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Abstract

Dynamic thermal rating (DTR) of transmission lines is related to wind speed, wind direction, ambient temperature,
and so on. Among the environmental parameters, there is a difference between the obtained environmental
parameters and the true value. Therefore, only the deterministic values of environmental parameters and DTR are
not accurate enough. Considering the environmental parameters obtained with uncertainty, the uncertainty of
environment parameters based on Monte Carlo Method (MCM) is studied in this paper. According to the heat
balance equation of transmission lines, the uncertainty analysis of transmission line ampacity is realized based on
CIGRE standard. The best estimation value, standard uncertainty, and confidence interval are obtained under a
given confidence level of environmental parameters. The experimental results show that DTR can fully improve
the transmission capacity of transmission lines, and MCM is an effective method to assess uncertainty of DTR.

Keywords: Transmission line, Dynamic thermal rating (DTR), Environmental parameters, Monte Carlo method
(MCM), Uncertainty analysis

1 Introduction
Dynamic thermal rating (DTR) of transmission lines
based on actual environmental parameters can greatly
improve line capacity [1]. Without reconstructing the
existing transmission lines, DTR can ease the contra-
diction between electricity consumption and power
supply and improve line utilization with great eco-
nomic benefits. DTR can be determined by line
ampacity calculation model based on CIGRE standard
[2–4]. The ambient environmental parameters of
transmission lines are significant factors that affect
the DTR, but the difference between the measured
value and the true value cannot be ignored, and the
uncertainty of DTR needs to be evaluated [5–8].
Guide to the expression of uncertainty in measure-

ment (GUM) gives the basic method of assessing un-
certainty [9, 10]. However, the method is limited by
certain conditions: (1) the probability distribution of
the input quantity is assumed to be symmetrical, ap-
proximately normal distribution or T distribution; (2)

the probability distribution of the output is approxi-
mately normal or T distribution; (3) the measurement
model is linear model or nonlinear model that can be
reduced to linear model [7]. In 2008, the Joint Com-
mittee on Measurement Guidelines introduced a sup-
plemental document. The Monte Carlo method
(MCM) was used to assess measurement uncertainty
[11–13]. According to the supplementary document,
measurement uncertainty with the MCM is newly is-
sued in China, which provides a method for assessing
the uncertainty of measurement, thus broadening the
application scope of uncertainty assessment.
In [14], the MATLAB method for evaluating ran-

dom numbers in MCM was studied. The simulation
of the relevant random variables was realized. It was
concluded that MCM could overcome the shortcom-
ings of GUM method in which it was difficult to
evaluate the uncertainty of complex model. In [15,
16], the MCM evaluation uncertainty process was
given, and the evaluation results of the GUM method
were verified by MCM. The reliability of MCM un-
certainty evaluation was proved. MCM can be applied
to the situation where the GUM method is not
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applicable. To sum up, MCM is an effective method
for uncertainty assessment. In this paper, MCM is
used to evaluate the uncertainty of DTR of transmis-
sion lines.
This paper is organized as follows: Section 2 pre-

sents an extensive review of the uncertainty analysis
of dynamic thermal rating. DTR of transmission
lines based on CIGRE standard is introduced in de-
tail in Section 3. In Section 4, we review the MCM
and study the uncertainty of environmental parame-
ters. In Section 5, after obtaining the uncertainty of
the environmental parameters, we assess the uncer-
tainty of DTR to ensure the reliability of the results.
We conclude in Section 6.

2 Methods
The dynamic thermal rating is determined according
to the real meteorological conditions of overhead
lines according to wind speed, wind direction, and
ambient temperature. The randomness of meteoro-
logical parameters and the existence of measurement
errors all lead to uncertainty in the results of dynamic
thermal rating. Therefore, it is not enough to give
only a definite value of the current carrying capacity.
It is necessary to give the uncertainty of the carrying
capacity, and the result is more reliable. The dynamic
thermal rating method based on CIGRE standard is
studied. The Monte Carlo method is proposed to
analyze and calculate the carrying capacity of the
overhead transmission line.

3 DTR method based on CIGRE standard
This section briefly describes the CIGRE method of
calculating DTR of overhead transmission lines. The
steady state thermal balance equation of CIGRE
standard is:

I2Rac T cð Þ þ Qs ¼ Qc þ Qr ð1Þ
where the convection heat is Qc, radiation heat is Qr,
sunshine heat absorption is Qs, and the Joule heat is
I2Rac generated by its own current, and Tc is the line
conductor temperature. According to direct current
(DC) resistance at 20 °C, to find the alternate current
(AC) resistance at Tc is Rac(Tc) = kjRdc[1 + α(Tc − 20)], kj
usually takes as 1.0123, Rdc is the DC resistance of the
line, and α is the resistance temperature coefficient. The
convection heat dissipation is shown in Eq. (2).

Qc ¼ πkcf T c−T að ÞK angleNu ð2Þ

where kcf = 2.42 × 10−2 + 3.6 × 10−5 × (Tc + Ta) is the am-
bient air thermal conductivity, Ta is the ambient
temperature, and Kangle is coefficient of wind direction.
Convection heat dissipation is also divided into two

cases of high wind speed and low wind speed, where the
Nusselt number is Nu and Nu = B1(Re)

n. Re is the Reyn-
olds number as shown in Eq. (3).

Re ¼ Dρ0 exp −1:16� 10−4Heð ÞVw

1:32� 10−5 þ 4:75� 10−8 T c−T að Þ ð3Þ

where D is the line diameter, ρ0 is air density at the sea
level, Vw is wind speed, He is the line altitude, B1 and n
is decided by Re and the line surface roughness Rf = d/
[2(D − 2d)] (d is the outer diameter) as shown in Table 1.
D is 27.63 mm and d is 3.07 mm for the transmission
line of LGJ-400/50.
The CIGRE standard also takes into account the ef-

fects of wind direction on Qc, the correction factor is
Kangle = A1 + B2 sin(ϕ)

m1. When the angle between the
wind and the line is 0° ≤ ϕ ≤ 24°, then A1 = 0.42, B2 = 0.68,
m1 = 1.08. When the angle is 24° ≤ ϕ ≤ 90°, then A1 =
0.42, B2 = 0.58, and m1 = 0.9. When there is no wind, the
number of Nusselt is determined by the value of Gr and
the value of Pr, Nu ¼ A2ðGr � PrÞm2 . Pr and Gr are
shown in Eqs. (4) and (5).

Pr ¼ 0:715−1:25� 10−4 T c þ T að Þ ð4Þ

Gr ¼ D3ρ2o T c−T að Þg
T c þ T að Þ=2þ 273½ �μ2f

ð5Þ

where g = 9.8 m/s2 and A2, m2 are determined by Gr × Pr,
which are shown in Table 2.
The radiation heat dissipation is shown in Eq. (6).

Qr ¼ 0:0178Dε
T c þ 273

100

� �4

−
T a þ 273

100

� �4
" #

ð6Þ

where ε represents the radiation coefficient of trans-
mission line, ranging from 0.23 to 0.91; ε is 0.23 for
the new transmission lines; and ε is 0.91 for the long
life lines. Radiation heat is decided by the line

Table 1 Nusselt number parameters

Surface roughness Reynolds range B1 n

Various surface (102,2.65 × 103) 0.641 0.471

Rf ≤ 0.05 (2.65 × 103,5 × 104) 0.178 0.633

Rf > 0.05 (2.65 × 103,5 × 104) 0.048 0.800

Table 2 The value of parameters A2 and m2

Gr × Pr A2 m2

(10−1,102] 1.020 0.148

(102,104] 0.850 0.188

(104,107] 0.480 0.250

(107,1012] 0.125 0.333
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diameter, conductor temperature, ambient temperature,
and radiation cooling coefficient. The greater the radiation
heat is, the more help to improve the transmission cap-
acity of the line.
The heat absorption in the CIGRE standard takes into

account the absorption of direct sunlight, the absorption
of albedo sunshine and the absorption of solar heat dis-
sipation, as shown in Eq. (7).

Qs ¼ αsD ID sinθ þ π
2
F sinHc

� �
þ π=2ð ÞId 1þ Fð Þ

h i
ð7Þ

where ID = 1280 sinHs/(sinHs + 0.314) is the absorption
of direct sunlight heat. F is albedo growing with Hc. Id is
sun heat dissipation. In sunny weather conditions, it is the
10% of ID. The DTR under actual environmental

a

b

c

d

e

f
Fig. 1 Probability distribution transmission of input quantity: a input variables X1, X2, and X3. b PDF of X1, X2, and X3. c CDF of X1, X2, and X3. d Mathematical
model between input and output. e Discrete output variable Y. f PDF of output variable Y
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parameters is taken into account when the steady state
equilibrium is deduced from Eq. (1), and the ampacity is
calculated in Eq. (8).

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qs−Qc−Qr

Rac T cð Þ

s
ð8Þ

4 Monte Carlo method
The MCM is known as a random simulation method
or a statistical testing method. It is based on the

stochastic sampling. By means of random sampling,
the random number in the corresponding distribution
of the random variables is repeatedly selected. The
stochastic number satisfying the particular distribution
is obtained as the input data. The discrete value of
the output is calculated by solving model. Then, the
best estimated value, the standard uncertainty, and
the corresponding inclusion interval under a given
confidence level are acquired from the statistical re-
sults of the output value. MCM is an effective

Fig. 2 Calculation procedure for uncertainty of environmental parameters

Fig. 3 Calculation procedure for uncertainty of DTR
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solution for some complex models which are difficult
to calculate for an analytic solution.

4.1 Process of MCM to solve the uncertainty problems
Solving uncertainty problems with MCM usually
involves three steps: The first step is model building. By
analyzing the problem, the mathematical model between
the output and the input is determined, and the number
of experiments to be carried out by MCM is given.
The second step is probability distribution and trans-

fer. By the probability density function of the input
quantity, the random number is obtained from the
inverse transformation method. The output quantity is
obtained by substituting the random number as the
input quantity into the mathematical model. Repeat this
step and stop when the experiment number is reached.
The third step is statistical calculation. The best esti-

mate value, the standard uncertainty, and the corre-
sponding inclusion interval at the given confidence level
are presented from statistical analysis of all the discrete
outputs obtained by the model.

Suppose that the confidence interval corresponding to
the output confidence level of 100p% is finally required.
The number of MCM repeated calculations is M times,
and M satisfies Eq. (9).

M≥
1

10p
104 ð9Þ

The distribution characteristics of the input quantity
are transmitted through the corresponding transfer
model, and the distribution characteristic of the output
quantity can be obtained. It is assumed that the three in-
puts are independent. Figure 1a represents the value
(X1, X2, X3) of the corresponding input in time dt.
Figure 1b is the probability density function (PDF) cor-
responding to the three input quantities. Figure 1c is the
cumulative density function (CDF) calculated from the
PDF integral. The random input variables are obtained
by M times inverse calculation. Figure 1d shows that the
input variables obtained by the inverse calculation are
substituted into the mathematical model to calculate

Fig. 4 The geographical location of the studied line: a geographic wiring diagram and b meteorological data network
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output variables. Figure 1e shows discrete output vari-
ables, and Fig. 1f is the corresponding PDF according to
the discrete output variables. The optimal estimate
value, the standard uncertainty and the inclusion interval
under the given confidence level are obtained.
From Fig. 1, we can see that X1 obeys the lognormal

distribution, X2 obeys the normal (Gaussian) distribu-
tion, and X3 obeys the uniform distribution. The distri-
bution function is sampled for M times, and the
sampled data as input variables is taken into the math-
ematical model to obtain discrete output variables, then
the mean of output variables, the standard deviation,
and the confidence level can be got.

4.2 MCM for analyzing environmental parameters and
DTR uncertainty
The flow chart for solving the uncertainty of environ-
mental parameters and DTR is shown in Figs. 2 and 3,
respectively.
The location and attribute values of the points with

known environment parameter are put into the

geographic statistical analysis model in ArcGIS software.
The estimating environmental parameter value of a
point is obtained by Kriging interpolation. Experiments
are repeated by MCM. After reaching the number of
experiments, we count the discrete output of each
experiment to get the best estimate, the standard uncer-
tainty, and the corresponding interval endpoint with the
confidence level of 100p%.
In Fig. 3, the input data include wind speed, wind

direction, and ambient temperature. The above input
parameters are brought into the CIGRE standard heat
balance equation, and the dynamic thermal rating of
overhead lines can be obtained. As can be seen from
Figs. 2 and 3, obtaining input data based on the in-
verse transform method is an important step in the
MCM. If the distribution function F(x) of random
variable X is continuous and r = F(x) is set, then r is
a uniform random variable on the interval (0, 1).
Therefore, the sampled value x = F−1(r) of the random
variable X obeys the corresponding distribution func-
tion. F(x) can be obtained by extracting the random

Table 3 Longitude, latitude and environmental parameters of 25 known points

Points Longitude (E) Latitude (N) Temperature (°C) Wind speed (m/s) Wind direction (°)

1 109.676 37.989 22.31258 1.71582 156.3338

2 109.686 37.884 22.67912 2.14189 149.2344

3 109.729 37.744 23.01952 2.33556 143.2542

4 109.758 37.609 23.21038 2.26855 138.0481

5 109.792 37.470 23.42952 2.04048 131.4788

6 109.835 37.340 23.60655 1.84029 127.6865

7 109.864 37.244 23.64497 1.68302 125.5642

8 109.844 37.095 23.60006 1.58664 125.6270

9 109.820 36.970 23.35387 1.59052 124.9162

10 109.801 36.845 22.94237 1.58255 126.9266

11 109.792 36.671 22.68975 1.67703 136.2848

12 109.758 36.570 22.96728 1.94498 143.1490

13 109.739 36.416 23.63994 2.66577 155.6990

14 109.695 36.243 23.97541 3.58796 166.6059

15 109.614 36.113 23.72943 3.75889 174.8989

16 109.469 35.806 22.48813 1.522706 190.5641

17 109.404 35.666 21.78378 0.61640 193.0289

18 109.424 35.551 22.06700 0.53014 229.0574

19 109.457 35.435 22.58040 0.86832 257.9343

20 109.472 35.300 23.21345 1.47723 269.2503

21 109.515 35.166 23.27094 1.95238 284.4721

22 109.544 35.021 22.47640 2.07477 298.0574

23 109.577 34.882 20.53267 1.54755 299.1291

24 109.688 34.771 18.89304 1.05216 268.7144

25 109.823 34.685 19.47246 1.30290 239.6672
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number of evenly distributed over the interval (0,1). If
the random number which obeys normal distribution
X~N(μ, σ2) is Xi, and ri is the random number repre-
senting standard normal distribution, the equation is
shown in Eq. (10).

xi−μ
σ

� N 0; 1ð Þ ð10Þ

Thus, Eq. (11) can be obtained.

xi ¼ μþ σri ð11Þ

5 Case study
5.1 MCM for analyzing the uncertainty of environmental
parameters
The ambient temperature changes slowly in space and
time. According to the central limit theorem, the
error between the true value and the measured value
obeys the normal distribution. As shown in Fig. 4, the
MCM is used to analyze the uncertainty of environ-
mental parameters at the location of Luochuan

(109.537°E, 35.946°N). In order to combine with the
actual line, this paper chooses a 750-kV transmission
line from Yuheng, Luochuan to Xinyi according to
the geographical wiring diagram of Shaanxi power
grid. The transmission line length is 386.7 km. In this
paper, we select the latitude range of 109.2°–110.0° E
and the latitude range of 34.6°–38.1° N. The range of
longitude span is 80 km and the latitude span is
350 km, as we can see in Fig. 4a. The environmental
parameter data is from the China meteorological data
network. We can get the area of a total of 9 × 36 =
324 measurement points and the corresponding envir-
onmental parameters, as shown in Fig. 4b. In the cal-
culation process, the typical variance values of the
temperature, wind speed, and wind direction of each
known measurement points are 0.3, 0.5, and 1.0 [17],
and the random number corresponding to the normal
distribution is acquired by the inverse method. The
latitude and longitude and environmental parameters
of the 25 known points on the transmission line are
given in Table 3.

Table 4 The weight of ordinary Kriging method

Points Longitude (E) Latitude (N) Weight of temperature Weight of wind speed Weight of wind direction

1 109.676 37.989 0.006944 0.008530 − 0.001115

2 109.686 37.884 − 0.00294 − 0.001504 0.0008418

3 109.729 37.744 0.002148 − 0.001837 0.0000016

4 109.758 37.609 0.002923 − 0.001088 0.0003786

5 109.792 37.470 0.007261 − 0.0004456 0.0006067

6 109.835 37.340 − 0.00124 − 0.0003863 0.0001889

7 109.864 37.244 0.006372 0.01251 − 0.001392

8 109.844 37.095 0.001841 0.04135 − 0.000122

9 109.820 36.970 − 0.01450 − 0.04352 0.0003414

10 109.801 36.845 0.03040 − 0.01894 0.0009870

11 109.792 36.671 − 0.01211 − 0.0005961 − 0.001447

12 109.758 36.570 − 0.05701 0.003447 0.002044

13 109.739 36.416 0.1986 0.0003571 − 0.000862

14 109.695 36.243 − 0.4985 − 0.0006602 − 0.001380

15 109.614 36.113 0.8586 0.5111 0.5072

16 109.469 35.806 0.7825 0.4983 0.4942

17 109.404 35.666 − 0.4213 − 0.002698 − 0.000438

18 109.424 35.551 0.07082 − 0.002142 − 0.002012

19 109.457 35.435 0.06238 0.004119 0.002807

20 109.472 35.300 − 0.02833 − 0.001016 − 0.000671

21 109.515 35.166 − 0.00514 0.002383 0.001088

22 109.544 35.021 0.01500 − 0.02644 − 0.000957

23 109.577 34.882 − 0.00392 − 0.01687 − 0.001596

24 109.688 34.771 − 0.00001 0.03288 − 0.000289

25 109.823 34.685 0.005737 0.003186 0.0007310
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The corresponding weights for the 25 points to get Luo-
chuan parameters by the ordinary Kriging interpolation
method are shown in Table 4. The uncertainty of environ-
mental parameters at Luochuan is analyzed by the Monte
Carlo method. The histograms of the temperature, wind
speed, and wind direction distributions obtained by the
MCM are shown in Figs. 5, 6, and 7.
The best estimate value, standard uncertainty, and the

shortest confidence interval of 95% (sampling number
M is 200000) are shown in Table 5.
As can be seen from Table 5, the best estimate

value of the MCM is in the shortest inclusion interval
with a confidence level of 95%. The standard uncer-
tainty of wind speed is the minimum and the wind
direction is the maximum. Among them, the standard
uncertainty of wind direction is the largest. And the
range of included intervals with the corresponding
confidence level of 95% is also the largest.

5.2 Results and discussions
From Table 5, we can see that the temperature, wind
speed, and wind direction of Luochuan at 8 a.m. on Sep-
tember 17, 2016, are subject to the following
distribution.

T a � Norm 23:4471; 0:54882
� �

Vw � Norm 2:6358; 0:50722
� �

ϕw � Norm 181:6417; 2:24162
� �

8<
: ð12Þ

Combined with CIGRE standard, we get the distri-
bution diagram of dynamic thermal rating when the
line maximum allowed temperature is 70 °C, as
shown in Fig. 8.
Table 6 gives the best estimates of the dynamic

thermal ratings obtained from the MCM as well as
the standard uncertainty and the minimum inclusion
interval with a confidence level of 95%. According to
the CIGRE standard based on the environmental

Fig. 5 Ambient temperature distribution histogram

Fig. 6 Wind speed distribution histogram

Fig. 7 Wind direction distribution histogram

Fig. 8 CIGRE standard DTR distribution
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parameters, the best estimation values of the dy-
namic thermal values obtained by the MCM are
1178.5 A, which is in the minimum inclusion inter-
val with a confidence interval of 95%. When the line
maximum temperature is 70 °C, static thermal rating
of LGJ-400/50 transmission line is 592 A. According
to CIGRE standard, the dynamic value of the line
can be increased by 83.7–113.3% with the 95% confi-
dence level. It can be seen that the dynamic thermal
rating can greatly improve the transmission capacity.

6 Conclusions
In order to verify the reliability of the DTR of trans-
mission lines, the DTR model based on CIGRE stand-
ard is given. The DTR uncertainty is evaluated by
MCM method. The application scope and concrete
process of the MCM are studied. According to the
measurement data of environmental parameters, the
estimation uncertainty of ambient temperature, wind
speed, and wind direction at 8 a.m. on September 17,
2016, in Luochuan is given. Through Monte Carlo
analysis and simulation, the optimal estimation of
DTR, the standard uncertainty, and the inclusion
interval under the given confidence level are gained.
The uncertainty of DTR can be effectively analyzed by
MCM method, and the calculation of the line transfer
capability is more accurate. Comparing with the static
thermal rating obtained by conservative environmental
parameters, we find that the DTR technique can in-
crease the line transmission capacity on the basis of
the existing transmission lines and improve the effi-
ciency of transmission lines. Future work should study
the benefits of dynamic thermal rating.
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