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Abstract

In this paper, a novel approach towards optimizing users’ rate allocation and price customization in a non-
orthogonal multiple access (NOMA) wireless network under quality of service (QoS)-differentiated requested services
is proposed and studied. A multi-service wireless system is considered, where each user’s QoS requirements are
reflected through a utility function, alongside his willingness to pay for the corresponding service. Within this
setting, in order to jointly allocate the customized price and rate, a two-variable optimization problem arises. Based
on the principles of S-modular theory, the above two-variable (rate and price) optimization problem is modeled
and solved as a distributed non-cooperative game. The existence and convergence to the Nash equilibrium point
with reference to both user’s uplink transmission rate and price is proven. The proposed approach, allowing for
decision-making at the user side, is well aligned with the self-optimization and self-adaptation objectives of future
emerging 5G wireless networks. The performance evaluation of the devised framework is conducted via modeling
and simulation under various scenarios, and the numerical results clearly demonstrate its superiority against other
existing approaches.

Keywords: Customized pricing, Rate allocation, Heterogeneous services, User-centric management,
Non-orthogonal multiple access, S-modular theory

1 Introduction
Next-generation communication technologies, the diversifi-
cation of mobile services, and the users’ demand for higher
quality of service (QoS) performance have posed quite
stringent and demanding challenges to wireless Internet
service providers (WISPs). 5G wireless networks require
highly spectral-efficient multiple access techniques that play
a significant role in optimizing the resource allocation
process and improving the performance of the mobile com-
munication system. Given the physical constraints associ-
ated with radio resource management, quite often high
importance and priority is given at reducing interference
and/or power consumption, towards improving energy effi-
ciency. This happens however at the cost/trade-off of
achieving lower data rates for the users, depriving them
from fully exploiting system’s capabilities. Non-orthogonal

multiple access (NOMA) technique has been acknowledged
as an effective technique for providing high data rates in
5G systems, especially in the uplink communication [1].
Nevertheless, in order to further improve user satisfaction
from the provided services, while getting aligned with the
vision of subscriber self-optimization and self-adaptation in
future wireless networks, sophisticated user-centric re-
source management approaches are required.

1.1 Related work
The problem of efficient resource management in wireless
networks has been broadly addressed in the literature, es-
pecially via utilizing game theoretic approaches, which
support the autonomous behavior of the mobile user [2].
Power control problems have been extensively studied
mainly from the aspect of reducing battery drain and en-
hancing energy efficiency [3–5]. By adding more degrees
of freedom alongside power control, data rate allocation
becomes feasible with the authors in [6–8] to convert a
two-variable problem to a single parameter optimization
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expressed as the ratio of rate to the respective power. Fol-
lowing the same paradigm, the authors in [9] propose a
spectrum allocation framework in cognitive radios follow-
ing the load balancing concept in distributed computer
systems. Furthermore, in [10], the joint allocation of
power and rate is examined as an actual two variable
non-cooperative game via centrally imposed usage-based
pricing, while in [11], a similar approach is extended to
two-tier femtocell architectures. Also, centralized ap-
proaches targeting at maximizing the secrecy sum rate in
a NOMA system have been proposed [12]. Although sub-
stantial improvements are achieved, in these works, rate
allocation is suppressed due to the priority of minimizing
power consumption [13, 14].
Considering the class of problems concentrating mainly

on rate allocation, in [15], a constrained throughput
maximization problem is examined including stochastic
control parameters towards safeguarding fairness condi-
tions among the users. In [16], a sum rate optimization
problem for multiple-input multiple-output (MIMO)
NOMA systems is studied with constraints considering
the total transmission power and the minimum rate.
At the same time, several attempts have been pro-

moted to studying the problem of resources’ pricing. In
[17, 18], the nature of prices is fixed, with the users be-
ing charged a flat rate or different classes of static prices
are applied to users based on their traffic requirements,
respectively. The alternative of day-ahead pricing is ex-
amined in [19], with the WISP announcing the
time-dependent prices 1 day in advance. In [20], Zheng
et al. study a secondary data market, in which users can
buy and sell left over data caps from one another. The
authors derive users’ optimal behavior and propose an
algorithm for the Internet service providers (ISPs) to
match the buyers and the sellers. Considering a similar
trading model, in [21], users’ decisions about their usage
at different times of the billing cycle are discussed. In
[22], the authors address mobile users’ data usage behav-
ior, through the study of network effects as they emerge
by the joint consideration of elements both from social
domain (e.g., relationships) and the physical domain
(e.g., congestion). The joint pricing and data usage man-
agement problem is formulated as a Stackelberg game,
where the WISP acts as leader announcing the price to
the users, who follow by determining their data usage.
In [23, 24], a comprehensive literature review on appli-
cations of economic and pricing models for resource
management in cloud networking and the Internet of
Things, respectively, is provided.
The majority of all the relevant works regarding the

radio resource management have concentrated on power
control and/or sum rate maximization via centrally im-
posed pricing for interference mitigation, thus failing to
provide satisfactory data rates for each individual user

and to recognize the high variability among the users’
service requirements. Furthermore, even though that the
resource management based on game theoretic ap-
proaches is a very well-established research field in the
literature, very few research works deal with the com-
bined problem of resource management and price
customization, especially when the decision-making is
performed at the user side in a distributed manner.

1.2 Contributions
The main contributions of this article lie in the area of
enabling users to actively correlate resource allocation,
QoS differentiation, and price customization, towards
improving their overall satisfaction under a user-centric
paradigm. To the best of our knowledge, this is the first
time that an intelligent mobile user is able to determine
in a distributed manner his optimal rate and the corre-
sponding price that he is willing to pay in order to
achieve it. The proposed rate control and customized
pricing framework has been developed aiming 5G
multi-service non-orthogonal multiple access wireless
networks. It should be clarified that the proposed frame-
work is not just another work in the field of resource
management which adopts game theory, but provides a
novel framework dealing simultaneously with rate con-
trol and customized pricing from an autonomous user
behavior point of view, in a 5G multi-service NOMA
wireless environment.
Specifically, in this paper, a different philosophy is

followed where the users, depending on prespecified/tar-
geted signal-to-interference-plus-noise ratio (SINR)
values, as they are indicated by their requested service,
prioritize the allocation of the available bandwidth
among them in a real-time dynamic manner by disclos-
ing to the WISP how much price they would accept to
be charged in order to fulfill their QoS prerequisites.
Hence, both variables (i.e., rate and price) are jointly de-
termined not only in an optimal and real-time manner
but also in a distributed and user-centric attitude aiming
at the maximization of the users’ net utilities, reflecting
the overall improvement of the users’ satisfaction regard-
ing their service experience. Considering that the
intelligence is provided by the mobile node, the pro-
posed framework aims at the optimization of the natur-
ally emerging trade-off between QoS prerequisites
satisfaction and cost of resources, with reducing any
interaction with the WISP. The above innovation is well
aligned with networks providing heterogeneous services
as in 5G systems, where each user or group of users may
have considerably different demands. It is noted that in
such an environment a centrally determined pricing so-
lution would disregard user segmentation and could
damage fairness and proper resource usage instead of
improving it.
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Following this consideration and motivation, and in
order to jointly allocate the customized price and rate,
an optimization problem of two variables arises, which is
modeled and solved as a distributed non-cooperative
game. The corresponding problem is tackled by optimiz-
ing each user’s net utility function and capitalizing on
the principles of multi-variable S-modular theory. In the
following, we refer to this problem (and corresponding
game) as joint non-cooperative utility-based uplink
transmission rate and customized price control (RP)
problem. The concluding point of the two-variable RP
game is a Nash equilibrium (NE) point that jointly deter-
mines the optimal price and users’ rates, in the sense
that there is no user that would opt to deviate from this
point, since his perceived satisfaction cannot be further
enhanced by making any change to his strategy individu-
ally. It should be also highlighted that in the majority
of the literature, which deals with resource manage-
ment based on S-modular theory, single-variable
optimization problems have been primarily considered
[25–27]. In this paper, the S-modular theory is ap-
plied to a multi-variable optimization problem, i.e.,
transmission rate and customized price control, while
the extension and proper adaptation of the theory
from single-variable to multi-variable optimization
problems is not trivial [26].
In contrast to [4], where the uplink transmission

power control problem was treated while considering
customized pricing, in this work the nature of resource
is different, i.e., uplink transmission data rate, which re-
sults in completely different users’ competition behavior
pattern. Specifically, in [4], a higher price is concluded
for a specific user as a consequence of an increase in his
uplink transmission power. This behavior incentivizes
the rest of the group to intelligently choose their uplink
power towards reaching a price reduction. This type of
users’ behavior was captured in [4] by the submodular
games. These types of games are associated with the
strategic substitutes, meaning that if one player increases
his action, this would stimulate the other players to fol-
low an opposite action. In contrast, in the current re-
search work where the users have control over their
transmission data rate, a higher data rate claim from
some users concludes to higher prices for themselves.
Thus, the rest of the users in order to withstand band-
width competition also accept to be charged with higher
prices, so as to maintain their achieved data rates.
Therefore, if some users agree to pay more in order to
increase their data rates, the other competing users fol-
low the same strategy. This competition behavior pattern
is captured through the supermodular games, where the
actions of one player lead to similar actions from the
other players and not to the opposite actions, as in sub-
modular games adopted in [4].

The performance evaluation of the proposed approach
is conducted via modeling and simulation under different
pricing alternatives and various scenarios with respect to
the number of users. Extensive numerical results indicate
the superior performance of the proposed approach when
compared to alternative state of the art resource allocation
approaches, in terms of achieved data rate and energy effi-
ciency. Our results further confirm that the energy effi-
ciency that can be achieved as outcome of the resource
allocation process is significantly enhanced by increasing
the degrees of freedom the user is offered. For practical
and implementation mainly purposes, we also evaluated
and compared several alternatives to show the realistic ap-
plication of the proposed framework, which essentially
targets at the computational complexity reduction. Such
alternatives mainly reflect a blend of business and tech-
nical differentiation characteristics through the introduc-
tion of different user partitioning strategies mainly from
the pricing point of view.

1.3 Outline
The organization of the remaining of the paper is as fol-
lows. Section 2 presents the system model and the asso-
ciated proposed net utility functions. In Section 3, we
provide a fundamental introduction to S-modular games
and their main properties, while in Section 4 the com-
bined optimization problem is formally described and
addressed as a two-variable S-modular game. In Section
5, the convergence of the RP game to the NE point with
reference to both variables (i.e., price and data rate) is
studied, and a distributed and iterative algorithm that
identifies this point is introduced. In Section 6, a com-
parative performance evaluation is presented illustrating
the strategic and practical advantages of this approach
against other existing works, while finally Section 7 pre-
sents some concluding remarks.

2 System model and utility functions
2.1 System model
In the following, the uplink of a NOMA-based wireless
network, including disparate user types exchanging data
under the system’s physical limitations, is considered. To
preserve simplicity in the presentation without harming
the validity of our analysis and results, in this paper, the
notion of time slot t is omitted.
We assume |N| continuously backlogged users placed

around a base station (BS) with coverage radius ℜ,
requesting elastic or inelastic services, where N denotes
their corresponding set. Key characteristics of the elastic
services include high throughput demand and high delay
tolerance [25]. However, from a QoS satisfaction per-
spective, a distinctive feature of the elastic services is
that they are shiftable in time, and as a consequence, the
corresponding users can properly reshape and adjust

Vamvakas et al. EURASIP Journal on Wireless Communications and Networking  (2018) 2018:129 Page 3 of 14



their demand by accounting for the respective price. On
the contrary, the inelastic services are constrained by
“hard” short-term data demand that needs to be
achieved within a specific time frame. In turn, these re-
quirements are translated into a specific user behavior,
where the user is reluctant to consume the service when
QoS drops below a pre-determined threshold.
Given the physical, technical, and economical con-

straints associated with both the users and the WISP, the
involved resources, i.e., power, rate, and price are upper
bounded PMin

i ≤Pi≤PMax
i , rMin

i ≤ri≤rMax
i , and cMin

i ≤ci≤
cMax
i , with the maximum feasible rate values being differ-
entiated by each service type. In this work, we consider
the price to be a dimensionless unit adjustable by the
users; however, it can be translated into actual monetary
units, thus reflecting the realistic economical dimension
of this approach. The channel gain between the ith user
and the base station is denoted by Gi, and Gi ¼ Ki

da
i
, where

Ki denotes the Rayleigh fading channel gain, a is the
path loss factor and di denotes the distance from the ith
user to the base station.
Employing the NOMA scheme in the uplink commu-

nication of a wireless network, its basic characteristic is
that the users with improved channel gain sense the
interference caused by the users with worse channel
conditions, while the reverse does not hold true due to
the successive interference cancelation (SIC) technique.
Without loss of generality, the channel gains are sorted
as G1 ≤… ≤G|N|. Following the NOMA protocol, SIC is
performed at the users. Consequently, the nth user de-
tects the signal from the ith user, where n < i and then
removes the included message from his observation in a
successive manner. The signal from the nth user, i > n, is
considered as noise at the ith user. Thus, it is observed
that the users with worse channel gain can exclude the
signals stemming from users with better channel gain in
a successive manner (i.e., SIC technique) from their
sensed interference. As a result, each user defines his
transmission characteristics through his SINR, noted as:

γ i ¼
W
ri

GiPiXNj j

j¼iþ1

GjP j þ I0

ð1Þ

where W [Hz] represents the spread spectrum band-
width, Gi is the channel gain from user i to the BS, I0
[W] is the Additive White Gaussian Noise, and Pj refers
to the power of each user j, j > i + 1, [25]. The formula-
tion of the SINR follows the corresponding formulation
in the seminal paper [25]. As it will be explained in de-
tail in Section 4, the two-variables that are determined
by the user are the data rate ri and his willingness to pay
for the received service, which is expressed through the

price ci. Moreover, his uplink transmission Pi is a param-
eter that is implicitly determined given the optimal data
rate r�i and price c�i , while considering a target SINR

value γtargeti , as well as the physical constraints, i.e.,PMin
i ≤

Pi≤PMax
i .

Cornerstone towards solving the above problem under
a user-centric approach has been the adoption of pure
utility functions which represent in a holistic manner
user’s degree of satisfaction upon receiving his requested
service, while also taking into account user’s QoS pre-
requisites (e.g., target rate) and the respective energy
consumption (e.g., transmission power). Additionally, a
pricing function with respect to both pricing factor ci
and SINR γi matches the level of the price imposed by
the WISP and the user’s individual willingness to pay for
the desired rate based on the relevant service type. It
should be noted that we strategically have chosen to ex-
press pricing function with respect to SINR, since it bet-
ter captures and represents user’s behavior with respect
to the allocation of the system’s resources, due to the
fact that SINR contains both the physical resources of
the uplink transmission power and rate. Therefore, if the
user wants to achieve high SINR which is translated into
more reliable communication, the price increases repre-
senting the fee he should pay in order to enjoy this
benefit.

2.2 Utility function
In the following, we assume that at every timeslot each
user utilizes one type of service, either elastic or inelas-
tic. Towards treating a multi-service wireless networking
environment under a unified and common optimization
framework, we assume that a net utility function is
coupled with each user to reflect his behavior and satis-
faction in terms of QoS. To achieve this objective, the
introduced function maps the obtained degree of satis-
faction to the expected trade-off among the parameters
that depict his QoS-related performance, i.e., uplink
transmission rate and eagerness to pay the price of re-
source usage. Hence, each user’s net utility function is
classified according to the type of service as follows:

UNET
i ri; cið Þ ¼

ri � f i γ i
� �

Pi
−ci eγi−1ð Þ; inelasticð Þ

ri � log 1þ f i γ i
� �� �

Pi
−ci eγi−1ð Þ; elasticð Þ

8>><
>>:

ð2Þ

With regards to the above relation (2), the efficiency
function fi(γi) represents the successful packet transmis-
sion at fixed data rates according to the adopted modu-
lation and coding schemes. The main properties of the
efficiency function are:
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1. fi is an increasing function of γi.
2. fi is a continuous, twice differentiable sigmoidal

function with respect to γi.
3. fi(0) = 0.
4. fi(∞) = 1.

In the remaining of the paper for demonstration rea-
sons mainly and without loss of generality, we assume
that the efficiency function is of the following form (e.g.,
[10, 11, 25]).

f γi
� � ¼ 1−e−Aγ i

� �M ð3Þ

where parameter M indicates the number of bits of
transmitted packets and A is a parameter influencing the
slope of the corresponding curve. For presentation sim-
plicity, in the following, the same modulation scheme is
adopted by all users in the cell, which essentially corre-
sponds to the use of a common form of efficiency func-
tion by all users.
With reference to the pure utility of users with inelas-

tic services, the numerator ri ⋅ fi(γi) is a sigmoidal func-
tion of SINR γi, with its inflection point being mapped

at the target SINR, γtargeti at which his QoS prerequisites
are fulfilled. Therefore, if that user’s achievable data rate
is below inflection point, then a rapid reduction in his
utility occurs, a fact that indicates his desire in obtaining
and consuming additional system’s resources. It should
be highlighted that both for the elastic and inelastic ser-
vices, the numerator of the pure utility function is
expressed as a function of the actual transmission rate ri
and the efficiency function f(γi), instead of only the ac-
tual transmission data rate that has been adopted so far
in the literature. This formulation is proposed in order
to better capture users’ services’ QoS prerequisites, as
explained above. The aforementioned formulation of the
utility function enables a user to properly regulate his
uplink transmission rate and inclination to pay, so as to
obtain an SINR level that satisfies his QoS prerequisites.
Now, with reference to the users requesting elastic ser-

vices, the main characteristic of the latter is their
delay-tolerant and high-throughput nature. Hence, the
users’ goal that request elastic (i.e., non-real time) services
is to achieve high throughput, thus increasing their per-
ceived satisfaction, i.e., utility. Based on this observation,
users’ pure utility function is strictly increasing with re-
spect to the achievable data rate. Specifically, the respect-
ive numerator in their pure utility function represents the
achievable data rate and is reflected via a log-based strictly
increasing function of the user’s efficiency function fi(γi).
This formulation is well aligned with the above mentioned
high throughput expectations of users requesting elastic
services, due to their greedy behavior, essentially aiming at
exploiting the network’s available spectrum to its full

extent, in line however with the physical limitations of the
system. In principle, the selected utility function for elastic
services has been designed following the Shannon like
log-based function paradigm, indicating the maximum
data rate under which a transmission can successfully take
place for a network’s spectral capacity under interference
conditions. Consequently, an increase in their obtained
data rate results in higher SINR values as a consequence
of the nature of function ri ⋅ log(1 + fi(γi)) which is strictly
increasing with respect to γi, and therefore, the overall
resulting satisfaction as perceived by the users, i.e., UNET

i ,
increases as well.

3 S-modular games
Aiming at providing a generic and stable solution for
rate allocation alongside price customization, the theory
of multi-variable S-modular games emerges as a con-
crete tool towards showing the trade-off between the in-
volved parameters. Topkis [28] and Vives [26] have
introduced the S-modular games, which include the
supermodular and submodular game subclasses. The
two types of games have exactly opposite characteristics
and players’ behavior. Regarding supermodular games,
an increase in one’s player’s action for given strategies of
the rest of the players reinforces the desire of all the
players to increase their actions due to the strategic
complementarity. On the opposite side, the strategic
substitutes characterize the submodular games, i.e., an
increase in one’s player’s action incentivizes the rest of
the players to decrease their actions [29, 30].
Multi-variable supermodular games as studied in [26] re-
flect the interrelation between the actions of one user
with the rest of the players with whom he competes for
the network’s scarce resources. Supermodular games
have been applied in multiple research works in the lit-
erature, which mainly study the resource allocation
problem in wireless networks under the assumption that
there is only one type of resources to be allocated among
the users (especially user’s transmission power), thus
constituting a single-variable optimization problem. In
this paper, we adopt multi-variable S-modular theory in
order to solve a two-variable (i.e., rate and price)
optimization problem, which asks for different treatment
compared to the single variable one and the validity of
additional conditions should be examined. S-Modular
games guarantee the existence of at least one Nash Equi-
librium within multi-space strategy sets Si = A × B, thus
surpassing the notions of convexity and differentiability.
Furthermore, each player initially adopts his lowest or
largest strategy and converges monotonically to an equi-
librium, which depends on the initial state. Additionally,
if the supermodular game has a unique Nash equilib-
rium, then it will converge to it, via dominance solvable
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and/or learning rules. In such games, the actions of one
player (i.e., higher data rate claim) lead to similar actions
from the other users, due to their monotonically increas-
ing best responses (BR) on this player’s strategy. The
above framework corresponds to the problem of our
interest, since a user paying higher prices in order to in-
crease his data rate is followed by a similar trend from
the rest of the users, who in order to withstand band-
width competition will also accept to be charged at
higher prices so as to maintain their achieved data rates.
Subsequently, we discuss the fundamental properties of
a supermodular game, which stands for a two-variable

(i.e., a!; b
!
) optimization problem.

Definition 1 Given a game G ¼ ½N ; fA;Bg; fUð a!; b
!Þg�,

a smooth function U :A ×B→ℝ is supermodular in (ai, bi)
if and only if, [26]:

∂2U a!; b
!� �

∂ai∂bi
≥0; ∀i ð4Þ

Definition 2 A smooth function U :A × B→ ℝ (i.e., a
function that has derivatives of all orders everywhere in
its space A × B) has non-decreasing differences in (ai, bi),

ð a−i�!; b−i
�!Þ, if [26]:

∂2U a!; b
!� �

∂ai∂aj
≥0; ∀ j≠i ð5Þ

given that:

∂2U a!; b
!� �

∂ai∂bj
¼ 0;∀ j≠i ð6Þ

where a−i
�! and b−i

�!
are the strategies of all players except

for i in the domains A and B, respectively.
Theorem 1 A game G is supermodular if the following

conditions are satisfied:

i. i∈N, Si =Ai × Bi is a compact subset of the
Euclidean space

ii. U is supermodular in (ai, bi),
iii. U has non-decreasing differences in (ai, bi),

If the game is supermodular, then it has at least one
Nash equilibrium.
The proof of this theorem can be found in [26, 31, 32].

4 Problem formulation and solution
4.1 Rate and price control game
Game theory has been promoted as a natural and power-
ful choice when dealing with users that exhibit selfish and
greedy behavior. When operating in a competitive envir-
onment, the wireless network users act as players that

contend against each other and select a strategy space of
data rate and willingness to pay, i.e., price, and as a result
of their choices achieve a payoff expressed by their utility.
In this section, we model our problem as a two-variable
(rate (ri) and price (ci))—RP game, assuming a wireless
network consisting of |N| users.
Given that the objective of each user is to maximize

his utility, the RP game can be formulated as a distrib-
uted utility maximization problem. We denote the RP
game GRP ¼ ½N ; fRi;Cig; fUNet

i ð r!; c!Þg� as:

max
ri∈Ri;ci∈Ci

UNet
i r!; c!� �

; ∀i∈N ð7Þ

s:t:rMin
i ≤ri≤rMax

i andcMin
i ≤ci≤cMax

i

where r!¼ ðr1;…; ri;…; rjN jÞ and c!¼ ðc1;…; ci;…; cjN jÞ
are the vectors of users’ uplink transmission rate and
prices, respectively, and Ri, Ci denote the ith user’s strategy
spaces in uplink transmission rate and price, respectively.
The power consumption of the users considering their op-

timal uplink transmission data rate r�
!

and customized

price c�
!

will be discussed in detail in Section 4.2. The RP
game should conclude to a solution that determines the
optimal equilibrium (Nash equilibrium) for the system,
based on the individual decisions of each user, given the
decisions made by the rest of the users. At the Nash equi-
librium, no user has the motivation to alter his choice, for
the reason that he cannot unilaterally enhance his own
utility by applying changes to his personal strategy, given
the selections already made by the rest of the users.

Definition 3 The strategy vector ðr�!; c�
!Þ ¼ ðr�1;…; r�i ;…;

r�jN j; c
�
1;…; c�i ;…; c�jN jÞ in the strategy sets r�i ∈Ri and c�i ∈Ci

is a Nash equilibrium of the RP game if for every user ∀i,
i ∈N, the following condition is satisfied:

UNet
i r�i ; c

�
i ; r−i

��!; c−i
��!� �

≥UNet
i ri; ci; r−i

��!; c−i
��!� �

for all ri ∈ Ri and ci ∈Ci.
Moreover, it should be noted that the existence of

Nash equilibrium point guarantees a stable outcome of
the RP game while, on the other hand, the nonexistence
of such an equilibrium is interpreted as an unstable state
of the system. The proof of the existence of at least one
Nash equilibrium of RP game is mainly based on the use
of supermodular games properties.
Theorem 2: The RP game GRP is supermodular in (ri,

ci), if ∀i, i ∈N:

γi≥0 ð8Þ

Proof: The RP game GRP ¼ ½N ; fRi;Cig; fUNet
i ð r!; c!Þg�

is supermodular ∀i ∈N if the following apply:
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i. Si = Ri × Ci is a compact subset of the Euclidean
space

ii. UNet
i is smooth and supermodular in (ri, ci), i.e.,

∂2UNet
i

∂ri∂ci
≥0; ∀i∈N ð9Þ

iii. UNet
i has non-decreasing differences in (ri, ci),

ð r!−i; c
!

−iÞ, if :

∂2UNet
i

∂ri∂r j
≥0; ∀ j≠i ð10Þ

given that:

∂2UNet
i

∂ri∂c j
¼ 0; ∀ j≠i ð11Þ

In a supermodular game, there always exists external
equilibria. A largest element ðri; ciÞ ¼ supfðri; ciÞ∈Si
: BRðri; ciÞ≥ðri; ciÞg and a smallest element ðri ; ciÞ ¼ inf
fðri; ciÞ∈Si : BRðri; ciÞ≤ðri; ciÞg , with BR(ri, ci) denoting
the best response strategy of a player given the strategies
of the rest of the involved players. According to [27], BR
is standard, thus guaranteeing the convergence of the RP
game to its Nash Equilibrium, assuming any feasible ini-
tial solution. Combining relations (9)–(11) and request-
ing to hold true together, we derive the set of values of
SINR, under which RP game is supermodular.
Considering the users requesting elastic services and

examining the aforementioned two conditions, we have

∂2UNet
i

∂ri∂ci
¼ eγiγ i

ri

> 0;∀i∈N ; ri∈ rMin
i ; rMax

i

� �
; Pi∈ PMin

i ; PMax
i

� �
;
∂2UNet

i

∂ri∂r j
¼ 0; and

∂2UNet
i

∂ri∂c j
¼ 0

where ∂γ i
∂ri

¼ − γi
ri
. Also, considering the users requesting

inelastic services, based on Eq. (2) and regarding the two
conditions mentioned above, we have

∂2UNet
i

∂ri∂ci
¼ eγiγ i

ri

> 0;∀i∈N ; ri∈ rMin
i ; rMax

i

� �
; Pi∈ PMin

i ; PMax
i

� �
;
∂2UNet

i

∂ri∂r j
¼ 0; and

∂2UNet
i

∂ri∂c j
¼ 0

Thus, we conclude that the RP game is supermodular
in (ri, ci) if ∀i ∈N, the following condition holds true:
γi ≥ 0 ■

Based on condition (8), we practically conclude that
the RP game is supermodular in the whole strategy
space, i.e., Ri � Ci ¼ ½rMin

i ; rMax
i � � ½cMin

i ; cMax
i � . Since the

game is confirmed to be supermodular, we conclude that
a non-empty set of Nash Equilibria exists as follows:

Theorem 3 There exists a strategy vector ðr�!; c�
!Þ

¼ ðr�1;…; r�i ;…; r�jN j; c
�
1;…; c�i ;…; c�jN jÞ within the strategy

sets r�i ∈Ri and c�i ∈Ci which is a Nash equilibrium for
the RP game ∀i ∈N. Hence, no user can further in-
crease his utility taking as granted the choices of the
other users, i.e.,

r�i ; c
�
i

� � ¼ arg maxUNet
i r!; c!� �

; ∀ri∈Ri and ci∈Ci

ð12Þ

The proof of Theorem 3 follows the same basic steps
as in Theorem 1, [26, 31, 32].

4.2 Power consumption
Based on Theorem 3, the users determine their optimal

data rates r�
!

and their optimal customized prices c�
!

in a
distributed manner, while considering the existing phys-
ical and external constraints, i.e., rMin

i ≤ri≤rMax
i and cMin

i

≤ci≤cMax
i , respectively. In our proposed approach, each

user has control over the variables of the data rate ri and
the customized price ci, which determine his corre-
sponding perceived satisfaction that is appropriately
expressed via the adopted net utility function. However,
each user has an extra constraint considering his
energy-availability, which is appropriately presented via
the feasible transmission power interval, i.e., PMin

i ≤Pi≤
PMax
i . The lower bound PMin

i expresses the minimum ne-
cessary transmission power in order user’s signal to be
demodulated by the receiver. The upper bound PMax

i

stems from mobile user’s available energy.
In our proposed framework, the power consumption

P�
i of each user results from his optimal uplink transmis-

sion data rate r�i and his target SINR value γtargeti based
on Eq. (1). It is noted that the power consumption is not
constant, but dynamically determined via the control pa-
rameters of the system, i.e., optimal data rate r�i and cus-
tomized price c�i . Thus, the power consumption for each
user is determined as follows:

P�
i ¼ min max

γt argeti

WGi
r�i

XNj j

j¼iþ1

GjP
�
j þ I0

 !
; PMin

i

 !
; PMax

i

 !

ð13Þ

It should be clarified that the RP game may have mul-
tiple NEs. However, each mobile user selects the NE
point (12) which concludes to his minimum
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corresponding power consumption, as determined in
(13), in order to improve his achieved energy efficiency.

5 Convergence and RP algorithm
5.1 Convergence
In this section, we study and prove the convergence of
the RP game to a Nash equilibrium point, which consti-
tutes a stable solution. The proof is based on the use
and properties of best response dynamics, by concluding
that users’ net utility function is a standard one. User’s
best response strategy in the Euclidean space Ri � Ci ¼ ½
rMin
i ; rMax

i � � ½cMin
i ; cMax

i � is expressed as follows:

BRi ri; cið Þ ¼ ri
�; ci�ð Þ

¼ arg max
ri∈Ri

ci∈Ci

UNET
i r!; c!� � ð14Þ

Theorem 4 The RP game GRP converges to its Nash
equilibrium point starting from any initial feasible solu-

tion, (i.e., ðrð0Þi ; cð0Þi Þ); rMin
i ≤ri≤rMax

i and cMin
i ≤cð0Þi ≤cMax

i ,
provided that user’s best response strategy is a standard
function.
Proof: The basic step to prove that RP game converges

to its Nash equilibrium ðr�!; c�
!Þ ¼ BR

�!ð r!; c!Þ is to show
that user’s best response strategy belongs to the family
of standard functions [27]. A function f is indicated as
standard, if the following properties hold:

i. Positivity: f(x) > 0;
ii. Monotonicity: if x ≥ x′, then f(x) ≥ f(x′) and
iii. Scalability: for all a > 1, af(x) ≥ f(ax),

for all x ≥ 0, where x = (x1, x2,…, xN) is a Nash equilib-
rium point. With reference to our RP game, we readily
observe that all the above properties hold true, as shown
below:

i. ð r!; c!Þ > 0, thus BR
�!ð r!; c!Þ > 0, via Eq. (14),

ii. if ð r!; c!Þ > ð r!0
; c!0Þ, then via (14), we conclude

that BR
�!ð r!; c!Þ > BR

�!ð r!0
; c!0Þ,

iii. for all a > 1, since BR
�!ð r!; c!Þ is a strictly increasing

function with respect to ð r!; c!Þ, then it follows

that aBR
�!ð r!; c!Þ > BR

�!ða r!; a c!Þ. ■

5.2 RP algorithm
In the following, we present a low complexity algorithm
associated with the convergence to the Nash equilibrium
of the RP game, which operates in an iterative and dis-
tributed manner. Besides providing a stable and univer-
sally applicable solution, the RP algorithm integrates
within the same scheme both the rate allocation as well
as the price setting for each user at the moment of

receiving the required service. The algorithm is referred
to as RP algorithm. The descriptive/pseudo-code steps
of the RP algorithm are defined as follows.

5.2.1 RP algorithm

Step 1:The feasible pricing factor sets ½cMin
i ; cMax

i � are
disclosed by the WISP to the users. Each user
selects a random initial feasible uplink

transmission power Pðite¼0Þ
i ∈½PMin

i ; PMax
i � for the

initialization of the transmission. Set ite = 0,
where ite represents the number of iterations.

Step 2:The users, given the network’s physical
constraints, define their optimal data rate r�i ∈½
rMin
i ; rMax

i � and their willingness to pay, i.e., price
c�i ∈½cMin

i ; cMax
i �, as in Eq. (14). Set ite ite + 1.

Step 3:The WISP broadcasts the imposed interference to
all users

PN
j¼1 GjP j and each user i defines his

sensed interference, as described in the NOMA
technique.

Step 4:The users compute their respective transmission
power Piteþ1

i ∈½PMin
i ; PMax

i � given their pre-
determined/target SINR values and the optimal
data rate r�i based on Eq. (13).

Step 5:If the pure utilities of each one of the users do
not improve Uiðritei ; citei Þ > Uiðriteþ1

i ; citeþ1
i Þ,

terminate; else go to Step 2.

A key property of the RP algorithm is its distributed op-
eration, owing to the fact that the final decisions are con-
cluded by each mobile user individually. Each mobile user
takes the decision about his best response strategy based
on his own available personal information, i.e., channel
gain Gi, and a global information broadcasted by the base

station, i.e., overall interference
PN

j¼1 GjP j . Therefore, in

the RP algorithm, the message exchange overhead is ra-
ther limited. It should be clarified that, at Step 3, the base
station simply announces the total interference to the
users. The task of deciding the uplink transmission data
rate and price is performed by the users themselves. Thus,
the only message exchange overhead from the base station
to the mobile users is the broadcasting of the values cMin

i ;

cMax
i at the beginning of the RP algorithm’s execution and
the total interference at each iteration of the algorithm.
Also, it is highlighted that the base station broadcasts the
aforementioned information, thus the users are not bur-
dened with additional signaling exchange. Therefore, the
complexity of the algorithm is not impacted by an in-
crease on the number of the users served by the cell. Add-
itional results regarding the computational time and
complexity of various implementations of the proposed
RP framework are presented below in Section 6.
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6 Performance evaluation
In this section, the performance evaluation of the pro-
posed framework is conducted through modeling and
simulation. Indicative numerical results are presented to
gain some insight about and demonstrate the key prop-
erties and advantages of the introduced framework and
the RP algorithm. In order to better appreciate and com-
prehend the benefits and overall operational efficiency of
the proposed approach, its performance achievements
and improvements are demonstrated via a comparative
evaluation study against relevant state of the art research
works existing in the literature.
Initially, in order to adapt the RP framework into differ-

ent resource allocation scenarios and obtain insightful,
comparative results and show how the adopted pricing
scheme may influence the equilibrium point, four different
pricing policies have been considered:

(a) Customized pricing, where each user separately
declares the price he would accept in order to
achieve the desired QoS upon receiving the
required service,

(b) Central pricing, where the WISP charges all users
with a common price for their transmission,

(c) Service pricing, where the users are priced
according to their requested service type, and lastly,

(d) Zone pricing, where several non-overlapping rings
(zones) are created within each cell, while within
each zone homogeneous pricing, is applied to all
users belonging to that zone.

One of the advantages of introducing price
customization is the ability to segment the users into
groups according to specific criteria (e.g., service, location).
Hence, the selected pricing mechanisms serve different
purposes depending on the priorities of the users and/or
the WISP regarding complexity and computational re-
source consumption reduction, interference mitigation, or
the utilization of network’s capacity.
Furthermore, the aforementioned different versions of

the RP algorithm are compared against [10], where data
rates are jointly allocated among the users alongside trans-
mission powers, and [15], where the system is designed to-
wards maximizing its uplink sum rate. For fairness in the
comparison, the approaches proposed in [10, 15] have
properly been adopted to the NOMA access scheme.

6.1 Model and assumptions
Throughout our evaluation analysis, the uplink of a single
cell system is considered where users place requests for
elastic and inelastic services. To study the behavior of the
proposed RP framework under different network sizes, we
varied the number of users |N(t)| from 10 to 40, while they
were assumed to be randomly placed within the cell of

radius R = 1000 m for each simulation scenario. For any
considered network topology, the order of requested ser-
vices was alternating among the users, in the sense that
the closest to the base station user requests inelastic ser-
vice, the second closest requests elastic service, and so on.
Such a setting allows for a balanced distribution, both
physical (location) and logical (type of service), of the ser-
vices and users in the system. Users requesting inelastic
services are assumed to have service rate target of 96 Kbps
(e.g., simple video upload). For statistical purposes, a
Monte Carlo simulation was adopted, where for all the
presented results we studied 10,000 random topologies
considering randomly generated users’ positions. Users’
path gains are modeled through the simplified path loss
model Gi ¼ Ki=d

a
i , where distands for the distance be-

tween user i and the serving base station, a expresses the
distance loss exponent (e.g., a = 4), and Ki is a log-normal
distributed random variable with mean 0 and variance
σ2 = 8 db, representing shadow effect. For simplicity in the
presentation and without loss of generality, all users are

assumed to adopt the same efficiency function f ðγ iÞ
¼ ð1−e−1:15�γ iÞM , M=80, simply reflecting the use of the
same modulation and coding scheme by all users.
For practical purposes, we assume that every user im-

poses a strict constraint on his maximum uplink transmis-
sion power, i.e., PMax

i ¼ 0:1 Watt , and the WISP has
specific pricing boundaries that announces ranging between
a maximum and minimum price, i.e., cMax

i ¼ 2 � 106 , cMin
i

¼ 0. Throughout our numerical evaluation all the relevant
parameters, including A, M parameters of f(γi) and the
bounds cMax

i ; cMin
i have been appropriately chosen and con-

figured, so as to be realistic on one hand, while on the other
hand to ensure almost the same order of magnitude for
both terms of user’s net utility function UNET

i .

6.2 Numerical results and discussions
Figures 1 and 2 present the performance of the consid-
ered six approaches (i.e., the four alternatives of the RP
framework, and the approaches in [10, 15]), in terms of
users’ average uplink transmission rate achieved and
average energy efficiency, respectively, versus the net-
work size. It is noted that the energy efficiency refers to
the number of efficiently transmitted bits per Joule of
energy consumed and is measured as the ratio of user’s
achievable transmission rate over the used transmission
power. The results clearly reveal the superiority of all
four alternatives of the proposed RP framework in terms
of both high achievable data rate and energy efficiency.
This enhanced performance stems from the fact that
under RP approach the user has more degrees of free-
dom, i.e., data rate and price, as well as the intelligence
of determining them dynamically and in an optimal way,
as the system evolves. Furthermore, the achieved high
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energy efficiency represents in a combined metric the
objective of simultaneously achieving lower transmission
power and higher data rate. Moreover, based on the pre-
sented numerical results, it becomes evident that the RP
framework performs well as the network grows in size,
while the rest of the considered frameworks, e.g., [10,
15], present significantly lower data rate and energy effi-
ciency, and in some cases even collapse due to the ab-
sence of control over the corresponding price that the
end user is penalized by the WISP. The customized pri-
cing policy proposed in our framework outperforms the
rest of the implementation alternatives, i.e., zone, ser-
vice, and central pricing, in terms of increased data rate
and energy efficiency awards, due to its attribute to
adapt well to each user’s QoS prerequisites and willing-
ness to pay in order to fulfill them. The results with ref-
erence to the rest of the pricing alternatives of our
framework present a trade-off among the achievable data
rate, energy efficiency, and computational complexity
when compared to the customized pricing policy. Specif-
ically, zone-based pricing policy presents a well-balanced
alternative implementation both in terms of efficiency
and effectiveness, as it achieves an improvement in the
computational time efficiency of approximately 28%
when compared to the custom pricing implementation

without paying any significant cost as far as the achieved
data rate and energy efficiency is concerned. On the
other hand, the rest of the implementation alternatives,
i.e., central and service pricing, achieve to further im-
prove the computational time efficiency by 98 and 90%
compared to the custom pricing implementation, paying
the penalty however of increased losses in the obtained
data rate (i.e., 28.08 and 14.85%, respectively) and energy
efficiency (i.e., 20.91 and 16.14%, respectively). Compre-
hensive comparative results with respect to the metric of
computation time efficiency of all the considered ap-
proaches, as compared to the baseline scenario of cus-
tom pricing implementation, are presented in Table 1.
Based on these results, it is highlighted that a practical
potential limitation of the custom pricing policy is its in-
creased computational time compared to the alternative
heuristic approaches (i.e., central, service and zone pri-
cing), as well as compared to [10, 15]. Additionally, we
have extended our study to the computational complex-
ity per iteration of each of the comparative approaches,
which is quantified via the average computational time
per iteration per user, given the distributed nature of the
algorithms. The results are presented in the last column
of Table 1 as well. We observe that the average compu-
tational time per iteration per user for the custom pri-
cing implementation is quite low; however, given the
two-variables optimization problem that is solved, we
need more iterations to converge to the optimal solu-
tion. This is the reason that the overall computational
time of the custom pricing framework is increased com-
pared to the other approaches, as discussed above.
Figures 3a, b and 4a, b present similar results as in

Figs. 1 and 2—reflecting average uplink transmission
rate (Fig. 3a, b) and energy efficiency (Fig. 4a, b)—separ-
ately for the users that request inelastic and elastic
services, respectively, in order to gain insightful informa-
tion about the influence of the type of requested service
on the equilibrium values of data rate and pricing. It is
noted that for each simulated scenario considering in-
creasing number of users from 10 to 40, half of them
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Fig. 1 Users’ average uplink transmission data rate versus
the number of users considering RP framework and
comparative scenarios
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Fig. 2 Users’ average energy efficiency versus the number of users
considering RP framework and comparative scenarios

Table 1 Comparative results for computation time efficiency
and average time per iteration per user

Scenario Increase in average
computation
time efficiency
(against custom price)

Average time per
iteration per user
(seconds)

[15] 97.67% 0.005200

[10] 75.97% 0.031000

RP: central price 97.56% 0.001800

RP: service price 90.81% 0.000792

RP: zone price 21.81% 0.000699

RP: custom price (Baseline scenario) 0.000693
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request inelastic services and the rest of them elastic ser-
vices. Observing the results of Figs. 3a, b and 4a, b, we
conclude that the custom pricing implementation of RP
algorithm outperforms both the rest of the implementa-
tion alternatives of RP algorithm (i.e., zone, central, ser-
vice pricing), as well as the alternatives in the literature
(i.e., [10, 15]), in terms of increased achieved data rate
and energy efficiency for any type of user, i.e., irrespect-
ive of the requested service type (i.e., inelastic or elastic).
In Table 2, we summarize the average percentage in-

crease in terms of achievable data rate and energy effi-
ciency for each algorithm, considering the six
comparative scenarios. Based on these results, we ob-
serve that the different implementations of the RP algo-
rithm considerably improve the attainable rates and
energy efficiency, achieving approximately up to 292%
increase of data rate and 203% increase of energy effi-
ciency when compared to [15].
As mentioned before, the performance improvement

of the RP implementation with customized pricing is
achieved at the cost of increased computational com-
plexity. The convergence time of the RP algorithm can
be further improved via adopting several operational
considerations and enhancements as discussed below.
Initially, in order to derive the presented results, we exe-
cute the RP algorithm per timeslot. Towards improving
the convergence performance, we can execute the RP al-
gorithm considering as initial value of users’

transmission data rate and price the ones that were cal-
culated in the previous timeslot, i.e., “educated” imple-
mentation of RP algorithm. Taking into consideration
that in reality the examined wireless communication en-
vironment is not expected to undergo significant
changes within the duration of few timeslots, for all
practical purposes, the users’ uplink transmission rate
and price values as obtained by the RP framework could
be applicable to several consecutive timeslots, thus fur-
ther reducing the corresponding implementation
overhead.
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Fig. 3 Average uplink transmission data rate versus the number of
users requesting a inelastic and b elastic services considering the RP
framework and comparative scenarios
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Fig. 4 Average energy efficiency versus the number of users
requesting a inelastic and b elastic services considering the RP
framework and comparative scenarios

Table 2 Comparative results for average sum rate and energy
efficiency of various comparative scenarios against [15]

Scenario Increase in average sum rate Increase in average
energy efficiency

[15] – –

[10] 94% 33.15%

RP: central price 205.29% 163.83%

RP: service price 240.61% 171.76%

RP: zone price 269.58% 180.10%

RP: custom price 291.71% 202.62%
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Figure 5 represents the actual values of price ci im-
posed to the users as a function of user’s ID considering
the four pricing alternatives of RP framework, i.e., (i)
custom, (ii) zone, (iii) service, and (iv) central pricing. It
should be noted that for demonstration purposes only, the
price ci is a dimensionless quantity. However, in a practical
implementation of RP framework, the price ci could be
mapped to real monetary units. The prices that are pre-
sented in Fig. 5 are the Nash equilibrium values of RP al-
gorithm for each user. Considering the service pricing
implementation, the results reveal that the users who re-
quest elastic service conclude to higher prices due to their
need to achieve higher uplink transmission rates. On the
other hand, in the zone pricing implementation, it is noted
that the less distant users, i.e., first zone, are penalized less
due to their good channel gain conditions that conclude
to high transmission data rate with lower cost. Addition-
ally, in order to account for the disadvantage of the more
distant users due to their deteriorated channel conditions,
these users are assigned lower prices as their distance in-
creases. The custom pricing also follows the same concept
(i.e., relation of pricing and users’ channels’ conditions/dis-
tance from the base station). Finally, the central pricing
implementation alternative of RP algorithm is the less “ag-
gressive” one with respect to the imposed price to the
users, due to the fact that it should consider the heteroge-
neous characteristics (i.e., requested service, channel con-
ditions) of all the users.
Towards examining the behavior of the RP algorithm

under the scenario of users’ mobility within the cell, we
study the impact of user’s mobility on his transmission
characteristics, i.e., data rate and power, and on his will-
ingness to pay for the requested service, i.e., price. It is
highlighted that the duration of a timeslot is 0.5 msec
[33]; thus, user’s intracell mobility can be considered ra-
ther limited per timeslot. As a result, the users can re-
adjust their position coordinates within the cell per
timeslot without significantly distorting the resource al-
location process. For demonstration purposes, we study
the impact of user’s mobility to his transmission charac-
teristics for a time-window where the user can move up

to 10 m. The results reveal that the change in the rate
and price allocation process is minor (approximately
0%), whereas a slight increase in the transmission power
is observed (less than 0.1%). This implies that the RP al-
gorithm maintains steady outcomes concerning the
power and rate allocation, since the users constantly aim
to achieve the data rates as close as possible to the feas-
ible upper bounds. Hence, a change in user’s location
will not affect his data rates requirements, besides a
small adjustment to the transmission power levels, so as
to claim the same data rate levels. Moreover, the adop-
tion of the NOMA SIC technique maintains the intracell
interference to low levels; hence, user’s mobility impact
within the duration of a timeslot cannot have amplifying
impact on the main transmission characteristics of the
users. Additionally, by considering stochastic user’s mo-
bility, a high degree of offset among new users’ positions
can take place, with a number of users slightly improv-
ing their transmission (e.g., slightly better channel gain
conditions) and counterbalance any negative transmis-
sion impact from the users who deteriorate their trans-
mission capabilities in the new positions.

7 Conclusions
In this article, we tackled the problem of joint rate allo-
cation and customized price setting in NOMA wireless
networks supporting users with heterogeneous QoS re-
quirements, following a user-centric paradigm. Through
the use of a net utility function with two variables, the
satisfaction of each user is highlighted as the trade-off
between his desired data rates and the price he is
charged in order to receive the respective service. The
above optimization problem has been properly formu-
lated as a non-cooperative supermodular game, its solu-
tion was obtained, and its convergence to its Nash
equilibrium point was shown, while an iterative algo-
rithm is devised to obtain it in a distributed manner.
The performance of this framework was in depth exam-

ined through a series of simulation experiments including
different pricing policies, whereas the superiority of the
proposed approach was clearly demonstrated by comparing
it with other research works in the literature. Specifically, it
has been shown that the different implementations of the
RP algorithm succeed in providing considerably higher data
rates in all different user classes while at the same time
maintaining transmission power at low levels. This was
achieved by applying customized pricing schemes to each
user/user groups, thus precisely extracting consumer sur-
plus regarding the QoS prerequisites. Also, due to the flex-
ible and generic two parameter utility-based design of the
described work, the proposed problem solution can be ap-
plied in various allocation problems for different resources,
network topologies, access technologies, etc.
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alternative implementations of RP framework
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7.1 Method
This paper studies the combined problem of rate allocation
and customized price setting, in NOMA wireless networks
supporting users with heterogeneous QoS requirements,
following a user-centric paradigm. The performance of the
proposed framework was in depth examined through a
series of simulation experiments including different pricing
policies, whereas the superiority of the proposed approach
was clearly demonstrated by comparing it with other re-
search works in the literature. Specifically, it has been
shown that the different implementations of the proposed
algorithm succeed in providing considerably higher data
rates in all different user classes while at the same time
maintaining transmission power at low levels. The simula-
tion code was written in Matlab.
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