6–8]. The SAE model does not need the prior
defining features [9]; only through setting up the node
numbers of hidden layer units, the hidden layer informa-
tion of the target object images can be automatically
learnt, and the essence of the internal correlation of the
target object images can be obtained. The SAE model can
automatically learn the implied relationship among the
data without predefining the parameters, which is more
expressive in the feature learning [10].
This paper proposed a kind of SAE higher layer visual-

izing feature extraction method for the small sample tar-
get objects in the sky. Firstly, the local features can be
obtained through the non-transfer learning in the small
sample target object images or transfer learning in the
cross-domain database, and then, the global feature of
the small sample target object can be obtained through
the CNN model, as well as proposed to add the classifi-
cation model to realize the classification of the target
objects. With the help of the classification model, the
different types of the target objects can be classified. Ex-
periments verified that the algorithms this paper pro-
posed can well classify the small sample target objects,
and the classification performance comparisons between
the transfer learning and non-transfer learning based on
the SAE higher layer visualizing feature extraction model
in the small sample target objects are realized.

2 Algorithm design principle
The algorithms proposed in this paper consist of four
modules: (1) the higher layer feature extraction module

based on the SAE model in the target-domain small
sample target object, (2) the transfer learning SAE local
feature extracting module in the cross-domain big data
image database, (3) the global feature extracting module
in the target-domain small sample target object images
based on the CNN model, and (4) the classification
module in the target-domain small sample target object
image.
The traditional lower layer visualizing feature extrac-

tion methods usually adopt the color, texture, etc. to
classify the types of the target objects. Because the lower
layer feature has not enough information of the target
objects, the classification accuracy of traditional algo-
rithm is not high. Based on the SAE model, the local
higher layer visualizing feature (local feature) of small
sample target object images can be extracted, and then,
we can transform the local feature and the target object
images to the CNN model; through a continuous convo-
luting and pooling process, the global higher layer visu-
alizing feature (global feature) in the training set can be
extracted. Finally, the global feature can be sent into the
classifier (such as logistic or Softmax regression model)
to classify the small sample target objects in the test set.
In this paper, during the process of the local feature ex-
traction in the training set, because sometimes the sam-
ple number of target objects is not enough in the sky,
we proposed the local features are transfer learnt from
the images of the STL-10 database. The design frame
diagram of the small sample target object classification
algorithm proposed in this paper is shown in Fig. 1.
In Fig. 1, the higher layer visualizing features of the

cross-domain images are extracted based on the SAE
model; the higher layer visualizing feature extraction
module is based on the unsupervised learning methods,
using the back propagation (BP) training AutoEncoder
(AE) Neural Network (NN). The sparse constraint is
joined in the hidden layer NN to learn the typical local
features of image sub-block, and the image edge infor-
mation is strengthened through the whitening operation,
which obtains the better visualizing features. Using the
convolution point by point in the small sample target
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Fig. 1 Design frame diagram of small sample target object classification algorithm
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object images by using the local feature learnt in the
CNN model, the global features of the small sample tar-
get object images can be obtained. The CNN pooling
operation can get the global eigenvector in the invariant
rotation and scale. Finally, the global feature is sent to
the classifier to realize the classification of the small
sample target object images. In this paper, the method of
transfer learning is proposed to reduce the shortage of
the local eigenvector learning due to the small sample
target objects. In the simulation experiments, the effect-
iveness and accuracy of the new algorithm is verified by
dividing the target object image into the training set and
test set.

3 Algorithm design
The algorithm this paper proposed mainly includes local
feature learning, global feature obtaining, and target
classification. The local feature is learnt by the SAE
model, the global feature is obtained by the CNN model,
and the classification realization is completed by the
classifier model.

3.1 Local feature learning based on the SAE model
The SAE model this paper proposed is a kind of im-
proved form adding the sparse constraint for the hidden
layer unit response in the AE model. First, most of the
neurons in the network are in inhibitory state. Then, the
minimum cost function is found through the BP training
method, and the key feature response of the target ob-
ject is studied. In this paper, a king of the zero-phase
component analysis (ZCA) method is adopted to whiten
the multiple image blocks in the target object learnt by
the SAE model. Assuming that the size of the ith image
block from the target object is n × n, it can be sorted ac-
cording to the RGB component to get m = n × n × 3 di-
mensional vector x(i). The input vector after the
whitening treatment is x'(i) and x'(i) =Wwhitex

(i), where
Wwhite represents m ×m dimensional whitening
transformation coefficient matrix. The response vectors
in the SAE sth dimensional hidden layer is shown in
Formula (1)

a ið Þ ¼ σ Wx ið Þ þ b1
� �

¼ σ W SAEWwhitex
ið Þ þ b1

� �
ð1Þ

where WSAE is the input weight coefficient of each
image block connecting the SAE hidden layer with the
whitening processing, b1 represents the input bias, and
the σ(•) is the activation function. W=WSAEWwhite repre-
sents the overall weight coefficient after the whitening
process (also representing the relationship between the
hidden layer and the original data). After the whitening
process, because the input value will exceed [0,1], the

activation function σ(•) should not be used to map the
SAE output when the data is reconstructed.

x̂ ið Þ ¼ WT
SAEa

ið Þ þ b2 ð2Þ

where x̂ðiÞ represents the ith recovery sample, WSAE
T is

the output weight, and b2 is the output bias. In order to
prevent overfitting and ensure the implicit response
sparsely, the weight attenuation and sparse penalty term
should be added in the cost function.
Acting as a kind of neural network, the SAE model

is also trained in back propagation to find the mini-
mum of the cost function. Specifically, the SAE model
hopes the neural network can recover input data

through training, namely x̂ðiÞ ¼ WwhitexðiÞ . Considering
the constraint of weight attenuation and implicit re-
sponses’ sparsity, the overall cost function can be
expressed as Formula (3) [11, 12]:

J W SAE; bð Þ ¼ 1
M

XM
i¼1

1
2

x̂ ið Þ−Wwhitex
ið Þ

��� ���2 þ λ
2

W SAEk k2

þ β
XK
j¼1

KL ρ ρ̂ j

���� �
ð3Þ

where M is defined as the number of training samples,
λ is the weight attenuation coefficient, β is defined as
the weights of penalty term of sparse data, ρ is defined
as sparse parameters, ρ̂ j is defined as the average activa-

tion value of the first jth unit of the hidden layer, K is
defined as the numbers of hidden layer units, and KL()
is defined as a kind of relative entropy measurement
function—Kullback Leibler (KL) divergence.

3.1.1 Whitening
Whitening operation can highlight the edge of the image
information so that the deep learning algorithms can get
more outstanding features. As the view of mathematics,
the purpose of whitening is to remove the correlation of
pixels and make it have standard covariance [13]. In
practice, the whitening processing is usually combined
with principal component analysis (PCA) or ZCA. In
this paper, we use a kind of common ZCA whitening
method to preprocess image sub-blocks.
Whitening in the RGB space usually combines the data

of three color channels into one vector, which is defined
as Joint Whitening (J-W). Assuming that the size of the
image block is n by n, because the color image includes
three channels, then the combined image sub-block data
is n × n, due to color image including three number
channels, which becomes N = n × n × 3 dimensional vec-
tor. Before the whitening processing, the average of all
samples should be subtracted to ensure that the data
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mean of each location is 0. And then, the covariance
matrix of N ×N size is calculated [14]:

S ¼ E xxT
� � ¼ 1

m

Xm
i¼1

xi
� �

xi
� �T ð4Þ

where xi is the ith vector combining with three number
components and m is the total number of image-block.
Then, the N ×N size ZCA coefficient matrix Wwhite can
be expressed as:

Wwhite ¼ U

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 þ ε

p 0 ⋯ 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ ε
p ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λN þ ε
p

2
66666664

3
77777775
UT

ð5Þ
where U is the eigenvector u1, u2,…, uN of S, λ1, λ2,…,

λN is the eigenvalue of u1, u2,…, uN, and ε is the
regularization constant of each corresponding
eigenvalue.
Performance of ε can solve the numerical instability

problem caused by the small eigenvalues (even near to
zero), and it can also smooth the input data to improve
the learning features. Or it is the restriction of the whit-
ening operation itself, which avoids the noise interfer-
ence caused by excessive whitening. The selection of the
numerical value is very important; a too large value may
cause the features obscure and a too small value may
lead to the appearance of noise feature values. For the
SAE model, the training model based on reconstructing,
the selection standard of ε is to make it more than most
of the smaller eigenvalue, so as to filter out those who
reflect the features of the noise in the data values. In the
case that the training data has been normalized to [0,1],
the adjustment is usually performed from ε = 0.01 or ε =
0.1. In addition, we can visually display the data before
and after the whitening process to coordinate the value
of ε.

3.1.2 Local feature extraction in transfer learning
In this paper, we conduct unsupervised local feature
learning on the cross-domain database and then carry
out the global feature extraction and classification on
the small number of sample data sets. We select three
kinds of cross-domain databases such as Abstract100,
Abstract 280, and STL-10 database [15, 16].
These samples are not associated with the subsequent

images used for the sky target object classification. In
this paper, we respectively collect 1000, 10,000, and
100,000 number 8 × 8 size of image blocks to carry on
the feature learning by a completely random way from

the database of Abstract100, Abstract280, and STL-10.
And in the final classification experiments, we repeat
five times random sampling to test sample size’s impact
on the overall performance. The regularization coeffi-
cient was set to 0.1 in the whitening pretreatment
process, and adopted 400 hidden layer units (corre-
sponding to 400 self-learning features) in the SAE
model; the training parameters were set to be the same
as λ = 3 × 10−3 and the number of the training
parameters β = 5 and ρ = 0.035. When the training
samples were too small, the weights of three databases
were ambiguous. With the increase of training samples,
the learning effect has increased significantly based on
the features of the STL-10 database; when the training
sample reaches to 100,000, feature weights with a rela-
tively clear edge can be learnt in the STL-10 database.
However, the learning effect on Abstract100 and Ab-
stract280 is not significantly improved, which indicates
that it is less effective to collect a large amount of data
from the small sample for unsupervised feature learning.
In addition, the lower part of the feature weight is more
obvious after ascending the weight according to the
mAG value. That is to say, mAG value can reflect the
edge of the self-learning weight performance; according
to its order, the purpose of roughly dividing feature
weight marginal strength can be achieved. And accord-
ing to this order, we can more intuitively observe and
compare the effect of learning. In the following experi-
ment, we select the STL-10 composed of 100,000 un-
marked images covering a wide range of vehicles and
animals database to complete the cross-domain unsuper-
vised learning.

3.2 Global feature extraction of CNN
Because of the too little target object image sample data,
this paper introduced the transfer learning method; the
local features of image sub-block large sample image
data can be learnt from the cross-domain big data data-
base sampling, making convolution operation with the
current small sample target image to get feature re-
sponse of the image and combining these response to
get global features of target object images, which is used
to realize identification and classification of the small
sample target object images. The CNN global feature
model structure [17] is shown in Fig. 2.
In order to improve the operational efficiency, we

carry out a method of two-dimensional convolutions in
three color channels during the convolutional process
and sum the results. We divide every local feature SAE
learnt according to three color channels and respectively
carry out convolution point by point between them and
the RGB components of d × d size images to get three
number (d − n + 1) × (d − n + 1) size features after convo-
lutions, and then, the global features can be obtained
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through adding three groups of feature images after
multi-channel convolutions. In addition, to reduce di-
mension and avoid overfitting, CNN adopts a pooling
operation to realize aggregated sampling for the previous
layer network features. In this paper, we choose average
pooling on the premise of whitening processing.

3.2.1 Convolutional layer
In Fig. 2, assuming that the SAE learnt K local features
(K is defined as a hidden layer unit number in the SAE
network) from the n × n size of the image sub-block, we
make convolution between the local features and the
d × d size of the target object image each pixel, which
gets the size of K number (d − n + 1) × (d − n + 1) size of
global features. We divide each local feature weight ac-
cording to three number color channel and make convo-
lution point by point with R, G, and B components of
d × d size of target object image to obtain the (d – n + 1)
×(d – n + 1) size of global feature vector. The global ei-
genvectors of each component is shown as Formula (6).

a ¼ f W SAEWwhitex
0 þ b

� �
ð6Þ

where f(⋅) is defined as the activation function, WSAE

and b are defined as local feature coefficients that the
SAE model learnt, x' is defined as the value of the
convolution sub-region in the training image sample,
and Wwhite is defined as the ZCA whitening factor in the
whitening process.

3.2.2 Pooling layer
Because the image has static attributes, the useful fea-
ture of the image is likely to also work in another area;
based on this method, we can carry out the same aggre-
gate statistics operation to the features extracted from
the different areas of the convolution layer and remove
the redundant features, reducing the feature resolution.
This kind of aggregation statistical method is called

pooling. The pooling methods mainly include average
pooling, summation pooling, maximum pooling, and lp
norm pooling. In this paper, because the convolution
SAE structure adopts the white pretreatment, the aver-
age pooling is suitable, which is shown as Formula (7).

sj ¼ 1

Rj

�� ��X
i∈R j

ai ð7Þ

We choose the average pooling method, which makes
some region average value in the previous layer features
as a statistical representation of this region. It has the
advantages of scaling and rotation invariance with the
lower dimensions and prevents fitting, leading to
polymerization features in space. The (d − n + 1) × (d − n
+ 1) size of global feature image will become p × p (p ×
p × K dimension features) size of image after pooling
operation.

3.3 Target object classification
To get the classification results of the small sample tar-
get objects at the output layer, in this paper, we add the
regularized logistic regression model to realize classifica-
tion in two kinds of image types and the Softmax regres-
sion model in the multiple kinds of image types behind
the CNN model [18].

3.3.1 Logistic regression model
In the detection module of two kinds of target objects,
behind the CNN model, we add the logistic regression
model to realize the classification of the image second
category. On the basis of linear regression, we add a
logic function to realize the multivariate logistic regres-
sion model design and adopt the following Formula (8)
to realize classification of y = {0,1}.

Global features after
pooling 

Local 
features 

Training 
images 

Multi-channel 
features after 
convolution 

Global features after 
combining 

Vector
eigenvectors 

Classifier

Fig. 2 CNN model structure
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p y ¼ 1jx; θð Þ ¼ 1

1þ e−θ
Tx

p y ¼ 0jx; θð Þ ¼ 1

1þ e−θ
Tx ¼ 1−p y ¼ 1jx; θð Þ ¼ p y ¼ 1jx;−θð Þ

8><
>:

ð8Þ

where hθðxÞ ¼ gðθTxÞ ¼ 1
1þe−θTx

and gðzÞ ¼ 1
1þez.

In the training data set, the feature data is expressed as x
= {x1, x2, …, xm}, and the corresponding classification data
is expressed as y = {y1, y2, …, ym}. The mostly traditional
constructing method of the logistic regression model f(θ) is
the maximum likelihood estimation (MLE). The posterior
probability of the single sample is shown as Formula (9).

p yjx; θð Þ ¼ hθ xð Þð Þy 1−hθ xð Þð Þ1−y; y ¼ 0; 1f g ð9Þ

Then, the function of MLE is shown as Formula (10).

L θjx; yð Þ ¼
Ym
i¼1

p y ið Þjx ið Þ; θ
� �

¼
Ym
i¼1

hθ xð Þy ið Þ 1−hθ xð Þð Þ1−y ið Þ

ð10Þ

The function of the loglikelihood is shown as For-
mula (11).

log L θjx; yð Þð Þ ¼
Xm
i¼1

y ið Þ log h x ið Þ
� �� �

þ 1−y ið Þ
� �

log 1−h x ið Þ
� �� �

ð11Þ

Then, the logistic regression model f(θ) is equivalent
to θ� ¼ arg min

θ
ðlðθÞÞ , and we can adopt the gradient

descent method shown as Formula (12).

∂
∂θ j

l θð Þð Þ ¼ ∂
∂θ j

Xm
i¼1

y ið Þ log h x ið Þ
� �� �

þ 1−y ið Þ
� �

log 1−h x ið Þ
� �� � !

¼ y ið Þ

h x ið Þð Þ− 1−y ið Þ
� � 1

1−h x ið Þð Þ
	 


∂
∂θ j

h x ið Þ
� �� �

¼ y ið Þ

h x ið Þð Þ− 1−y ið Þ
� � 1

1−g θTx ið Þ� �
 !

∂
∂θ j

g θTx ið Þ
� �� �

¼ y ið Þ

h x ið Þð Þ− 1−y ið Þ
� � 1

1−g θTx ið Þ� �
 !

g θTx ið Þ
� �

1−g θTx ið Þ
� �� �∂θTx ið Þ

∂θ j




¼ y ið Þ

h x ið Þð Þ− 1−y ið Þ
� � 1

1−g θTx ið Þ� �
 !

g θTx ið Þ
� �

1−g θTx ið Þ
� �� �∂θTx ið Þ

∂θ j




¼ y ið Þ−hθ x ið Þ
� �� �

x j

ð12Þ

3.3.2 Softmax regression model
In the Softmax training set {(x(1), y(1)),…, (x(i), y(i)),
…, (x(m), y(m))}, y(i) ∈ {1, 2,…, k}, k is defined as the number
of target object classification, Softmax classifier [19] uses
the probability hθ(x) to carry out the classification

probability calculation of the input samples, and the
function of hθ(x) is defined as Formula (13).

hθ x ið Þ
� �

¼

p y ið Þ ¼ 1jx ið Þ; θ
� �

p y ið Þ ¼ 2jx ið Þ; θ
� �

⋮
p y ið Þ ¼ kjx ið Þ; θ
� �

2
666664

3
777775 ¼ 1Pk

j¼1e
θTj x

ið Þ

eθ
T
1 x

ið Þ

eθ
T
2 x

ið Þ

⋮
eθ

T
k x

ið Þ

2
664

3
775

ð13Þ
where p(y(i) = j| x(i)) is defined as the probability that the
input x(i) of the ith number sample belongs to class j. θ
is defined as a model parameter, and it normalizes the

probability distribution by the formula 1=
Pk

j¼1e
θTj x

ðiÞ
.

This moment, the cost function of system, is defined as
Formula (14).

J θð Þ ¼ −
1
m

Xm
i¼1

Xk
j¼1

1 y ið Þ ¼ j
n o

log
eθ

J
j x

ið Þ

Xk
l¼1

eθ
J
l x

ið Þ

2
66664

3
77775

ð14Þ
where 1{⋅} is defined as indicative function, that is, 1{ex-
pression that value is true} = 1,1{expression that value is
false} = 0. For the minimization problem of J(θ), in this
paper, we adopt the gradient descent method to solve the
problem and ensure to converge into the global optimal so-
lution. The gradient parameter is shown as Formula (15).

∇θ j J θð Þ ¼ −
1
m

Xm
i¼1

x ið Þ 1 y ið Þ ¼ j
n o

−p y ið Þ ¼ jjx ið Þ; θ
� �� �h i

ð15Þ
We substitute ∇θjJ(θ) into the gradient descent

method to renew the parameter, in order to gain the
unique solution, and we add weight damping item to
modify the cost function, which make cost function be-
come strictly convex functions and prevent excessive
parameter values during network training.

4 Experimental verification
In order to verify the validity and accuracy of the algo-
rithm proposed in this paper, we adopt non-transfer
learning algorithm and transfer learning algorithm in the
higher layer visualizing feature extraction based on the
SAE model and apply the classifier model to realize the
classification in the small sample target object images in
the sky background.

4.1 Two kinds of target object classification
Firstly, we carry out the experiment on the two types of
target object, the UAVs and birds in the sky. In order to
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verify the validity of higher layer visualizing feature
extraction and the traditional lower layer visualizing
feature extraction algorithm, we respectively take 50
number UAV target images and 50 number bird tar-
get images; parts of experimental images are shown
in Fig. 3. We respectively carry out the higher layer
visualizing feature extraction and lower layer visualiz-
ing feature extraction in the target object images. We
adopt the color and texture of the lower layer visual-
izing feature to classify the different types of target
object. Further, we sent the target-domain images and
local feature learning through higher layer visualizing
feature extraction by the SAE model into the CNN
model to get the global features of target object im-
ages, and by the logistic regression classifier, we can
classify the different types of the sample set. In the
target object images, we select 0.2 ratios of images to
act as training set and 0.8 ratios of images act as test
set. During the higher layer visualizing feature learn-
ing processing, we adopt 400 number hidden layer
units corresponding to 400 number self-learning fea-
tures. The visualizing displays of the 400 number

higher layer local eigenvector extracted by the SAE
model are shown in Fig. 4.
Normally, the algorithm performance is verified by

Precision, Recall, Accuracy, and F1-Measure. The Preci-
sion index represents the proportion of real positive
samples in the positive samples predicted by the
classifier. The Accuracy index indicates the proportion
of correct prediction of the classifier, namely the overall
judgment ability of the algorithm. The Recall index
represents the proportion of real positive samples in all
positive samples [20]. And the F1-Measurement repre-
sents the harmonic mean between the index of Precision
and Recall. In this experiment, we adopt each index as
shown in Formula (16–19).

Precision ¼ TP
TP þ FP

� 100% ð16Þ

Recall ¼ TP
TP þ FN

� 100% ð17Þ

Accuracy ¼ TP þ TN
TP þ NP þ TN þ FN

� 100% ð18Þ

(a) UAVs 

(b) Birds 
Fig. 3 Part experimental images of two kinds of target object images in the sky. The left side of the figure shows the object images of (a)
Unmanned Aerial Vehicle (UAV), the right side of the figure shows the target object images of (b) Birds target object images
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F1‐Measure ¼ 2� TP
2� TP þ FP þ TN

� 100% ð19Þ

where TP is the positive sample number that predicts
correct, FP is the positive sample number that pre-
dicts error, TN is the negative sample number that
predicts correct, and FN is the positive sample num-
ber that predicts error. The results of classification
performance in two kinds of target objects under the
lower layer visualizing feature extracted and higher
layer visualizing feature extracted this paper proposed
are listed in Table 1.
From Table 1, we can see the classification perform-

ance by using the higher layer visualizing feature extrac-
tion based on the SAE model is better than the
traditional lower layer visualizing feature extraction,
such as color and texture, which proved the accuracy of
the higher layer visualizing feature extraction algorithm.
But, because the color and texture in the two kinds of
target objects are enough, we can also get the

satisfactory classification results under the lower layer
visualizing feature extraction method.

4.2 Multiple kinds of target object classification
In the classification of the multiple kinds of the target
objects, especially under the small sample target object
images, the performance is different between the transfer
learning algorithm and the non-transfer learning algo-
rithm. In the multiple target object classification experi-
ments, we take three kinds of small sample target
objects to carry out the classification. The three kinds of
the small sample target objects respectively are the
UAVs, birds, and kites. And each type includes 50
number images with the size of 64 × 64; the UAVs and
birds are the same with the above experiments shown in
Fig. 3, and the third type of the small target objects
(kites) are shown in Fig. 5.
In addition, in order to prove effectiveness of transfer

learning algorithm, this paper proposed for the small
sample target object classification; we extract the local
eigenvectors from the irrelevant unmarked STL-10 data-
base. To compare the classification performance of
transfer learning algorithm, we respectively get 400
numbers of 8 × 8 size local eigenvector visualizing ex-
pression of the STL-10 database and the small sample
target object image set. The visualizing displays of the
higher layer local eigenvectors extracted by the SEA
model to the STL-10 database and the small sample tar-
get objects are respectively shown in Fig. 6.
The edge performance strength of the local eigen-

vector can reflect the similarity between the local fea-
tures. From Fig. 6, we can see the local feature weight
extracted from the target object images is obscure com-
pared with the local feature weight extracted from the
STL-10 image database. Due to the strength and weak-
ness of the local eigenvector reflecting the similarity
among the local features, the greater the similarity is,
the better the effect of local features extraction is by the
SAE model. During the experiments, we select 120 num-
ber images from the 150 number target object images to
training and 30 number target object images to test; the
classification performance results are obtained by the
average of the five times consecutive cross-validation.
We respectively send the higher layer visualizing feature
extracted by the transfer learning or non-transfer learn-
ing in the training set and the target object images in
the test set to the CNN model; the global features of tar-
get objects were obtained; finally, we sent the global fea-
tures to the Softmax regression model to classify the
target objects. We select 400 node numbers of hidden
layer and the iteration number 400. Because the Accur-
acy index represents the whole performance ability, dur-
ing the experiments, we adopt the Accuracy index to
measure the performance of the classification algorithm.

Fig. 4 The visualizing display of the higher layer local eigenvector
extracted by the SAE model

Table 1 Classification performance comparative results in two
kinds of different target objects

Visualizing feature
extraction mode

Classification performance

Precision
(%)

Recall
(%)

Accuracy
(%)

F1-Measure
(%)

Lower layer
visualizing feature

Color 83.33 80 80.21 86

Texture 84.55 82 80.53 85

Higher layer visualizing
feature paper proposed

91.75 84 82.15 87
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The Accuracy index of the algorithm in the small sample
target object classification is shown in Table 2.
As shown in Table 2, the performance of the classifica-

tion algorithm based on the higher layer feature extrac-
tion is obviously better than the traditional lower layer
visualizing feature extraction, such as the features of
color histogram, LBP, and GIST. And the classification
performance based on the transfer learning higher layer
visualizing feature extraction algorithm is a little bit bet-
ter than the non-transfer learning higher layer feature
extraction algorithm. The result indicates that the trans-
fer learning mode can also effectively make up for the
lack of training process under the small sample target
object images. The classification performance did not
fall during adoption of the transfer learning algorithm,
which effectively avoids the classification performance
degradation or even failure under the lack of target data

samples and the traditional lower layer visualizing fea-
ture extraction algorithm. In order to verify the classifi-
cation performance impact of the transfer learning SAE
algorithm under the changing of node numbers of a
hidden layer, we respectively select the node numbers
50, 100, 150,200, 250, 300, 350, and 400 of the hid-
den layers, then send the local features learnt from
the non-transfer learning and transfer learning in the
small sample target object images to the CNN model.
The classification performance results under the dif-
ferent node numbers of the hidden layer are shown
in Fig. 7 through the Softmax regression model
classification.
From Fig. 7, we can see with the increasing of the

node numbers of the hidden layer, at the beginning, the
classification performance of algorithm obviously im-
proves; when the node number is over 200, the

Fig. 5 The third type of the small sample target objects (Kites)

(a) Target-domin objectimages (b) Cross-domain database of STL-10
Fig. 6 The visualizing displays of the higher layer local eigenvectors extracted by the SAE model. The left side of the figure shows the higher
layer local eigenvectors extracted by the SAE model from (a) The target-domain object images, and the right side of the figure shows the higher
layer local eigenvectors extracted by the SAE model from (b) The cross-domain database of STL-10
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classification performance enhancements of the algo-
rithms are not obvious. In addition, the iterations in the
algorithm have little affection for the classification per-
formance, and when the iterations are bigger than 30, it
has little effect to the performance of the algorithm
when the numbers of iterations continue to increase.

4.3 Analysis of classification results
During the non-transfer learning higher layer visualizing
feature extraction process, we chose the node number
400 of the hidden layer in the SAE model and the itera-
tions 400, the training parameters were set to be the
same as λ = 3 × 10− 3, and the number of the training
parameters β = 5 and ρ = 0.035 during the SAE higher
layer visualizing feature training process. We analyze
one time classification experimental results by using the
Softmax classifier, the classification results respectively
listed in Table 3. From the results, we can see the non-

transfer learning algorithm and transfer learning algo-
rithm also gain the higher precision. Because the sample
numbers are enough, the classification precision under
the SAE higher layer visualizing feature extraction based
on non-transfer learning is slightly higher than transfer
learning.
When the sample numbers of the target object images

are not enough, for example, the sample numbers of
three types are respectively 20, the error classification
results of the multi-target object images during one ex-
periment are shown in Table 4. From Table 4, we can
see the classification performance based on the non-
transfer learning algorithm cannot efficiently reach to a
certain classification precision. But the classification

Table 2 Average classification performance comparison under
the different feature extraction modes

Different feature extraction modes Classification performance
Accuracy (%)

Lower layer
visualizing feature

Color histogram 48.67

LBP 68

GIST 74

Higher layer
visualizing feature

Non-transfer learning 91.33

Transfer learning 90.67

50 100 150 200 250 300 350 400
50

60

70

80

90

100

Node numbers of Hidden layer

A
cc

ur
ac

y

Transfer learning

Non-transfer learning

Fig. 7 Classification performance results under the different node numbers of hidden layer

Table 3 The continuous five times classification results

Experimental
numerical
order (no.)

Accuracy (%)

Non-transfer learning Transfer learning

1 96.667 96.667

2 90 90

3 93.33 93.33

4 96.667 93.33

5 80 80

Average 91.33 90.67

The total numbers of target object images are 150 pictures, and the sample
numbers are all 50 pictures in each type of UAVs, birds, and kites. The training
set has 120 pictures of target object images, and the test set has 30 pictures
of target object images
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performance can also reach satisfied results with higher
precision under the SAE transfer learning model. So, we
can use the transfer learning algorithm based on the
SAE model to classify the target objects under the insuf-
ficient sample numbers.

5 Conclusions
In this paper, firstly, we proposed a kind of higher layer
visualizing feature extraction algorithm based on the
SAE model; then, we used the transfer learning methods
to realize the global higher layer feature obtained from
the small sample target objects in the sky based on the
CNN model. Finally, we adopted the logistic regression
classifier or the Softmax regression classifier to realize
the classification in the second category classification or
multiple classifications to the target objects in the sky,
such as UAV, birds, and kites. Experiments verified the
effectiveness and accuracy of the methods this paper
proposed. Further, we will discuss the higher layer
visualizing feature combining the lower layer visualizing
features, such as color and texture, to find the most suit-
able methods to classify the small sample target objects
in the complex sky background.
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