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Abstract

In this paper, we propose a blind channel estimation algorithm for the amplify-and-forward (AF) two-way relay network
(TWRN) which consists of two terminal nodes and one relay node. The orthogonal frequency division multiplexing
(OFDM) modulation is adopted for frequency selective channel. Both cyclic prefix (CP) and zero padding (ZP) are
considered. The two cascaded channels are estimated in two steps. First, the cascaded channel causing the self-
interference is estimated using a proposed power reduction method. Then, the other cascaded channel from source
to destination is estimated by subspace method. Closed-form formulas for channel estimates are derived. In addition,
we also carry out the theoretical mean square error analysis and derive the approximated Cramer-Rao bounds.

Keywords: Blind channel estimation, Orthogonal frequency division multiplexing (OFDM), Two-way relay network
(TWRN)

1 Introduction
Research on wireless relay networks became popular since
the pioneering work [1] developed low-complexity coop-
erative diversity strategies. In [1], data streams flow uni-
directionally from the source to the relay and then to
the destination. This network structure is known as the
one-way relay network (OWRN). However, since most
communication systems are bidirectional, it is necessary
to consider the situation when the source node and the
destination node exchange their roles. Such a relay net-
work is known as the two-way relay network (TWRN). In
TWRN, the relay treats the received signals in a “network
coding”-likemanner [2], and the terminals can recover the
signal collision since they know their own transmitted sig-
nals. As a result, the overall communication rate between
two source terminals in TWRN is approximately twice
that achieved in OWRN [3].
Despite its throughput advantage, TWRN faces more

challenges in terms of transceiver design, relay processing
optimization, and transmission protocol development. In
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[4], the capacity analysis and the achievable rate region for
amplify-and-forward (AF) and decode-and-forward (DF)
TWRN are explored. In [5], the authors point out that
the throughput of AF-TWRN is 1.5 times of DF-TWRN.
The distributed space-time code (STC) at relays for both
AF-TWRN and DF-TWRN has been developed in [6].
Moreover, the optimal beamforming with full channel
knowledge at the multi-antenna relay that maximizes the
overall system capacity of AF-TWRN is derived in [7]. In
[8], the authors address the problem of robust linear relay
precoder and destination equalizer design for multiple-
input multiple-output relay systems. In [9], the authors
compare several network-coding AF-TWRN and consider
imperfect time synchronization. Most existing works on
TWRN [2–9] have assumed perfect channel state infor-
mation (CSI) at the relay node and/or the source termi-
nals.While traditional channel estimationmethods can be
applied to DF-TWRN, the channel estimation problem for
AF-TWRN is more challenging due to the self-interfering
signals.
In traditional channel estimation methods for point-to-

point systems, they can be divided into two groups: data-
aided (DA) [10–17] and non data-aided (blind) [18–26].
In general, DA channel estimation methods differ in the
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way they interpolate or filter punctual DA least square
(DA-LS) channel estimates over data subcarriers. This can
be accomplished using time-frequency Wiener filtering
[10, 11], which is optimal in the minimum mean square
error (MMSE) sense if knowledge of the channel statistics
(KCS) is available. On the other hand, channel estima-
tion can be accomplished by elaborating raw estimates
in the time domain using a discrete Fourier transform
(DFT)-based scheme. In [12], the MMSE channel estima-
tor working in the time domain has been proposed. In
order to reduce computational complexity, using the sin-
gular value decomposition and several low-rank approxi-
mations to theMMSE estimator has been proposed in [13]
and [14]. Li et al. [12–14] also require complete KCS. In
[15], the authors compare theMMSE approach withmaxi-
mum likelihood (ML) channel estimation, where complete
KCS is not required. This latter approach works well with
dense multipath channels and quasi-uniform profiles. In
practice, after the inverse DFT (IDFT), not all the channel
impulse response (CIR) samples are significant because
many may correspond to delays where no propagation
channel paths are actually present. Therefore, the authors
in [16] exploit this idea to estimate channel. In [17], the
authors propose a method to approach the MMSE chan-
nel estimation performance, while avoiding the need for a
priori KCS.
For blind channel estimation methods, earlier works

require either higher order statistics (HOS) of the received
data [18] or over-sampling at the receiver [19]. By exploit-
ing linear redundant precoding , only second-order statis-
tics (SOS) of the received data is required and these
methods are robust to channel order overestimation
[20, 21]. Another popular blind algorithm is the so-called
subspace-based algorithm which was originally developed
in [19]. The subspace method has simple structure and
achieves good performance. In [22], a blind channel iden-
tification method by exploiting virtual carriers (VC) is
derived. In [23], a generalization in cyclic prefix (CP) sys-
tems is proposed. By arranging the received data appro-
priately, [23] generates a rank-deduction matrix, and thus,
subspace method can work. In [24], the authors propose
another simpler arrangement of the received data. Pan
and Phoong [25] and [26] utilize the repetition method to
reduce the number of required received data and consider
the existence of VCs.
As in the traditional point-to-point systems, study of

channel estimation algorithm is also demanded for AF-
TWRN systems [27–34]. DA channel estimation methods
for AF-TWRN are proposed in [27–30]. Gao et al. [27]
develops an optimal training design for flat-fading envi-
ronment. The authors also combine their algorithm with
orthogonal frequency division multiplexing (OFDM) to
estimate the channel impulse responses for frequency
selective environment in [28]. The case of multiple-input

multiple-output is considered in [29], and [30] provides
two channel training algorithms for channel estimation.
On the other hand, [31–34] are blind channel esti-

mation methods. In [31], the authors propose a ML
approach to estimate the flat-fading channels blindly, but
the transmitted signals are limited to constant modulus
modulation. Zhao et al. [32] find a closed-form solution
and thus provides a low-complexity ML algorithm. For
non-constant modulus modulation, [33] gives an iterative
algorithm, which is based on the maximum a posteri-
ori (MAP) approach, and it requires a large number of
received blocks. In [34], the authors consider the fre-
quency selective environment. They apply a non-unitary
linear precoding at both terminals and derive a blind
channel estimation algorithm from SOS of the received
signals. However, the use of non-unitary linear precoding
leads to degradation in bit error rate (BER) performance.
In this paper, we develop a blind channel estimation

algorithm for AF-TWRN under OFDM modulation. Our
method consists of two steps. The first step is to esti-
mate the cascaded channel causing the self-interference.
Since the terminal knows its own transmitted signal, we
choose the method based on power reduction to estimate
the channel, which is also named LS method. The self-
interference signal can be removed by using the estimated
channel. The second step is to estimate the cascaded
channel from source to destination. We utilize the rank
reductionmethod, which is also known as subspace-based
algorithm [23–26]. This is because subspace methods
do not require complete KCS, work well with all mul-
tipath channels, and achieve good performance. Closed-
form formulas for these two cascaded channel estimates
are derived. The theoretical performance analysis and
approximated Cramer-Rao bounds (ACRB) are given as
well. The proposed method can be applied to both CP-
based and zero padding (ZP)-based OFDM systems. Sim-
ulation results will be provided to show the performance
of the proposed method.
The rest of this paper is organized as follows. The sys-

tem model for CP-OFDM AF-TWRN is introduced in
Section 2. Section 3 describes the proposed algorithm for
blind channel estimation. In Section 4, we analyze the
performance of the proposed channel estimation meth-
ods and the ACRBs. Simulation results are presented in
Section 5, and concluding remarks are made in Section 6.
The results in Section 3.1 and 3.2 of this paper have
appeared in a conference paper [35].

Notation In this paper, E{x} stands for the statistical
expectation of the random variable x. The symbols AT ,
A∗, and A† denote the transpose, the complex conjugate,
and the conjugate-transpose of matrix A, respectively.
‖A‖F is the Frobenius norm of matrix A. If A is a square,
tr(A) denotes the trace of matrix A. Im is the m × m
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identity matrix, whereas 0 represents an all-zero matrix
with appropriate dimension. j = √−1 is the imagi-
nary unit. Tm(c) and T̃m(c) are two Toeplitz matrices
respectively defined as

Tm(c) �

⎡
⎢⎢⎢⎢⎣

cn · · · c1 0 · · · 0

0 cn · · · c1
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 cn · · · c1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
m rows (1)

and

T̃m(c) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 0 · · · 0
... c1

. . .
...

cn
...

. . . 0

0 cn
. . . c1

...
. . . . . .

...
0 · · · 0 cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m columns

, (2)

where c = [c1, c2, . . . , cn]T is an arbitrary vector.

2 Systemmodel
Consider a TWRN with two terminal nodes T1 and T2,
and one relay node R, as shown in Fig. 1. Each node has
one antenna which cannot transmit and receive simulta-
neously. The channel from Ti to R is denoted as fi =
[ fi,0, fi,1, . . . , fi,L]T , whereas the one from R back to Ti is
denoted as gi = [

gi,0, gi,1, . . . , gi,L
]T for i = 1 and 2. For

notational simplicity, we assume that the lengths of f1, f2,
g1, and g2 do not exceed L+1.1 Similar to most other algo-
rithms, we assume that the channels do not change when
the channel estimation is performed.

2.1 OFDMmodulation at terminals
Denote the kth OFDM block from Ti as s(i)k =[
s(i)k,0, s

(i)
k,1, . . . , s

(i)
k,N−1

]T
, where N is the OFDM block

length. The corresponding time domain signal block is
obtained from the normalized IDFT as

x(i)
k = W†s(i)k =

[
x(i)
k,0 x(i)

k,1 · · · x(i)
k,N−1

]T
, (3)

where W is the N × N normalized DFT matrix with the
(m, n)th entry given by 1√

N e−j2πmn/N . To maintain the
subcarrier orthogonality during the overall transmission,
we propose to add a CP of length 2L.2 This implicitly
requires N ≥ 2L which is nevertheless satisfied by most
OFDM systems. Define x(i)

k,cp =[ x(i)
k,N−2L, . . . , x

(i)
k,N−1]

T .

The signal sent out from Ti is expressed as
[
x(i)T
k,cp x(i)T

k

]T

for i = 1 and 2.

2.2 Relay processing
The relay R receives the signal [34]

rk =

⎡
⎢⎢⎢⎣

rk,0
rk,1
...

rk,N+2L−1

⎤
⎥⎥⎥⎦ =

2∑
i=1

TN+2L(fi)

⎡
⎢⎣
x(i)
k−1,isi

x(i)
k,cp

x(i)
k

⎤
⎥⎦+nk,r ,

(4)

where x(i)
k−1,isi is the term which causes the inter-symbol

interference (ISI):

x(i)
k−1,isi =

⎡
⎢⎢⎣
x(i)
k−1,N−L

...
x(i)
k−1,N−1

⎤
⎥⎥⎦ . (5)

Moreover, each element in the noise vector nk,r is
assumed to be independent and identically distributed
(i.i.d.) zero-mean complex white Gaussian.
We assume that the relay R employs the amplify-and-

forward scheme. It scales rk by the factor of

α =
√

Pr
E
{‖rk‖2F

} =
√

Pr
‖f1‖2Fσ 2

1 + ‖f2‖2Fσ 2
2 + σ 2

nr
, (6)

where Pr is the average transmission power of R. In the
second equality, we have made the assumptions that the
transmitted signals x(1)

k , x(2)
k , and the received noise nk,r

are uncorrelated with variances σ 2
1 , σ 2

2 , and σ 2
nr , respec-

tively. Then, the relay broadcasts αrk to both terminals.

Fig. 1 System configuration for two-way relay network. It shows a two-way relay network with two terminal nodes T1 and T2, and one relay node
R. Each node has one antenna which cannot transmit and receive simultaneously. The channel from Ti to R is denoted as fi , whereas the one from
R back to Ti is denoted as gi for i = 1 and 2
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2.3 Signal reformulation at terminals
Due to symmetry, we only illustrate the processing at T1.
The (N+2L)×1 vector received at T1 can be expressed as

yk =

⎡
⎢⎢⎢⎣

yk,0
yk,1
...

yk,N+2L−1

⎤
⎥⎥⎥⎦ = TN+2L(g1)

[
αrk−1,isi
αrk

]
+ nk,t ,

(7)

where rk−1,isi is similar to (5)

rk−1,isi =
⎡
⎢⎣

rk−1,N+L
...

rk−1,N+2L−1

⎤
⎥⎦ , (8)

and each element in the noise vector nk,t is assumed to
be i.i.d. zero-mean complex white Gaussian, with variance
σ 2
nt . Substituting (4) into (7), we have

yk =TN+2L(h1)

⎡
⎢⎣
x(1)
k−1,cp

x(1)
k,cp

x(1)
k

⎤
⎥⎦+TN+2L(h2)

⎡
⎢⎣
x(2)
k−1,cp

x(2)
k,cp

x(2)
k

⎤
⎥⎦+nk,e,

(9)

where h1 = α(g1 ∗ f1) and h2 = α(g1 ∗ f2) with ∗ being the
linear convolution between two vectors by the fact that the
multiplication of two Toeplitz matrices is still a Toeplitz
matrix. The last term nk,e denotes the equivalent noise

nk,e = αTN+2L(g1)

⎡
⎢⎢⎢⎣

nk−1,r(N + L)

...
nk−1,r(N + 2L − 1)

nk,r

⎤
⎥⎥⎥⎦+ nk,t .

(10)

When N � L, nk,e can be approximated as white noise.

2.4 Data detection at terminals
After removing the first 2L elements of yk in (9), we obtain
a vector of size N :

ȳk = TN (h1)
[
x(1)
k,cp

x(1)
k

]
+ TN (h2)

[
x(2)
k,cp

x(2)
k

]
+ n̄k,e, (11)

where n̄k,e is the last N elements of nk,e. If the cascaded
channel h1 is known toT1, then the first term on the right-
hand side of (11) can be removed since T1 knows its own
signal x(1)

k . If h2 is known, the regular OFDM detection
can be efficiently performed using fast Fourier transform.
So T1 can recover the data from T2 if both h1 and h2 are
available. Hence, our goal is to estimate h1 and h2. Below,
we will show how to blindly estimate these two cascaded
channels from the received signal yk .

3 Proposedmethod for channel estimation
In this paper, we assume that x(1)

k and x(2)
k are uncorre-

lated. Moreover, the transmitted signals and the noises
are uncorrelated as well. Under these two assumptions,
we propose an algorithm to estimate h1 and h2 blindly.
Though our derivations are based on CP-OFDM system,
the results can be also extended to ZP-OFDM system. The
details will be discussed later.

3.1 The estimation of h1
Let us look at the received vector ȳk in (11). Notice that
x(1)
k is known at T1. If we have a perfect estimate of h1,

then the first term at the right-hand side of (11) can be
eliminated completely from ȳk . Due to uncorrelatedness
of x(1)

k , x(2)
k , and n̄k,e, the power of ȳk will be reduced when

x(1)
k is eliminated from ȳk . Based on this power reduction,

we are able to derive a closed-form formula for an estimate
of the (2L + 1) × 1 vector h1, as shown below.
Define a cost function

J
(
ĥ1
)

= E

⎧⎨
⎩

∥∥∥∥∥ȳk − TN
(
ĥ1
)[ x(1)

k,cp
x(1)
k

]∥∥∥∥∥
2

F

⎫⎬
⎭ , (12)

where ȳk is the N × 1 vector in (11) and ĥ1 is an estimate
of h1. Substituting (11) into (12), we get

J
(
ĥ1
)

= E
{∥∥∥∥∥
(
TN (h1) − TN

(
ĥ1
))[ x(1)

k,cp
x(1)
k

]

+TN (h2)
[
x(2)
k,cp

x(2)
k

]
+ n̄k,e

∥∥∥∥∥
2

F

⎫⎬
⎭

= E

⎧⎨
⎩

∥∥∥∥∥TN
(
h1 − ĥ1

)[ x(1)
k,cp

x(1)
k

]∥∥∥∥∥
2

F

⎫⎬
⎭

+ E

⎧⎨
⎩

∥∥∥∥∥TN (h2)
[
x(2)
k,cp

x(2)
k

]∥∥∥∥∥
2

F

⎫⎬
⎭+ E

{∥∥n̄k,e
∥∥2
F

}
.

(13)

Using the assumptions mentioned above to simplify the
expression, we have

J
(
ĥ1
)

= N
(

σ 2
1

∥∥∥h1 − ĥ1
∥∥∥2
F
+σ 2

2
∥∥h2

∥∥2
F+|α|2σ 2

nr
∥∥ g1

∥∥2
F+σ 2

nt

)

≥ N
(
σ 2
2
∥∥h2

∥∥2
F + |α|2σ 2

nr
∥∥ g1

∥∥2
F + σ 2

nt

)
.

(14)

Obviously, the cost function has the minimum if and
only if ‖h1 − ĥ1‖2F = 0, or equivalently, ĥ1 = h1. Assume
that T1 has collected K blocks. For mean-ergodic pro-
cesses, the ensemble average (or statistical average) can be
well approximated by the time average:
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J̄
(
ĥ1
)

= 1
K

K−1∑
k=0

∥∥∥∥∥ȳk − TN
(
ĥ1
)[ x(1)

k,cp
x(1)
k

]∥∥∥∥∥
2

F

= 1
K

K−1∑
k=0

∥∥∥ȳk − √
NW†D

(
s(1)k

)
W2L+1ĥ1

∥∥∥2
F
,

(15)

where D
(
s(1)k

)
is a diagonal matrix with the elements of

s(1)k on the main diagonal, and W2L+1 is the first 2L + 1
columns of the DFT matrixW. Let

y = [ ȳT0 ȳT1 · · · ȳTK−1
]T (16)

and

S =
[
D
(
s(1)0

)
D
(
s(1)1

)
· · · D

(
s(1)K−1

) ]T
. (17)

Then, (15) can be rewritten as

J̄
(
ĥ1
)

= 1
K

∥∥∥y − √
N
(
IK ⊗ W†

)
SW2L+1ĥ1

∥∥∥2
F
, (18)

where the symbol ⊗ denotes the Kronecker product. The
least squares solution of (18) can be calculated as

ĥ1 = 1√
N

(
W†

2L+1S
†SW2L+1

)−1
W†

2L+1S
† (IK ⊗ W) y.

(19)

When K >> 1, we have S†S ≈ Kσ 2
1 IN as the modu-

lation symbols are statistically independent. In this case,
(19) can be approximated as

ĥ1 ≈ 1√
NKσ 2

1
W†

2L+1

K−1∑
k=0

(
s(1)k

)∗ 	 (Wȳk) , (20)

where the symbol 	 denotes the Hadamard product.
Notice that there is no scalar ambiguity in the estimation
of h1 since s(1)k and ȳk are known at T1.

3.2 The estimation of h2
In order to estimate the (2L + 1) × 1 vector h2, we
first remove the self-interfering signal from the received
vector. Define

zk = yk − TN+2L
(
ĥ1
)
⎡
⎢⎣
x(1)
k−1,cp

x(1)
k,cp

x(1)
k

⎤
⎥⎦ . (21)

Assuming that the estimation ofh1 is perfect (i.e., ĥ1 = h1),
from (9) and (21), we have

zk = TN+2L(h2)

⎡
⎢⎣
x(2)
k−1,cp

x(2)
k,cp

x(2)
k

⎤
⎥⎦+ nk,e. (22)

Note that the vector zk is simply the received vector in
a usual CP-OFDM system with channel h2 and transmit-
ted vector x(2)

k . Many blind estimation methods have been
proposed for the estimation of h2 from zk . Below, we will
adopt the subspace-based algorithm in [24]. Define the
re-modulated vector

z̃k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zk−1,2L
...

zk−1,N+2L−1
zk,0
...

zk,2L−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

where zk,i is the ith entry of zk . That is, z̃k is a (N +2L)×1
vector formed by the lastN entries of zk−1 and the first 2L
entries of zk . Next, we construct the vector

vk = zk − z̃k . (24)

Substituting (9) and (21) into (24), we have

vk = T̃N (h2)

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

x(2)
k,cp
x(2)
k,0
...

x(2)
k,N−2L−1

⎤
⎥⎥⎥⎥⎦

− x(2)
k−1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
�dk

+ηk , (25)

where T̃N (·) is defined in (2) and ηk is colored noise. The
covariance matrix of ηk is [24]

E{ηkη†k} = σ 2
ne

⎡
⎣

2I2L 0 −I2L
0 2IN−2L 0

−I2L 0 2I2L

⎤
⎦

︸ ︷︷ ︸
�Rw

,

where σ 2
ne is the average power of nk,e. It can be verified

that

R−1/2
w =

⎡
⎣
c1I2L 0 c2I2L
0 1√

2 IN−2L 0
c2I2L 0 c1I2L

⎤
⎦ (26)

with

c1 =
√

2/3+√
1/3

2 and c2 =
√

2/3−√
1/3

2 .

Carrying out the whitening process on vk , we get the
whitened vector v(w)

k = R−1/2
w vk and its covariance matrix

is

R(w)
v = R−1/2

w T̃N (h2)RdT̃†
N (h2)R−1/2

w +σ 2
neIN+2L, (27)

where Rd = E
{
dkd†k

}
is the covariance matrix of dk

defined in (25). A necessary condition thatRd has full rank
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is that T1 collects K ≥ N blocks. Utilizing eigenvalue
decomposition, (27) can be computed as

R(w)
v = Us�U†

s + σ 2
neUoU†

o, (28)

where� is anN×N diagonal matrix and the (N+2L)×N
matrix Us spans the signal subspace. On the other hand,
the (N + 2L) × 2L matrix Uo spans the noise subspace.
That is,

U†
oR

−1/2
w T̃N (h2) = 0. (29)

Let

Ji =
⎡
⎣

0i×(2L+1)
I2L+1

0(N−1−i)×(2L+1)

⎤
⎦ for i = 0, 1, . . . ,N − 1.

(30)

Then, (29) can be rewritten as⎡
⎢⎢⎣

U†
oR

−1/2
w J0
...

U†
oR

−1/2
w JN−1

⎤
⎥⎥⎦

︸ ︷︷ ︸
�U

h2 = 0. (31)

Hence, we can estimate h2 (up to a scalar ambiguity) by
calculating the eigenvector corresponding to the smallest
eigenvalue of U†U.
In summary, our algorithm is as follows.

1. Estimate h1 by (20).
2. Eliminate the interference from T1 by (21).
3. Calculate v(w)

k = R−1/2
w vk by (24) and (26) and obtain

the (N + 2L) × 2Lmatrix Uo spanning the noise
subspace by eigenvalue decomposition.

4. Estimate h2 (up to a scalar ambiguity) by calculating
the eigenvector corresponding to the smallest
eigenvalue of U†U.

3.3 A note on the identifiability issue
Note that the estimate of h1 is unique because the cost
function in (14) has a unique minimum at ĥ1 = h1. The
second channel h2 is estimated by the subspace method.
Let us look at the vector zk in (22). When the self-
interfering signal is completely eliminated, the remaining
part zk is identical to the case of single-input single-output
(SISO) CP-OFDM system in [24]. The identifiability issue
of this method has been studied in [24]. It has been shown
that if h2,0 
= 0, then the vector h2 is uniquely determined
(up to a scalar ambiguity).

3.4 Comparison with an existing work
A blind channel estimation algorithm in OFDM-based
TWRN was proposed in [34]. Comparing our method
with that in [34], there are two major differences. One is
that [34] requires a precoding matrix P, where

PP† =

⎡
⎢⎢⎢⎢⎣

1 θ · · · θ

θ 1
. . .

...
...
. . . . . . θ

θ · · · θ 1

⎤
⎥⎥⎥⎥⎦
.

A necessary condition on θ is − 1
N−1 ≤ θ ≤ 1. In other

words, the kth transmitted vector from Ti is the precoded
vector Ps(i)k instead of s(i)k . Notice that for θ 
= 0, P is not a
unitary matrix. The channel noise can be amplified when
the receiver performs the operation P−1. It was shown in
[34] that when θ increases from 0 to 1, the mean square
error (MSE) of channel estimate decreases. Due to noise
amplification, larger θ does not necessarily yield smaller
BER, so there exists a compromise between channel esti-
mation error and BER. Another difference between our
method and [34] is that there is a 2 × 2 ambiguity matrix
in [34], or equivalently, there are four ambiguity scalars.
On the other hand, there is only one ambiguity scalar in
our algorithm. In terms of complexity, we can see that
the main complexity of our method is the computation
of the eigenvalue decomposition of an N × N matrix in
(28), whereas the eigenvalue decomposition in [34] is for
a (2L + 1) × (2L + 1) matrix. Hence, our method is more
complicated than [34].

3.5 Repeated use of the remodulated vector vk
To obtain Uo in (28), T1 has to collect K ≥ N blocks.
In OFDM systems, N is usually large. The number of
blocks, K, needed for the channel estimation is large. In
order to reduce the required block number K, we can use
the repetition method proposed in [23, 25, 26]. Define
the repetition parameter Q and form the matrix T̃Q(vk),
where vk is defined in (24). According to (25), T̃Q(vk) can
be represented as

T̃Q(vk) = T̃N+Q−1(h2)T̃Q(dk) + T̃Q(ηk). (32)

It was shown in [25] that T̃Q(ηk) is colored noise, and its
covariance matrix can be calculated as

E
{
T̃Q
(
ηk
)
T̃†
Q(ηk)

}
= σ 2

ne

Q∑
q=1

⎡
⎢⎣
0(q−1)×(q−1) 0 0

0 Rw 0
0 0 0(Q−q)×(Q−q)

⎤
⎥⎦

= σ 2
neE�E†,

(33)

where we have applied the eigenvalue decomposition in
the second equality. Therefore, we need to whiten the
matrix T̃Q(vk) by E�−1/2E†. Since each vector vk is
repeated Q times in (32), the required number of blocks
becomes K ≥ N−1

Q + 1 blocks [23]. Collecting these
K blocks, we can follow the procedure in (28)–(31) to
estimate h2 (up to a scalar ambiguity).
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3.6 Multiple relay nodes
The extension to the case of multiple relay nodes is
straight forward as shown in Fig. 2. Suppose that we have
M relay nodesR1,R2, . . . ,RM. Let the channels fromTi to
Rm be denoted as f(m)

i and the channels from Rm to Ti be
denoted as g(m)

i . Then, (4) becomes

r(m)

k =
2∑

i=1
TN+2L

(
f(m)
i

)
⎡
⎢⎣
x(i)
k−1,isi

x(i)
k,cp

x(i)
k

⎤
⎥⎦+ n(m)

k,r , (34)

where r(m)

k is the signal received by relay node Rm and
n(m)

k,r is the noise at Rm. When T1 receives the signal, (7)
becomes

yk =
M∑

m=1
TN+2L

(
g(m)
1

)[ αmr(m)

k−1,isi
αmr(m)

k

]
+ nk,t , (35)

where αm is the amplification scalar in the relay node
Rm. Combining (34) with (35), the received vector at T1
continues to have the form given in (9), but now the
cascaded channels are h1 = ∑M

m=1 αm
(
g(m)
1 ∗ f(m)

1

)
and

h2 = ∑M
m=1 αm

(
g(m)
1 ∗ f(m)

2

)
, and the equivalent noise

nk,e becomes

nk,e=
M∑

m=1
αmTN+2L

(
g(m)
1

)
⎡
⎢⎢⎢⎢⎣

n(m)

k−1,r(N + L)

...
n(m)

k−1,r(N + 2L − 1)
n(m)

k,r

⎤
⎥⎥⎥⎥⎦

+nk,t .

Hence, the above methods can be applied to the case of
multiple relay nodes.

3.7 The case of ZP-OFDM systems
The proposed method can be also applied to TWRN ZP-
OFDM system. In this case, 2L zeros are padded at the end
of x(i)

k in (3) instead of adding the cyclic prefix of length

2L. Due to the padded zeros, the received vector does not
suffer from ISI. Therefore, (9) can be rewritten as

yk = T̃N (h1)x(1)
k + T̃N (h2)x(2)

k + nk,e. (36)

To estimate h1, we modify the cost function in (12) as

J
(
ĥ1
)

= E
{∥∥∥yk − T̃N

(
ĥ1
)
x(1)
k

∥∥∥2
F

}
. (37)

Following a procedure similar to (12)–(20), an estimate
of h1 can be obtained by

ĥ1 = 1
N√
N+2LKσ 2

1
W̃†

2L+1

K−1∑
k=0

(
W̃Nx(1)

k

)∗ 	
(
W̃yk

)
, (38)

where W̃ is the (N+2L)×(N+2L) normalizedDFTmatrix
with the (m, n)th entry given by 1√

N+2Le
−j2πmn/(N+2L),

whereas W̃2L+1 and W̃N are respectively the first 2L + 1
and N columns of W̃.
Assume that the estimation of h1 is perfect so that we

can eliminate the interference from T1. Similar to (21),
define

zk = yk − T̃N
(
ĥ1
)
x(1)
k . (39)

Substituting (36) into (39), we have

zk = T̃N (h2)x(2)
k + nk,e. (40)

This form is similar to (25), so we can follow the proce-
dure in (25)–(31) to estimate h2. Note that the noise nk,e is
(almost) white. Similar to the previous discussion, a nec-
essary condition is K ≥ N . To reduce the limitation of a
large K, we exploit the repetition method in [26]. That is,
we utilize T̃Q(zk) instead of zk to estimate h2, and the nec-
essary condition becomes K ≥ N−1

Q + 1. In this case, the
noise term T̃Q(nk,e) is colored (though nk,e is white) and
the covariance matrix is [26]

Fig. 2 System configuration for multiple relay network. It shows the case of multiple relay nodes. Suppose that we haveM relay nodes
R1,R2, . . . ,RM . Let the channels from Ti to Rm be denoted as f(m)

i and the channels from Rm to Ti be denoted as g(m)
i
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E
{
T̃Q
(
nk,e
)
T̃†
Q
(
nk,e
)}=σ 2

neD

⎛
⎜⎝

⎡
⎢⎣1, 2, . . . , Q′, . . . ,Q′

︸ ︷︷ ︸
|N+2L−Q|+1

, . . . , 2, 1

⎤
⎥⎦

⎞
⎟⎠ ,

where D(·) is defined in (15) and Q′ = min{Q,N + 2L}.
Therefore, we need to whiten the matrix T̃Q(zk) by

D

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣1,

1√
2
, . . . ,

1√
Q′ , . . . ,

1√
Q′︸ ︷︷ ︸

|N+2L−Q|+1

, . . . ,
1√
2
, 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

Following a procedure similar to Section 3.5, one can
obtain a blind estimate of h2 (up to a scalar ambiguity).

4 Analysis of MSE performance and Cramer-Rao
bound

In this section, we will derive the theoretical MSE about
channel estimation for h1 and h2 respectively. In the fol-
lowing analysis, we assume that the channel taps are
uncorrelated and the transmitted vectors x(i)

k are also
uncorrelated for different k or i.

4.1 The analysis of h1 estimate
In the estimation of h1, we regard the signal from T2 as
interference. Since (20) is the least squares solution of (18),
the difference between ĥ1 and h1 can be calculated as

	h1 � ĥ1 − h1

= 1√
NKσ 2

1
W†

2L+1

K−1∑
k=0

(
s(1)k

)∗ 	 (Wξ k
)
, (41)

where ξ k denotes the interference and noise. From (11),
we have

ξ k = C(h2)x(2)
k + n̄k,e, (42)

where C(h2) is an N × N circulant matrix having[
hT2 01×(N−2L−1)

]T as its first column. Assuming that
x(2)
k and nk,e are uncorrelated, the covariance matrix of ξ k

can be computed as

E
{
ξ kξ

†
k

}
= σ 2

2C (h2)C†(h2) + σ 2
neIN

= W†
(
σ 2
2D
(
h2,f
)
D† (h2,f

)+ σ 2
neIN

)
W,
(43)

whereD
(
h2,f
)
is theN ×N diagonal matrix with diagonal

entries from the N × 1 frequency response vector h2,f =√
NW2L+1h2. Then, the covariance matrix of 	h1 can be

computed as

R	h1 � E
{
	h1	h†1

}

= 1
NKσ 2

1
W†

2L+1

(
σ 2
2D
(
h2,f
)
D† (h2,f

)+ σ 2
ne IN

)
W2L+1

= 1
NKσ 2

1

(
σ 2
2A + σ 2

ne I2L+1
)
,

(44)

where A is a (2L + 1) × (2L + 1) Toeplitz and Hermitian
matrix with Am,n = ∑2L+m−n

l=0 h2,lh∗
2,l−m+n if m ≤ n and

Am,n = ∑2L
l=m−n h2,lh∗

2,l−m+n if m ≥ n. Therefore, the
theoretical MSE can be calculated as

E
{‖	h1‖2F

} = tr
{
R	h1

} = 2L + 1
NK

σ 2
2 ‖h2‖2F + σ 2

ne
σ 2
1

, (45)

where tr
{
R	h1

}
is the sum of the diagonal elements of

R	h1 . Define the signal-to-noise ratio (SNR) as

SNR � σ 2
2

σ 2
ne

= σ 2
2

α2σ 2
nr‖g1‖2F + σ 2

nt
, (46)

where the second equality is obtained by using (10). Then,
(45) can be written as

E
{‖	h1‖2F

} = 2L + 1
NK

σ 2
2

σ 2
1

(
‖h2‖2F + 1

SNR

)
. (47)

Note from the above equation that the MSE is propor-
tional to the signal power from T2 but inversely propor-
tional to the signal power from T1 and the number of the
received signal blocks. Moreover, for high SNR, the MSE
floors at the value of 2L+1

NK
σ 2
2

σ 2
1
‖h2‖2F .

4.2 The analysis of h2 estimate
During the estimation of h2 in Section 3.2, it is assumed
that the estimate of h1 is perfect. However, the estimation
error 	h1 will affect the accuracy of the estimation of h2.
From (21), if 	h1 
= 0, the interference and noise terms
can be written as

TN+2L(	h1)

⎡
⎢⎣
x(1)
k−1,cp

x(1)
k,cp

x(1)
k

⎤
⎥⎦+ nk,e. (48)

Next, we look at vk in (25). Following the procedure
(21)–(26), the whitened vector v(w)

k now becomes

v(w)

k = R−1/2
w vk = R−1/2

w T̃N (h2)dk + ζ k ,

where

ζ k =R−1/2
w T̃N (	h1)1

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

x(1)
k,cp
x(1)
k,0
...

x(1)
k,N−2L−1

⎤
⎥⎥⎥⎥⎦

− x(1)
k−1

⎞
⎟⎟⎟⎟⎠

+R−1/2
w ηk .

(49)

Recall from the subspace method in Section 3.2 that the
estimate ĥ2 is obtained from the noise subspaceUo in (28).
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Let λ1 ≤ λ2 ≤ · · · ≤ λN+2L be the eigenvalues of R(w)
v .

The noise subspace Uo is the eigenspace corresponding
to the smallest 2L eigenvalues λ1, λ2, . . . , λ2L. The error
vector ζ k can cause two effects: (i) it perturbs the noise
subspace Uo and (ii) it also perturbs the eigenvalues, i.e.,
λ1 + 	λ1, λ2 + 	λ2, . . . , λN+2L + 	λN+2L. Note that λ2L
belongs to the noise subspaceUo and λ2L+1 belongs to the
signal subspaceUs. Their difference λ2L+1 − λ2L is usually
large. Nevertheless, the perturbation on eigenvalues may
lead to the case λ2L + 	λ2L > λ2L+1 + 	λ2L+1, especially
when the SNR is low. In this case, the noise subspace will
be polluted by the signal subspace and this will cause a
large error in the estimation of h2. Below, we derive the
MSE by studying the following two cases separately.

Case I: λ2L + 	λ2L < λ2L+1 + 	λ2L+1
In this case, we can exploit the first-order approximation

of the perturbation to Uo. In [24], the channel estima-
tion error has been derived. However, the theoretical MSE
derived in [24] is based on white noise. As the noise ζ k is
colored, the formula derived in [24] is not applicable. For
the case of colored noise ζ k , we have derived a new for-
mula and the theoretical MSE of the h2 estimate can be
calculated as

E
{‖	h2‖2F

}= 1
2Kσ 2

2
tr
{
U�
(
IN ⊗ U†

oRζUo
) (

U†
)�
}
, (50)

where	h2 � ĥ2−h2,U� is theMoore-Penrose pseudoin-
verse matrix ofU defined in (31), and Rζ � E{ζ kζ

†
k} is the

covariance matrix of ζ k and it can be written as

Rζ = 2σ 2
1R

−1/2
w E

{
T̃N (	h1)T̃†

N (	h1)
}
R−1/2
w +σ 2

neIN+2L.

(51)

Notice that T̃N (	h1) can be rewritten as

T̃N (	h1) = [ J0	h1 J1	h1 · · · JN−1	h1
]
,

where Ji is defined in (30). Hence, (51) can be rewritten as

Rζ = 2σ 2
1R

−1/2
w

(N−1∑
i=0

JiR	h1J
T
i

)
R−1/2
w + σ 2

neIN+2L, (52)

where R	h1 is defined in (44).

Case II: λ2L + 	λ2L ≥ λ2L+1 + 	λ2L+1
In this case, our algorithm cannot find the accurate

noise subspace Uo because it has been polluted by signal
subspace Us. Thus, we assume that the eigenvector of U
corresponding to the smallest eigenvalue is random and
uncorrelated to the true cascaded channel h2. Define this
unit-norm eigenvector as h̃2. The scalar ambiguity can be
calculated as α =

(
h̃†2h2

)
/
(
h̃†2h̃2

)
= h̃†2h2. That is,

ĥ2 = h̃2α = h̃2
(
h̃†2h2

)
. (53)

The estimation error is 	h2 = ĥ2 − h2 =(
h̃2h̃†2 − I2L+1

)
h2. Hence, the theoretical MSE of the h2

estimate can be calculated as

E
{‖	h2‖2F

} = h†2E
{(

h̃2h̃†2 − I2L+1
)2}

h2. (54)

Since the unit-norm vector h̃2 is assumed to be random,
E
{
h̃2h̃†2

}
can be approximated as 1

2L+1 I2L+1. Therefore,
(54) can be written as

E
{‖	h2‖2F

} = 2L
2L + 1

‖h2‖2F . (55)

Overall MSE: Utilizing Bayes’ theorem, the theoretical
MSE of the h2 estimate can be written as

E
{‖	h2‖2F

} = PerrE
{
	h2‖2F

∣∣ λ2L + 	λ2L

≥ λ2L+1 + 	λ2L+1
}

+ (1 − Perr)E
{‖	h2‖2F

∣∣ λ2L + 	λ2L

< λ2L+1 + 	λ2L+1
}
,

(56)

where Perr is the probability of λ2L + 	λ2L ≥ λ2L+1 +
	λ2L+1 and it can be expressed by

Perr = Q
(√

K
2

λ2L+1 − λ2L
σ 2
ne

)
, (57)

where Q(·) is the Q-function:

Q(x) = 1√
2π

∫ ∞

x
e−

u2
2 du.

The derivation of Perr is given in Appendix A. Substitut-
ing (50) and (55) into (56), the theoretical MSE of the h2
estimate can be represented as

E
{‖	h2‖2F

} = Perr
2L

2L + 1
‖h2‖2F

+ (1 − Perr)
1

2Kσ 2
2
tr
{
U�
(
IN ⊗ U†

oRζUo
) (

U†
)�
}
,

(58)

where Rζ is given in (52).

4.3 Approximated Cramer-Rao bound
When we estimate h1, the signal from T2 can be viewed as
interference, and the signal from T1 can be seen as pilot.
To simplify the derivation, we assume that ξ k in (42) is
white. Hence, an ACRB of h1 estimation is [36]

ACRB1 = σ 2
ξ

N
tr
{(

(SW2L+1)
† SW2L+1

)−1
}
, (59)

where W2L+1 and S are defined in (15) and (17), respec-
tively, and σ 2

ξ is the average power of ξ k . From (43),
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we have σ 2
ξ = σ 2

2 ‖h2‖2F + σ 2
ne . Therefore, (59) can be

simplified as

ACRB1 = 2L + 1
NK

σ 2
2 ‖h2‖2F + σ 2

ne
σ 2
1

. (60)

Notice that this form is the same as (45).
Next, we consider the ACRB of h2. In [24], the authors

have derived an ACRB and concluded that the ACRB is
the same as the channel estimation MSE. Hence, from
(50), an ACRB of h2 estimation is

ACRB2 = 1
2Kσ 2

2
tr
{
U�
(
IN ⊗ U†

oRζUo
) (

U†
)�
}
. (61)

In the derivations of the ACRBs, the noises are assumed
to be white even though they are actually colored. There-
fore, the ACRBs in (60) and (61) are in general larger than
or equal to the true Cramer-Rao bounds.

5 Simulation results
In the simulation, we consider a TWRN with one relay
node. The channel taps fi,l and gi,l are generated as inde-
pendent and identically distributed zero-mean complex
Gaussian random variables with variances equal to 1/9.
The order of these channels is L = 8, so the order of
the cascaded channels is 2L = 16. The channels are nor-
malized so that ‖f1‖2F = ‖f2‖2F = ‖g1‖2F = ‖g2‖2F = 1.
The channel does not change while the channel estima-
tion is performed. The channel noise is additive white

Gaussian noise (AWGN), and the transmission symbols
are 16-QAM with gray code. The size of the DFT matrix
is N = 64, and the length of CP is 2L = 16. In all plots,
we set σ 2

1 = σ 2
2 and σ 2

nr = σ 2
nt . The SNR is defined in (46),

and the normalized MSE is defined as

1
Mc

∑Mc
m=1

‖ĥ(m)
i −hi‖2F
‖hi‖2F

for i = 1 and 2,

where ĥ(m)
i represents the estimated hi in the mth trial.

Mc = 2000 denotes the total number of Monte-Carlo
trials.
First, we look at the MSE performance of the proposed

methods. The number of received blocks is K = 500. In
Fig. 3, we plot the normalized MSEs for h1 and h2. The
“simulation” curves of h1 and h2 are obtained by (20) and
(31), respectively, whereas the “theory” curves of h1 and
h2 are calculated by (47) and (58), respectively. Moreover,
we also display the ACRBs of h1 and h2 according to (60)
and (61). From Fig. 3, it can be seen that the simulated
result, the theoretical MSE, and the ACRB of h1 is close.
Moreover, the proposed method can give a good estimate
of h1, even at very low SNR of 0 dB. One can see that
the MSE floors at 2L+1

NK = 5.3 × 10−4 at high SNR, and
this confirms our analysis in (47). For h2, the MSE perfor-
mance is worse than that of h1 for SNR < 25 dB, but the
MSE of h2 floors at a much smaller value of 1.2 × 10−5.
This flooring happens at very high SNR, and the estima-
tion error of h1 affects the accuracy of h2 estimate. The

Fig. 3 Comparison of the numerical and theoretical normalized MSE for K = 500. We plot the normalized MSEs for h1 and h2. The “simulation”
curves of h1 and h2 are obtained by (20) and (31), respectively, whereas the “Theory” curves of h1 and h2 are calculated by (47) and (58),
respectively. Moreover, we also display the ACRBs of h1 and h2 according to (60) and (61). The number of received blocks is K = 500
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gap between numerical and theoretical results is small
at high SNR. At low SNR, the gap between simulation
result and ACRB becomes very large, but the theoretical
curve is still close to the numerical curve. Recall that the
theoretical MSE value is a combination of two cases in
Section 4.2, and the ACRB of h2 in (61) is equal to the the-
oretical MSE when we do not consider the perturbation
on eigenvalues, i.e., case II in Section 4.2 (case II usually
happens at low SNR). Therefore, the difference between
the theoretical MSE and ACRB of h2 at low SNR is caused
by the perturbation of eigenvalues. From Fig. 3, we con-
clude that the change of eigenvalue sequence dominates
the performance degradation at low SNR. In addition, the
assumption of white noise in the derivation of ACRB also
affects the accuracy, especially when the SNR is low.
Next, we compare the performances of our method with

the method proposed by Liao et al. in [34]. As men-
tioned in Section 3.4, Liao’s algorithm has a compromise
between channel estimation error and BER. The param-
eter θ in Liao’s algorithm is set to 0.2, 0.4, 0.6, and 0.8.
From [34], it is found that θ = 0.4 yields a good BER
performance when SNR = 25 dB. In Figs. 4 and 5, the
number of received blocks is K = 500. Figure 4 shows
the MSE performances. Since the MSEs of h1 and h2 by
Liao’s algorithm are the same, we plot oneMSE curve only.
From the figure, we see that as θ increases from 0.2 to
0.8, the MSE of Liao’s algorithm decreases. For the esti-
mation of h1, our method is better than Liao’s methods
for θ = 0.2 and 0.4, but worse than that for θ = 0.6 and
θ = 0.8. As we will see in Fig. 5, the BER performance

for θ = 0.8 is not good due to severe noise amplifica-
tion. For h2, Liao’s method is better at low SNR whereas
our method is better at high SNR. In Fig. 5, we show
BER performances. Zero-forcing equalizers are used at the
receiver. The “perfect compensation” represents the case
that the channel taps are perfectly known at the receiver.
It is seen that among the four curves of θ = 0.2, 0.4, 0.6,
0.8, Liao’s method has the best BER performance when θ

is set as 0.4 for SNR = 25 dB. Though the MSE of Liao’s
method is the smallest when θ = 0.8, its BER perfor-
mance is not good due to the noise amplification problem
of the precoding matrix. These results are matched with
[34]. From Fig. 5, we see that the proposed algorithm
outperforms Liao’s methods when SNR ≥ 15 dB, and
the performance of our method is close to the perfect
compensation.
Figures 6 and 7 show the simulation results when the

number of blocks is K = 50. In this case, K < N , and
thus, the estimation of h2 by (31) does not work. We
exploit the repetition method discussed in Section 3.5 to
solve this issue. We set the repetition parameter Q = 10,
and the necessary condition K ≥ N−1

Q + 1 is satisfied. In
Fig. 6, the MSE performance is shown. We can observe
that the repetition method is extremely useful when the
terminal receives few blocks. On the other hand, h1 esti-
mation by (20) and Liao’s algorithm are based on the
power reduction, so there is no limitation on the num-
ber of blocks K. From the figure, we see that the proposed
method outperforms Liao’s algorithms with θ = 0.2 and
0.4 for all SNR. In Fig. 7, the performance is measured by

Fig. 4 Comparison of the normalized MSE for K = 500. We compare the normalized MSE performances of our method with the method proposed
by Liao et al. in [34]. The parameter θ in Liao’s algorithm is set to 0.2, 0.4, 0.6, and 0.8. The number of received blocks is K = 500
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Fig. 5 Comparison of the BER for K = 500. We compare the BER performances of our method with the method proposed by Liao et al. in [34]. The
parameter θ in Liao’s algorithm is set to 0.2, 0.4, 0.6, and 0.8. The number of received blocks is K = 500

BER. It can be seen that the proposed algorithm performs
better than Liao’s method when SNR ≥ 15 dB. Compar-
ing Fig. 7 with Fig. 5, we find that the BER performance
degrades when K reduces from 500 to 50. This is due
to the larger channel estimation errors for K = 50 and
imperfect interference cancelation by h1 using (21).

Finally, we compare the proposed algorithm for CP-
OFDM and ZP-OFDM systems. In Fig. 8, the solid curves
and the dashed curves represent the MSEs for CP-OFDM
and ZP-OFDM, respectively. We can find that the perfor-
mances are almost the same. In other words, our method
works well for both CP and ZP systems.

Fig. 6 Comparison of the normalized MSE for K = 50. We compare the normalized MSE performances of our method with the method proposed by
Liao et al. in [34]. The parameter θ in Liao’s algorithm is set to 0.2, 0.4, 0.6, and 0.8. The number of received blocks is K = 50
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Fig. 7 Comparison of the BER for K = 50. We compare the BER performances of our method with the method proposed by Liao et al. in [34]. The
parameter θ in Liao’s algorithm is set to 0.2, 0.4, 0.6, and 0.8. The number of received blocks is K = 50

6 Conclusions
In this paper, we propose a blind channel estimation
method in OFDM-based amplify-and-forward two-way
relay networks. The first cascaded channel h1 is estimated
by the power reduction method whereas the second cas-
caded channel h2 is estimated by the subspace method.

Close-form formulas are derived. We also analyze the
theoretical performance and derive the ACRBs for chan-
nel estimation. Our algorithm can be applied to both
CP-OFDM and ZP-OFDM systems, and it can use repe-
tition method to handle the case of few received blocks.
Simulation results verify our analysis.

Fig. 8 Comparison of the normalized MSE for CP-OFDM and ZP-OFDM systems for K = 500. We compare the proposed algorithm for CP-OFDM and
ZP-OFDM systems. The solid curves and the dashed curves represent the MSEs for CP-OFDM and ZP-OFDM, respectively. The number of received
blocks is K = 500
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Endnotes
1 The proposed method can be applied to the more gen-

eral case of different channel lengths by simply using an
appropriate cyclic prefix length.

2 If T1 and T2 add CP of length L, then the relay needs
to carry out the operations of OFDM symbol timing syn-
chronization, CP removal, and CP insertion. In order to
simplify the tasks of the relay, T1 and T2 add CP of length
2L.

Appendix A
A proof of (57)
To simplify our derivation, we utilize the fact that this
condition usually occurs at low SNR. From (47) and the
simulation in Section 5, it can be seen that the estimate of
h1 is still quite accurate at low SNR, so the second term
nk,e in (48) is dominant. Let λ1 ≤ λ2 ≤ · · · ≤ λN+2L
be the eigenvalues of R(w)

v and the corresponding unit-
norm eigenvectors are respectively b1,b2, . . . ,bN+2L. By
(27) and (52), R(w)

v can be expressed by

R(w)
v = 2σ 2

2R
−1/2
w T̃N (h2)T̃†

N (h2)R−1/2
w

+ 2σ 2
1R

−1/2
w

(N−1∑
i=0

JiR	h1J
T
i

)
R−1/2
w + σ 2

neIN+2L.

(62)

Since the received signals are finite and the second term
in (48) is dominant, we have the following approximation:

1
K

K∑
k=1

v(w)

k

(
v(w)

k

)† ≈ E{R−1/2
w vkv†kR

−1/2
w }

+ 1
K

K∑
k=1

R−1/2
w ηkη

†
kR

−1/2
w − σ 2

neIN+2L

︸ ︷︷ ︸
�N

, (63)

and the corresponding eigenvalues become λ1+	λ1, λ2+
	λ2, . . . , λN+2L + 	λN+2L. Notice that N is a Hermitian
matrix with mean 0. For large K, the central limit theorem
indicates that the diagonal entries of N are real normal
distributed and the other entries are circularly symmetric
complex normal distributed [37]. According to the result
in [38], all entries of N have the same variance 1

K σ 4
ne .

From matrix theory [39], the eigenvalue perturbation
	λi can be approximated as b†iNbi. Then, the mean is

E{	λi} = E
{
b†iNbi

}
= b†i E{N}bi = 0, (64)

and the variance is

E
{|	λi|2

} = E
{
b†i Nbib†i N

†bi
}

= E

⎧⎨
⎩
∑
j

∑
l

∑
m

∑
n

b∗
i (j)N(j, l)bi(l)bi(m)N∗(m, n)b∗

i (n)

⎫⎬
⎭

=
∑
j

∑
l

∑
m

∑
n

b∗
i (j)bi(l)bi(m)b∗

i (n)E{N(j, l)N∗(m, n)}.

(65)

Because R−1/2
w ηk is white, all entries of N are uncor-

related, so the last term E
{
N(j, l)N∗(m, n)

}
is equal to

1
K σ 4

neδ(j − m)δ(l − n), where δ(·) is the Kronecker delta
function. Thus, (65) can be rewritten as

E
{|	λi|2

} = 1
K

σ 4
ne

∑
j

∑
l
b∗
i (j)bi(l)bi(j)b

∗
i (l)

= 1
K

σ 4
ne

∣∣∣b†i bi
∣∣∣2 = 1

K
σ 4
ne . (66)

The last equality holds since b†i bi = 1 for i =
1, 2, . . . ,N + 2L.
Notice that N is normal distributed and bi is constant,

so the random variable 	λi is normal distributed as well.
It means that the probability of λ2L + 	λ2L ≥ λ2L+1 +
	λ2L+1 can be computed as

Perr � Pr {λ2L + 	λ2L ≥ λ2L+1 + 	λ2L+1}

= Q

⎛
⎜⎝ λ2L+1 − λ2L√

E
{|	λ2L+1|2

}+ E
{|	λ2L|2

}

⎞
⎟⎠ . (67)

Substituting (66) into (67), we obtain (57).
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