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Abstract

Network virtualization is a vital technology that helps overcome shortcomings such as network ossification of the
current Internet architecture. However, virtual network embedding (VNE) involving the allocation of resources for
heterogeneous virtual network requests (VNRs) on the substrate network (SN) is considered as NP-hard problem. VNE
process may involve conflicting objectives, including energy saving and VNR acceptance rate as the most critical.
In this paper, we propose a virtual network multi-objective embedding algorithm based on Q-learning and curiosity-
driven (Q-CD-VNE) for improving the performance of the system by optimizing conflicting objectives, namely energy
saving and acceptance rate. The proposed algorithm employs Q-learning and curiosity-driven mechanism by considering
other non-deterministic factors to avoid falling into a local optimum. The major contributions of this work involve (1)
modeling of the multi-objective deterministic factors as binary (0, 1) integer programming problem, (2) formulating the
virtual node mapping problem using the Markov decision process (MDP), (3) solving the VNE problem using Q-learning
algorithm, (4) mining non-deterministic factors using curiosity-driven mechanism for avoiding prematurely falling into the
Exploration-Exploitation dilemma and local optimal. Experimental results in comparison with representative researches in
the field prove that the proposed algorithm can reduce energy consumption, improve the request acceptance rate, and
improve the long-term average income.

Keywords: Network virtualization, Q-learning, Curiosity-driven, Energy-aware

1 Introduction
Network virtualization is considered as an important
technology of next-generation Internet for addressing
the growing problem of network ossification [1]. In the
recent past, the energy-aware virtual network embedding
(EEVNE) remained as a focus of the current research
community in the field for tackling this problem. EEVNE
refers to shifting the virtual network embedding (VNE)
problem from the utility to the power consumption of
the substrate networks (SNs). The main aim is to reduce
energy consumption of SNs in the mapping process for
slicing the cost of VNE operation and maintenance.
Request acceptance rate is one of the most important in-
dicators in the VNE processes. It describes success rate
of VNRs. Therefore, quality of the request acceptance
rate directly reflects the quality of the VNE algorithm.

Most of the existing energy-efficient strategies usually
search the subset of resources in the whole SNs for the
VNs. Whereas, resource consolidation achieves the
minimization of energy consumption by switching off or
hibernating as many physical infrastructures as possible
like physical servers and fiber optic links. However, this
process may lead to the hotspots among SNs. Thus, it
can result in a sharp decrease in request acceptance rate.
Here, these objectives are conflicting in nature. There-
fore, comprehensive consideration of these conflicting
objectives has become a critical problem that requires
immediate attention for resolving it.
In addition, there exist multiple factors known as

non-deterministic factors that affect VNE performance,
such as load balancing, mapping duration, and fragmen-
tation rate [2–6]. These factors should be taken into
consideration in specific scenarios for obtaining an ac-
curate solution to the problem.* Correspondence: ielzhuang@zzu.edu.cn
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In this work, we propose a VNE method based on im-
proved Q-learning algorithm, which considers the factor
of energy saving and VNR acceptance rate as the main
optimization objectives (termed deterministic factors). We
also explored non-deterministic factors for ensuring guar-
anteed performance of deterministic factors. The pro-
posed method is a two-phase embedding algorithm that
maps nodes followed by mapping of the links. It employs
the Q-learning algorithm of reinforcement learning and a
curiosity-driven mechanism to map the virtual nodes and
shortest-path algorithm for mapping virtual links.
In summary, the proposed method firstly performs

multi-objective modeling of deterministic factors as
binary (0–1) integer programming problem. Then, it
formalizes the virtual node mapping problem using the
Markov decision process (MDP), and the node mapping
algorithm is taken as an intelligent agent to aware the
substrate environment. Finally, it employs Q-learning
algorithm to solve the model, in combination with a
curiosity-driven mechanism for mining non-deterministic
factors. In this work, the optimization of the deterministic
factors is used as an exploitation value, and the
optimization of non-deterministic factors are used as an
exploration value. The proposed method generates a
trade-off solution to avoid prematurely falling into the
Exploration-Exploitation dilemma and local optimal with
a limited number of requests.
Major contributions of this study are as described

below:

1. Modeling of the multi-objective deterministic factors
as binary (0, 1) integer programming problem.

2. Formulating the virtual node mapping problem
using the MDP.

3. Solving the VNE problem using Q-learning algorithm.
4. Mining non-deterministic factors using curiosity-driven

mechanism for avoiding prematurely falling into the
Exploration-Exploitation dilemma and local optimal.

The remainder of this paper is organized as follows.
Section 2 summarizes the state of the art highlighting
the significant researches in the field of VNE. Section 3
describes the methods for modeling the VNE problem as
binary (0–1) integer programming and use of MDP.
Section 4 details the proposed method for solving VNE
problem using Q-learning and the curiosity-driven
mechanism. Section 5 presents a performance evaluation
of the proposed method and presented experimental
results followed by their discussion. Finally, Section 6
concludes the proposed work at the end of this paper.

2 Related research
Numerous studies have been conducted for solving VNE
problem by considering its different perspectives. Yu et

al. [7] proposed an effective competition algorithm for
tackling VNE problem of non-division of path. They
authors claimed the optimization of request acceptance
rate of the virtual network mapping. Triki and Kara [8]
proposed a solution to energy-saving mapping problem
of virtual networks and provided an analysis of energy
consumption, request priority, and requested distance
constraints. Guan and Choi [9] studied data centers
from both computing resources and network resources.
Chen et al. [10] proposed the construction of dictionary
library through historical data in the early stage of
virtual network mapping and deployed the virtual net-
work in a small-scale nodes and link set, thereby
achieved saving in energy.
It can be noticed from the above cited work that

researchers focused on the optimization of a single goal.
Most of the researches lack in simultaneous consider-
ation of both deterministic factors along with
non-deterministic factors.
In recent years, machine learning techniques, particu-

larly reinforcement learning technique, have been widely
used to deal with decision-making issues. Karimpanal
and Wilhelm [11] employed off-policy learning to ad-
dress multiple objectives using adaptive clustering
Q-learning algorithm. The authors proposed that agents
can effectively use their own exploration behavior by
identifying the possible goals in the environment to find
effective strategies in the case of unknown goals.
Vamvoudakis et al. [12] proposed the use of Q-learning
technique for continuous-time-based graphical games
on large networks with completely unknown linear
system dynamics. They used the model-free formula of
Q-learning function to model a large network to meet
the user-defined distributed optimization criteria and
used it for the agent having no information about the
leader. The Q function parameterizes each neighborhood
tracking error of the agent and results in a better
strategy.
Curiosity has always been considered as one of the

basic attributes of intelligence, and giving curiosity to
machines is also an important research objective in the
field of computer science. Hester et al. [13] attempted to
make the machine curious by using reinforcement learn-
ing technique. They proposed an intrinsically motivating
model-based reinforcement learning algorithm that
allows agents to explore themselves. Pathak and Agrawal
[14] proposed a self-supervised prediction algorithm
based upon curiosity-driven exploration. In many
real-world scenarios, curiosity can be used as an intrinsic
reward signal when the external rewards are scarce or
absent that allows the agents to explore the external en-
vironment and learning. Kompella and Stollenga [15]
proposed a curiosity-driven approach to enable the
agents to link intrinsic rewards with the improvement of
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the external world model for acquiring new skills in ab-
sence of external guidance.
Findings of the literature cited above indicate that

reinforcement learning method based on the curiosity-driven
has great advantages and feasibility in discovering
new skills and actions. Therefore, it is necessary to
further analyze the problem of mining non-determin-
istic factors in multi-objective embedding of virtual
networks using reinforcement learning method.

3 Problem formulation
3.1 Optimization model of deterministic factors
In this work, we proposed an optimization model for
deterministic factors, namely energy saving and VNR
acceptance rate, using binary (0–1) integer program-
ming method. The proposed model considers the
minimization of energy consumption and maximization of
request acceptance rate. The objective function can be
mathematically represented as shown in Eq. (1).

max ωacceptance− 1−ωð Þ∙ f energyð Þð Þ ð1Þ

Subject to:

∀i∈NV
� �

∀ j∈NS
� �

: f ij∙ReqCPU ið Þ≤CPU jð Þ ð2Þ

∀luw∈LV
� �

∀lmn∈LS
� �

: f uwmn∙ReqBWL luwð Þ≤BWL lmnð Þ
ð3Þ

∀i∈NV
� �

:
X

j∈NS f
i
j ¼ 1 ð4Þ

∀ j∈NS
� �

:
X

i∈NV f
i
j≤1 ð5Þ

∀i∈NV
� �

∀ j∈NS
� �

: f ij∈ 0; 1f g ð6Þ

∀luw∈LV
� �

∀lmn∈LS
� �

: f uwmn∈ 0; 1f g ð7Þ

where ω is a weighting factor that is used to adjust the
weight of VNR acceptance rate and energy consumption.
It is applied to meet different requirements in different
scenarios.
acceptance describes VNR’s acceptance rate, as defined

in Eq. (8).

acceptance ¼ AT

CT
ð8Þ

where AT indicates the number of virtual network re-
quests successfully mapped during the T period, and CT

indicates the total number of virtual network requests
reached in the T period.
energy represents the energy consumption of the

substrate network which consists of physical nodes and
links, as defined in Eqs. (9) and (10), respectively.

Pi
j ¼

Pidle þ Pbusy−Pidle
� �

∙φ;
if i virtual nodes sucessfully mapped

on the j physical nodes
0; otherwise

8>><
>>:

ð9Þ

Puw
mn ¼

Plinkidle; if um vitual link sucessfully mapped
on the mn physical link

0; otherwise

8<
:

ð10Þ
where Pidle is the basic power consumption of physical
node, Pbusy is the full-load power consumption of
physical node, φ represents the CPU load rate of
substrate node, and Plinkidle indicates the link energy
consumption, which is generally constant. Therefore,
energy consumption of substrate network can be com-
puted as per Eq. (11).

energy ¼
X

j∈NSP
i
j þ

X
m;n∈NSP

uw
mn ð11Þ

The proposed work considers two-phase mapping Al-
gorithm involving mapping of nodes first. Therefore,
only the node energy consumption is considered for
using QCD VNE algorithm and updated as shown in
Equation below:

energy ¼
X

j∈NSP
i
j

where f(energy) in Eq. (1) represents data normalization
processing which is logarithmic function conversion.
The purpose is to eliminate the data difference caused
by the dimensions of energy saving and VNR rate. It fa-
cilitates subsequent data processing and speeds up pro-
gram convergence, as defined in Eq. (12).

f energyð Þ ¼ log10 energyð Þ
log10 maxenergy

� � ð12Þ

where maxenergy is the maximum value of substrate net-
work energy consumption.
Equations (2) and (3) represent the capacity con-

straints, where ReqCPU(i) indicates the CPU resource
requests for i virtual node, CPU(j) represents the total
CPU resource for j physical node, ReqBWL(luw) is the
BW resource requests for luw virtual link, and BWL(lmn)
denotes the total BW resource for lmn physical link.
Equation (4) restricts a virtual node to map to only one
physical node. Equation (5) indicates that the same
virtual node cannot be mapped to the same physical
node, NNo is the number of virtual nodes. Equations
(6) and (7) represent variable constraints. If i virtual
node is successfully mapped on j physical node, f ij ¼ 1 ;

otherwise, f ij ¼ 0. Similarly, if luw virtual link is success-

fully mapped on luw physical link, f uwmn ¼ 1 ; otherwise,
f uwmn ¼ 0.
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3.2 Virtual network embedding as Markov decision process
We use the MDP to model the virtual network with an
assumption that the arrival and departure of VNRs obey
Poisson distribution. If a flow of events is a Poisson
event flow, it needs to satisfy the stationary,
non-post-effect, and generality [16]. For the virtual
network mapping problem, the occurrence of events is
independent of each other, and its probability depends
only on the time interval, only one virtual request enters
or leaves in a unit time. Therefore, the virtual network
mapping problem can be modeled as a Markov decision
process as a quadruplet: {S、A、 P、 R}, where S rep-
resents state set with the state Sρ denoted as the final
state. The value of reward in the final state is denoted as
Rρ. A is the action set, P is the state transition probabil-
ity, and R(s, a) is the reward of the action a at state S.
A MDP is called an episode from the initial state to

the final state. A successful mapping process of each vir-
tual network termed as one episode. In each episode, the
agent starts execution from a randomly selected state
until it reaches a final state. At the end of the episode,
the agent is randomized to a new initial state and begins
the next episode.
Assume that in a given state St, the agent selects one

physical node ns∈Nψs for mapping the virtual node nv∈
Nψv and then enters the next state St + 1, where Nψs is a
set of all physical nodes that can carry virtual nodes nv,
and Nψv is all non-mapped virtual nodes. The state of M
at time t is defined as:

St ¼ Nψv
t ¼ Nψv

t−1n nvt−1
� �� �

; Nψs
t ¼ Nψs

t−1n nst−1
� �� �� �

where nvt−1 is a physical node carrying the previous vir-
tual node nst−1. In the initial state, since there is no node

that has been mapped, Nψv
1 ¼ Nψv , Nψs

1 ¼ Nψs .

The action of agent selection node nst∈fNψs
t ∩Nψs

t ðnvt Þg
is defined as:

At ¼ εf g∪ nvt nst
� �

: ∀nst∈ Nψs
t ∩Nψs

t nvt
� �� �� �

where ε indicates an arbitrary action that can reach the
terminal state. When the agent selects the physical node
nst for the current virtual node nvt , it transits to the next
state St + 1. Therefore, the probability of state transition
that the agent selects action At transits to the next state
St + 1 in state St is defined as:

Pr Stþ1jnvt nst ; St
� � ¼ 1

where total reward consists of an external reward Re
t and

an internal signal Ri
t . The external reward Re

t is calcu-
lated from the deterministic factor optimization model
as shown in Eq. (13). The internal signal Ri

t is calculated
by the curiosity-driven mechanism as described in
Section 4.2.

Re
t ¼ max ωacceptance− 1−ωð Þ f energyð Þð Þ

¼ Rρ; Rt < Rρ

Rt ; otherwise

�
ð13Þ

If the total reward calculated in the state St is smaller
than it in the state Rρ, then the virtual request reaches
the final state, and its value will be replaced by Rρ, other-
wise it will remain unchanged.

4 Virtual network embedding based on
reinforcement learning and curiosity-driven
In this section, we defines Q-learning and curiosity-driven
for their application to VNE problem, and presents a
description of the virtual network multi-objective embed-
ding algorithm based on Q-learning and curiosity-driven
(Q-CD-VNE).

4.1 VNE based on Q-learning algorithm
We employed Q-learning algorithm of reinforcement
learning to solve the MDP process. It allows agents to
automatically determine the ideal behavior within a spe-
cific environment for maximizing its performance. Simple
reward feedback is required for the agent to learn its be-
havior. The agent’s living environment in each episode is
described as a state set S, which can perform any possible
action described as action set A as depicted in Fig. 1 Each
time an action at is performed in the state st, the agent re-
ceives a reward rt, thus generating a series of states si, a
set of actions ai and reward ri till the end of the episode. It
finds the action sequence π iteratively for maximizing all
reward values as an optimal strategy as shown in Eq. (14).

π� Sð Þ ¼ arg max
a

r s; að Þ þ γv� δ s; að Þð Þ½ � ð14Þ

For finding optimal strategies, the approximate behav-
ioral value function Q is usually used. After successful
mapping of a virtual node, the system deliverse a Q value
to the agent. The Q value matrix is obtained by approxi-
mating the behavior value function Q(st, at) gradually. This
matrix can be used in the next episode to find the node
with the highest reward value quickly for embedding,
where the Q value update strategy function is

expressed as:

Q s; að Þ ¼ R s; að Þ þ γmaxQ δ s; að Þ; a0ð Þ
The estimate of Q is expressed as:

Q̂ s; að Þ←R s; að Þ þ γ max
a0

Q̂ s0; a0ð Þ ð15Þ

The convergence of Q̂ to Q has been proven [17].
Here, R(s, a) is the reward value of the action a in the
state s, Q(δ(s, a), a′) is the Q value of all the next actions
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a′ after the action a is performed in the state s, and γ is
the conversion factor which is used to weigh the
relationship between the current reward value and the
subsequent reward value.
At a time t, the Q value update process of the virtual

network node mapping is shown in Fig. 2:
The solid lines with arrows in Fig. 2 represent the

sequence of actions that have been mapped success-
fully, with the dashed arrows pointing to the select-
able mapping nodes. This figure represents a network
diagram for selecting the next action, that is, embedding
the virtual node b when the virtual node a is successfully
mapped to the physical node A. The detailed process is de-
scribed below.

S1 ¼ Na
t ;N

b
t

� �
; NA

t ;N
B
t ;N

C
t ;N

D
t

� �� �

After the action nat n
A
t is performed in state S1, the

agent arrivals at state S2.

S2 ¼ Nb
t

� �
; NB

t ;N
C
t ;N

D
t

� �� �

At state S2, the mappable action set A2fnbt nBt ; nbt nCt ; nbt
nDt g satisfies the resource of VNRs. The Q matrix is initial-

ized to an all-zero matrix. The Q values Q̂ðS2; nbt nBt Þ, Q̂ðS2
; nbt n

C
t Þ; and Q̂ðS2; nbt nDt Þ are calculated according to the

Q value update strategy formula (13) when the system se-
lects the action which is as follows.

Q̂ S2;A2ð Þ←R S2;A2ð Þ þ γ max
a0

Q̂ s0; a0ð Þ

¼ max Re
S2

� �
þ γ max

a0
Q̂ s0; a0ð Þ

¼ max nbt nBt ; n
b
t nCt ; n

b
t nDt

� �þ max 0; 0; 0ð Þ

¼ 1− min f energyð Þð Þ
For simplicity, we ignored the values of ω, γ, and

internal signals, where maxenergy is calculated as
follows.

maxenergy ¼ max Pidle þ CPU ið Þ−Pidleð ÞReqCPU ið Þ
CPU ið Þ

	 


where CPU(i) ∈ [a, b], and ReqCPU(i) ∈ [c, d.]
We draw this functional image in MATLAB and

find the maximum value of this function. This func-
tion has an extreme in the interval for ReqCPU(i) = c
and CPU(i) = b. We can obtain the action with the
largest reward value using above cited expressions.
Following this action, the reward value is recorded in
the Q matrix as the physical node evaluation standard
of the mapping, and the next state S3 is started. This

Fig. 1 Reinforcement learning model

Fig. 2 The Q value update process of a virtual network embedding
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is repeated until the Q-value matrix reaches the con-
vergence state, and the system can select the next ac-
tion A as per the current Q-value matrix by
considering energy saving and VNR acceptance rates.

4.2 The reward calculation method based on curiosity-
driven
In this section, we present a curiosity-driven mechanism
for generating internal signals and passing them to
external reward generators for mining other non-deter-
ministic factors. This method can achieve a trade-off be-
tween exploration and exploitation and avoids falling
into local optimum.
The traditional reinforcement learning method lacks

the prediction of unknown environment for making
decisions with the highest reward called
exploitation-only. This causes a mismatch between
the exploitation value and the exploration value and
eventually leads to fall into a local optimum. For ex-
ample, in the virtual network mapping process, the
agent tends to repeatedly select nodes that perform
well in the previous training process after much iter-
ation. It may lead to deterioration of the substrate
network connectivity and magnify the fragmentation
rate of substrate network. Thus, it can be concluded
that only considering the performance of determinis-
tic factors can easily ignore the performance of
non-deterministic factors. Therefore, it is suggested to
consider prediction to the environment for selecting
action a, so that the agent can adjust the mapping
strategy before the formation of fragment in substrate
network.
As shown in Fig. 3, the agent joins a curiosity-driven

mechanism, by adding internal signals for external re-
wards and predicting the results of its own actions in a
self-monitoring manner. In the iterative process, the
internal curiosity mechanism will motivate agents to

explore their own predictions of action by exploring the
environment.
The curiosity-driven mechanism consists of external

reward generator and internal signal generator as de-
scribed in following paragraphs.

4.2.1 External reward generator
It is used to calculate rewards from deterministic fac-
tors, such as energy saving and VNR acceptance rate.
It is called external reward ret and calculated using
Eq. (13).

4.2.2 Internal signal generator
Agent trains its proficiency by responding to the
changes in the environment by predicting movements
and training familiarity with the surrounding environ-
ment through predictions of the next environment,
so that corresponding changes can be made before
the environment changes. Then, they explore other
factors that affect the performance of VNE to gener-
ate signals which guide the generation of total re-
wards, denoted as rit . The calculation process is as
described below.

4.2.3 Step 1
It predict the action ât that causes the changes in
states by training a neural network amounts to learn-
ing function g(∙). The current state is denoted as
∅(st), take as inputs ∅(st) and ∅(st + 1) and predict ac-
tion ât makes the agent from state st reach state st + 1

which defined as

ât ¼ g st ; stþ1; θIð Þ

where ât is the predicted value of the action at, θI is
trained by min

θ
LIðât ; atÞ , and LI is the softmax loss

Fig. 3 Curiosity-driven mechanism
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function measures the difference between predicted be-
havior and actual behavior.

4.2.4 Step 2
It predicts the next state ∅̂ðstþ1Þ generated by the ac-
tion ât under the current environment ∅(st)by train-
ing another neural network amounts to learning
function f(∙).The state at t + 1 is predicted by taking
inputs as ât and ∅(st).

∅̂ stþ1ð Þ ¼ f ∅ stð Þ; ât ; θFð Þ
where ∅̂ðstþ1Þ is the predictor of ∅(st) and θF is mini-
mized by the loss function LF.

min
θ F

LFð∅ðstÞ; ∅̂ðstþ1ÞÞ ¼ 1
2
k∅̂ðstþ1Þ−∅ðstþ1Þk22.

4.2.5 Step 3
It calculates the internal signal rit by predicting the next
state:

rit ¼
0; if ∅̂ stþ1ð Þ causes SN0

s connectivity changes

e
−

∅̂ stþ1ð Þ−∅ stþ1ð Þð Þ2
∅ stþ1ð Þ−∅̂ stþ1ð Þð Þ2 ; otherwise

8<
:

This assignment method is reference [18]. After
computing the values for internal signal and the ex-
ternal reward generated by the deterministic factors,
it is superimposed as a new reward to guide the
agent to make a decision. Therefore, rt is defined as

rt ¼ rit þ ret

In summary, the proposed method involves the
agent to obtain the current VNE environment such as
the situation of the substrate network resources, the
link connection status, and the request volume of the
virtual network through the MDP model. At the be-
ginning of each episode, the first mapped virtual node
is randomly transported to a physical node in the set
of executable actions, then the curiosity-driven mech-
anism obtains the total reward value (composed of
internal signals and external rewards), recorded in the
Q matrix, and then moves to the next state st + 1.
Through this adaptive learning scheme, the potential
impact factors can be mined by taking into account
energy saving and VNR acceptance rates, for obtain-
ing a global optimal mapping method.

4.3 Algorithm description
It can be concluded from the description cited
process that Q-learning algorithm mixed with
curiosity-driven mechanism can ensure the energy
saving and VNR acceptance rate performance and
avoid falling into local optimum. So, the proposed al-
gorithm is described as below.

5 Performance evaluation
This section describes the performance evaluation of the
proposed method. It provides the details of the simulation
environment, performance metrics, and experimental
results followed by their discussion.

5.1 Simulation environment
The proposed method is implemented and executed
on a PC having configuration as CPU: 3.4 GHz and
4G of memory. We used GT-ITM model and NS2
software to generate the substrate network and virtual
network request topology [19]. The number of the
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substrate network nodes pre-designed in this experi-
ment is 100, and the probability of the nodes con-
necting to each other is assumed as 0.5. The
distribution of the substrate network and virtual net-
work resources is as follows.
The value distribution of the CPU resource value of

the physical nodes is [50, 100] and is subject to
uniform distribution. The value range of the band-
width resources of physical links is [50,100] and is
uniformly distributed. The value distribution range of
the virtual node CPU resource request amount is [0,
14] and obeys the uniform distribution. The value
range of the virtual link bandwidth resource require-
ment is [0, 34] and follows the uniform distribution.
An average of 100 time units can reach 20 virtual
network requests among all requests, and these
requests obey the Poisson distribution. The number
of requests to reach the virtual network in the experi-
ment statistics is 2000, and the number of runtime
units is about 14,000. The constant values for node
and link energy consumption are set as follows: Pl =
150, Pb = 150, Pn = 15, ω = 0.5, the number of itera-
tions is 100.

5.2 VNE performance metrics
The comprehensive quality of VNE problem can be
judged in terms of following metrics.

1. Average number of open nodes (ANON):

ANON ¼
PNT

i¼1NOi

NT

where NT represents the number of all valid time
periods from 0 to T, NOi represents the number of
the physical nodes that are active in the effective
period i.

2. Average number of open links (ANOL):

ANOL ¼
PNT

i¼1LOi

NT

where LOi indicates the number of the physical links
that are active during the valid period i.

3. Average utilization of CPU (AUCPU):

AUCPU ¼
PNT

i¼1NRUi

NT

where NRUi indicates the CPU utilization of the node
resources in the effective time unit i.

4. Average utilization of BW (AUBW):

AUBW ¼
PNT

i¼1LRUi

NT

where LRUi indicates the bandwidth utilization of the
link resources in the effective time unit i.

5. Average amount of energy consumption (AAEC):

AAEC ¼
PNT

i¼1Ei

NT

where Ei is the consumption of the physical resources
within the effective period i.

6. Average ratio of revenue and cost (ARRC):

ARRC ¼
PAT

i¼1RevenueRiPAT
i¼1CostRi

where AT represents the number of VNRs accepted suc-
cessfully from time 0 to time T. RevenueRi and CostRi

represent the revenue and cost of a successful virtual
network request Ri, respectively.

7. Average acceptance ratio (AAR):

AAR ¼ AT

CT

where CT represents the total number of VNRs in the
time period from 0 to T.

8. Substrate network fragmentation (SNF):

SNF tð Þ ¼ 1−

Pm
i¼1 Residual NS; LS

� �
; t

� �� �q
Pm

i¼1Residual NS; LS
� �

; t
� �� �q

where m represents the number of fragments in the sub-
strate network, Residual((NS, LS), t) is the substrate re-
sidual resources, and q is a positive integer number
greater than 1 to reduce the influence of the small negli-
gible fragments as long as one large fragment exits [20].

9. Node load balance (NLB):

NLB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ns∈NS

CPU nsð Þ−
P

CPU nsð Þ
NSj j

	 
2
vuut

5.3 Comparative analysis of experimental results
The proposed method is executed in a simulation en-
vironment as described above, and reported results
are compared with the representative researches in
the field in terms of identified performance metrics.
In order to compare the performance of the proposed
method, we choose the EAVNE algorithm [21] that
aims to save energy as well as our algorithm, the
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GSOVNE algorithm [22], because both algorithms use
intelligent algorithms to embed virtual requests and
the classic greedy algorithm SP [23]. These three al-
gorithms have similarities with our algorithm, so they
are used for comparison experiments. Ensure that our
algorithmic experimental results are more credible.

Figures 3, 4, 5, 6, and 7 show the comparative results
of the proposed method and representative methods
in terms of average number of open nodes, average
number of open links, average node resource utilization,
average link resource utilization, and average amount of
energy consumption.

a

b

d

e

c

Fig. 4 Energy-saving performance. a Average number of open nodes. b Average number of open link. c Average utilization of open CPU. d Average
utilization of open BW. e Average amount of energy consumption
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It can be observed from Fig. 4a that ANON of the
Q-CD-VNE algorithm is lower than the EAVNE,
GSOVNE, and SP algorithms by 18, 13, and 32, respect-
ively. It can be seen that it is significantly lower than that
of the SP algorithm. This is because the SP algorithm
does not consider energy saving during the mapping
process. As depicted in Fig. 4b, ANOL of the
Q-CD-VNE algorithm is 6 and 29 lower than the
EAVNE algorithm and the SP algorithm, respectively,
and about 5 more links than the GSOVNE algorithm.
The performance of this algorithm is almost the same as
that of EAVNE algorithm and the GSOVNE algorithm
in terms of link opening amount. This is due to that
these algorithms are all two-phase mapping algorithms,
and the link-based processing uses the greedy-based
shortest path algorithm, so no significant difference has
been observed. It can be concluded from Fig. 4c that the
AUCPU of the Q-CD-VNE algorithm is increased by
12.4, 8.3, and 23.3%, respectively, in comparison to the
EAVNE algorithm, the GSOVNE algorithm, and the SP

algorithm. Figure 4d shows that the AUBW of the
Q-CD-VNE algorithm is 3.8, 0.1, and 13.8% higher than
the EAVNE, GSOVNE, and SP algorithms, respectively.
The improvement of the AUCPU is more significant
than AUBW. It happens because the algorithm involves
a two-phase mapping, and no more optimized algorithm
is used for mapping the links. Figure 4e shows the per-
formance of algorithms in terms of AAEC because the
Q-CD-VNE algorithm has a good energy-saving effect
and the energy consumption of the proposed algorithm
is the lowest among the four algorithms in comparison.
Compared with the EAVNE algorithm, the GSOVNE al-
gorithm, and the SP algorithm, they have reduced
4335.54, 2276.78, and 5338.83 W, respectively.
Figure 5 shows that the VNR acceptance rate of the

Q-CD-VNE algorithm as 27.27, 15.12, and 21.13% higher
than that of EAVNE, GSOVNE, and SP algorithms, re-
spectively. This is because the algorithm regards energy
saving and VNR acceptance rate as external rewards and
considers both performances in the mapping process.
Therefore, both the energy saving and the VNR accept-
ance rate have been improved.
Figure 6 shows that the average ratio of revenue and

cost of Q-CD-VNE algorithm is slightly higher than that
of the comparison energy-saving algorithm EAVNE and
the intelligent algorithm GSOVNE, and almost the same
value as that of SP algorithm. It shows that the perform-
ance of the algorithm has not decreased while consider-
ing other factors.
Figures 7 and 8 show the substrate fragmentation rate

and node load rate performance after adding a
curiosity-driven mechanism. Here, Q-VNE is an algo-
rithm with no curiosity mechanism. Figure 7 shows that
the substrate fragmentation rate is reduced by 3–5 per-
centage points in comparison to the algorithm without
the curiosity mechanism. Figure 8 shows that the load

Fig. 5 Acceptance ratio

Fig. 6 Average ratio of revenue and cost

Fig. 7 Substrate resources fragmentation
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imbalance is alleviated after the program runs for about
5000 time units. This is due to the fact that after the
agent has been involved in the curiosity mechanism for
a period of time, when the node is fully loaded, we feed
back this information to the agent, prompting agent not
to select actions which degrade the SN’s connectivity,
thus avoiding the increase of node full load rate. This
will inevitably reduce the fragmentation rate and ease
the imbalance of the load.

6 Conclusions
In this paper, a virtual network embedding scheme is
proposed on the basis of Q-learning algorithm, MDP,
and curiosity-driven technology. The scheme addressed
the multi-objective trade-off problem in VNE. The
experimental results show that the algorithm can find a
good trade-off between conflicting objectives. The com-
parative results prove that the proposed method can im-
prove the performance of the system in terms of
conflicting objectives by reducing energy consumption,
improving request acceptance rate, and improving the
long-term average income.
In the future, we will consider making the fragmenta-

tion rate and the load rate as deterministic factors.
Meanwhile, we will consider improving the curiosity
mechanism in order to explore more non-deterministic
factors that can be used as optimization goals and in-
corporate them into deterministic factors.
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