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Abstract

results in a wide range of tracking scenarios.

Correlation filter-based trackers have recently shown excellent performance in terms of motion blur and illumination
changes, but they are notoriously sensitive to deformation. It has been demonstrated that the combination of the
correlation filter-based tracker and the color histogram-based tracker can alleviate the deformation and keep
advantages of the correlation filter-based tracker. However, the most existing complementary tracking algorithms,
which use fixed complementary weights, limit the performance of every sub tracker. This paper introduces an
adaptive complementary tracker by online learning dynamic complementary weights. The strategy enables
inappropriate sub tracker to be down-weighted while increasing the impact of suitable one. We jointly learn the
sub trackers and their reliability weights by regression analysis of the corresponding historical tracking results. The
robustness of the model also can be improved by training each sub tracker with the result of historical tracking.
Finally, both qualitative and quantitative evaluations demonstrate that our tracker achieves the state-of-the-art
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1 Background

Visual tracking plays an important role in computer vi-
sion and has received fast-growth attention in recent
years due to its wide practical application. In generic
tracking, the task is to track an unknown target (only a
bounding box defining the object of interest in a single
frame is given) in an unknown video stream. This prob-
lem is very challenging due to the limited set of training
samples and the numerous appearance changes, e.g., ro-
tations, scale changes, occlusions, and deformations.

For solving these problems, many effective tracking
models have been proposed [1] in recent years. These
models can be categorized into methods based on sub-
space algorithms [2, 3], sparse representation [4—8], on-
line classifiers [9-12], and so on. Recently, correlation
filter-based tracking algorithms [13—17] have drawn in-
creasing attention because of its dense sampling prop-
erty and its fast computation in the Fourier domain.

Bolme et al. [13] propose the MOSSE tracker which finds
a filter by minimizing the sum of squared error between
the actual convolution outputs and the desired convolution
outputs. The MOSSE tracker can handle several hundreds
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of frames per second because of the fast element-wise
multiplication and division in the Fourier domain. Henri-
ques et al. [18] extend correlation filters to a kernel space,
leading to the Circulant Structure of Tracking-by-Detection
with Kernels (CSK) tracker which achieves competitive per-
formance and efficiency. To further improve the perform-
ance, the KCF method [19] integrates multiple features into
the CSK tracking algorithm. The Discriminative Scale
Space Tracker (DSST) tracker [20] utilizes one-dimensional
correlation filters for online estimation of target scale to
overcome a wide range of changes to target scale. Further-
more, Montero et al. [21] propose a scalable kernel correl-
ation filter which introduces an adjustable Gaussian
window function and a key point-based model for scale es-
timation. This strategy can deal with the fixed size limita-
tion in the Kernelized Correlation Filter.

Correlation filters are inherently confined to the prob-
lem of learning a rigid template. By learning their model
from circular shifts of positive examples, correlation filters
fail to learn a component that is invariant to permutations.
This makes them inherently sensitive to shape deform-
ation. This is a concern when the target experiences
shaped formation in the course of a sequence. Yao et al.
[22] decompose the target object into several parts to ex-
ploit the spatial information of the object appearances.
Their strategies improve the tracker’s performance in
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situations like occlusions and deformations. In addition,
color histograms were used in many early approaches to
object tracking [23, 24]; they have been demonstrated to
be competitive in the Distractor-Aware Online Tracking
(DAT) [25]. More recently, Luca et al. [26] propose a sim-
ple linear combination of template and color histogram
scores by a fixed weight to alleviate shape deformation.
However, the fixed weight limits the performance of the
combination model.

To solve the discussed problem above, this paper
presents an online adaptive complementary tracker.
The contributions of this work are twofold. First, we
propose a novel formulation for jointly learning two
sub trackers and their reliability weights. These sub
trackers have better generalization ability, because
they use more samples during training. Second, we
online analyze the reliability of every sub tracking
model in the current scene to real-time adjust their
importance in the complementary model. By the ad-
justment of the adaptive weight, our combination
model shows better performance.
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2 Methods

2.1 Problem formulation

It is necessary to understand the real-time state of
the scene for adaptively assigning the appropriate
tracker to the current scene. We try to analyze the
matching between every sub model and the scene by
analyzing the regression deviation between the sub
tracker and some history tracking results. This strat-
egy is based on an assumption where all history
tracking results are accurate and reliable. However,
in practice, this assumption is uncertain. In order to
avoid the unreliable assumption, we propose to
jointly learn every sub tracking model and their
corresponding reliability weights in a tracking-by-de-
tection framework. Figure 1 shows the diagram of
the proposed method.

Specifically, our method jointly learns both sub
trackers /1; and /1, and their weights a and 8 by minimiz-
ing a single loss function. To the best of our knowledge,
we are the first to introduce the joint optimization
framework by the joint loss,
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Here, /; and /, denote two regression problems; they
will be used to learn two sub models which make up our
complementary appearance model. /; is a correlation
filter-based tracker, and its complementary tracker 4, is
based on color histogram scores. The weight ¢ assures /3
and [, consistent value interval. &, %», and PR3 are
three independent regularization terms.

2.2 Constructing and solving the sub tracker h,
We use the Background-aware Correlation Filters
(BACF) model [27] as baseline model of /; because it
can effectively handle the boundary effect which is a fun-
damental drawback to traditional correlation filter-based
trackers. However, similar to many other correlation
filter-based trackers, the BACF model also depends
strongly on the spatial layout of the tracked object, so is
sensitive to deformation. In addition, the BACF model
ignores the problem of corrupted samples, and when
those corrupted samples are included in the training set,
the model drift may be caused.

Being motivated by [28], we develop the BACF model
into Eq. 2 to learn our sub tracker /;:
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where P denotes transform matrix which is a £ x J binary
matrix for cropping mid E elements of sample ¢¢, E « J.
The cropped patch corresponding to the peak of the cor-
relation output displays the target (positive example), and
those corresponding to the zero values of the correlation
output display the background content (negative exam-
ples). The transform matrix P can be pre-computed, and
Pg? can be efficiently performed via a lookup table. ¢ is
expressed by Histogram of Oriented Gradients (HOG)
features. Compared with [28], our method adopts the
sampling strategy of the BACE, which introduces the
transform matrix P into cyclic sampling to improve the
distinction between samples. More importantly, the pro-
posed optimization model of the parameter /; not only
purifies the training sample set, but also verifies the reli-
ability of the model for current sequence.

For improving computing speed, Eq. 2 can be
expressed in the frequency domain as:

Page 3 of 9

. . 1< a2 M 2
P(,8) =5 > alli-plly + = 3
i=1 '
s.t. g = \/T(FPT ®1D)h1
where ¢ is an auxiliary variable and the matrix ¢, is de-
fined as ¢, = [ diag(p))", ..., diag(¢?)" ... diag(¢P)"].
The matrix Ip is an D x D identity matrix, and the oper-
ator ® is the Kronecker product. A * denotes the discrete
Fourier transform (DFT). The orthonormal matrix F can
map any J dimensional vectorized signal to the Fourier do-
main. T indicates the transpose operator, which computes
the conjugate transpose on a complex vector or matrix.
We can rewrite Eq. 3 into an augmented Lagrangian
form, then it can be iteratively solved by the ADMM
[29] technique.

(3)

A. Solving sub problem h;"
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B. Solving sub problem g*
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Because ¢; is sparse banded, each element of y is
dependent only on D values of ¢,(j) = [¢; (), ..., (Z)?(j)]T
and g(j) = [conj(g" (), ...,conj(gD(j))]T. Here, the oper-
ator conj (.) indicates the complex conjugate transform.

Similar to [27], solving Eq. 5 for g* can be identically
expressed as J smaller, independent objectives, solving

for 2(/):
ag minl3 Y 1504201
HO) (26) () + ]l ()]

where, iny(j) = [y(j), ... iy (j)] and i, = vD(EPTHP).
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Then, Eq. 6 is minimized by solving the normal
equations:

g0) = (JmD + m@-(i)éx(i)T)
: (7)
( wh (j) ) + Z ay(j )

To design an efficient method, we solve Eq. 7 by the
Gauss-Seidel iteration. Set A = Julp + S0 i, (j) ¢, ()"
which is symmetric and positive definite. The
Gauss-Seidel method decomposes the matrix A into a
lower triangular component L and a strictly upper tri-
angular component U, such that A = U + L. The filter g
(j)" is then iteratively calculated by equation:

Lg()" Y = Jui ()- JZ“( /)
+ Z ai(j

Here, m is mth iteration in Gauss-Seidel iteration
operation.

()" -ug ()™ (8)

C. Lagrangian vector update

Then, we update the Lagrangian vector as:

L)Y =2 + w(g() -, (9)

where #n indicates the nth iteration in the ADMM
operation.

2.3 Constructing and solving the sub tracker h,

Similar to [26], we also use the color histogram-based
model as the complementary tracker of /4;. The differ-
ence is that we extend the training set of the model in
the time dimension. The expanded model, which makes
use of more diverse training samples and has better ro-
bustness, can be learn by optimizing Eq. 10:

t
Ly, " (ha) = Zﬁgm)b(hza Vi) + 429 (h2)
i=1

+ C,. (10)
The regression problem can be described as:
l(ha) = Z (2" [u Z (", [u])",
|O | ueQ; uea?
(11)

where O and B denote the target area and background
area.

In the ridge regression problem, the solution of the
per feature dimension is:
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where p?(A) = N%(A)/|A| is the proportion of pixels in
a region for which feature d is non-zero. N¢(A) = |{ue
A : k[u] = d}| is the number of pixels in the region A of
the feature y.

2.4 Solving the reliability weights a and 8

When /; and /, are obtained, Eq. 1 can be expressed as
an optimization problem for a and f. The optimization
problem about a and S can be rewritten into the follow-
ing form:

2 ) — i+ g 3 1

st |w| = 1
where w=[wy, wo, ..wj.w), L=[Ly,.... L. L), w;
=(a, P, a;>0, S;>0,and L;= ([, 1,);". p; is the prior

weights whose definition is similar with one in [28], p; >
0 and Zf.:lpi = 1. In the control of the parameter p;, re-
cent fame is given larger attention to account for fast ap-
pearance changes.

We can use the convex quadratic programming
methods in Matlab’s Optimization Toolbox to solve the
above optimization problem.

2.5 Solving the complementary weights
Our score function is a linear combination of template
and histogram scores:

fmerge + (I_Y) *fhz'

S, denotes a template scores, which is the confidence
map acquired by correlation operation between correl-
ation filter g and spatial layout features ¢.

fh1 = ’g_l((i)g)v

fn, denotes a histogram scores, which is computed
from an M-channel feature image.

:)’*fhl (14)

(15)

S =W (D, v/ 15€1). (16)

The complementary weight y is an adaptive variable
instead of pre-assigned constant as one in [26]. Reliabil-
ity weights obtained by Eq. 13 can reflect the reliability
of the corresponding sub model. To alleviate the
problem of rapid appearance changes, we choose the
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reliability weights of the nearest n (n = 10) frames to dy-
namically adjust our weight y. In addition, considering
that correlation filter-based tracker is more favorable for
accurate location than the color histogram-based tracker,
we choose the template scores as the main tracking
scores while the color histogram scores as accessorial
ones. Based on the discussion above, we construct the
following complementary weight model:

(2] (2]
, |02 <01 and > Tlow
01+ 02 01+ 02
o
or( oy > 07 and 2 >Typ
_ 01+ 02
}/_
Tiow ,09 < 01 and < Tiow
o1+ 09
03
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Here, o; and o, are the variances of the data set
{a;-pili=t-n,...t} and {B;-p|i=t-n, .. 8, re-
spectively. T,y and T, are the lower threshold and
upper threshold respectively.

3 Experimental results and discussion

The proposed method in this paper is implemented in
MATLAB 2016a. We perform the experiments on a PC
with Intel i7-4790 CPU (3.6GHz) and 16-GB RAM mem-
ory, and the tracker runs at 15 fps. We extensively evalu-
ate the performance of the proposed tracker with the total
100 challenging sequences from [30] and compare our
tracker with the top 10 state-of-the-art trackers, including
DSST [20], Structured Output Tracking with Kernels
(Struck) [31], BACF [27], Tracking-by-Detection (TLD)
[32], CSK [18], Spatially Regularized Discriminative Cor-
relation Filters (SRDCF) [33], Tracking via Multiple
Experts Using Entropy Minimization (MEEM) [34], Adap-
tive Color Tracker (ACorT) [35], Staple, and DAT [25].
The DSST, the CSK, the SRDCE, and the ACorT belong
to the correlation filter-based tracker, which more atten-
tion to the structural attribute of the target. The Struck,
the TLD, and the MEEM are tracking algorithms based on
classifier learning, which divides the scene into target and
background. The DAT belongs to the unstructured
tracker, which is suitable for the tracking target with se-
vere deformation. The Staple is a combined tracker, which
has the strongest correlation with our algorithm.

3.1 Parameter setting

In the proposed tracking model, the HOG feature and the
color histogram feature are two important factors affecting
the computation. During the experiment, we set HOG fea-
tures to 31 channels and use cell size of 4 x 4 pixels in
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order to be unified with other algorithms, e.g, BACE,
Staple, DSST, and CSK. The size of the search region is set
to be 4” times the size of the target area in all the algo-
rithms. Then, we normalized samples to a fixed size by a
50 x 50 square, so that the fps is unaffected by the height
and width of video sequence. In the Alternating Direction
Method of Multipliers (ADMM) optimization, we set the
number of iterations to 4, which is enough to ensure algo-
rithm robustness. Although more iteration is beneficial to
improve algorithm performance, it will affect computa-
tional efficiency. The penalty factor y is set to 0.25. The
regularization factor 1-; and 1, are set to 0.001 and 0.01,
respectively. The iterations of the Gauss-Seidel method
are set to be 5, and the learning rate is adopted as # = 0.02.
The lower threshold 7, = 0.15 and the upper threshold
Ty = 0.8. Moreover, bin color histogram is set into 32 x
32 x 32, which has similar settings with the Staple tracker.
All parameters remain fixed in all experiments. We run
our approach approximately for 15 frames per second.

In practice, the penalty factor, the regularization factor,
ADMM iteration number, and the Gauss-Seidel iteration
number are independent of the specific scenario and
only related to the proposed model itself. The cell size of
HOG features, the size of the search region, and the bin
color histogram, these three parameters will be affected
by the target size and image resolution.

3.2 Qualitative evaluation
Figure 2 shows the tracking results of 10 state-of-the-art
trackers and our tracker on some most challenging
scenes (i.e., occlusion, deformation, fast motion, in-plane
rotation, and out-plane rotation) in the OTB (object
tracking benchmark) [30].

Figure 2a shows the tracking results on the Box and
Coke sequences. In this figure, the targets undergo partial
or short-term total occlusions. Our tracker can effectively
track these objects, which benefits from two factors. First,
our approach is capable of reducing or removing the im-
pact of uncorrupted samples by readjusting the reliability
weights of the sub model in training, thereby lowering the
risk of drift and tracking failure. Second, the uncorrupted
part of the targets and the background context can still
form some uncorrupted samples for training and detec-
tion, which is similar to BACF. Most of the traditional cor-
relation filter-based trackers DAT, CSK, ACorT, and
DSST may drift after occlusions or fail to track the targets
because their search areas are limited and uncorrupted
samples are used during the training. BACF and SRDCF
can handle some slight occlusions, but when undergo se-
vere occlusions, they all drift away.

Figure 2b is the tracking results on the KiteSurf and
Couple sequences. KiteSurf and Couple are two sequences
of some representative sequences where the target is fast
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Fig. 2 Tracking results of the proposed method and other algorithms on some representative sequences

ACorT mwmmm
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motion. The figure shows that the proposed tracker gain
outstanding performance handles. This can be mainly at-
tributed to the correlation filters and the discriminative
ability of the proposed method. The proposed method
works well in all these sequences. On the one hand, the
color histogram information can be used effectively to
handle deformations by dynamically increasing the impact
of color histogram-based tracker. On the other hand,
when target is in fast motion, the impact of correlation
filter-based tracker will be dynamically increased. The sub
tracker can effectively handle fast motion because allows
larger search region. Other trackers also have some abil-
ities against target deformations (i.e., Stape and MEEM),
but most of them are failed to track targets when severe
deformations are coming.

Figure 2c shows the tracking results on two represen-
tative sequences Rubik and DragonBaby s where the tar-
gets are partially or fully occluded. Our tracker performs
well in in-plane rotation and out-plane rotation. These
properties mainly benefit from up-weighting color
histogram-based tracker.

For the six representative sequences above, we compared
center location error of every sequence frame-by-frame in
Fig. 3. These comparison results show that our tracker is
more stable and accurate.

Table 1 reports average entry location errors for each
compared tracker. In a descending order, the best three
estimates are marked in red, blue, and green fonts. In
one of the six sequences (the Box and DragonBaby), our
approach achieved the best results. In two of the
remaining four sequences (the Rubik and Couple se-
quences), our approach obtained the second best results
and were very close to the best ones. In the remaining
two sequences (Coke and Kitesurf), our tracker also per-
forms better. Generally, our method performed well
against existing trackers.

3.3 Quantitative evaluation

We use the precision plots and the success plots metric
[30] to compare all trackers on OTB-100. Precision plot
reports the average distance precision score at 20 pixels
for each method. In the evaluation of success plots, the
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area under the curve (AUC) of success plots is used to

rank the trackers.

The evaluation results of the proposed tracker and
the 10 competitive trackers are demonstrated in Fig. 4.
The legend of the precision plot reports the average
distance precision score at 20 pixels for each method,
and the legend of the success plot reports AUC

Table 1 Comparison of results in terms of average entry location errors (in pixels)

scores. The BACF tracker provides the second best
results with precision plots of 82.0% and the success
plots of 60.6%. The best results on this dataset is
achieved by our tracker with a precision plot of
85.1% and a success plot of 62.8%, leading to a sig-
nificant gain of 3.0 and 2.2% compared to BACF
tracker in precision plots and success plots in turn.

Tracker Box Coke  DragonBaby  Kitesurf Rubik  Couple Average
Ours 8.60 14.20 5.68 2.87 5.29 3.82 6.74
DAT 199.97 6297 106.72 59.03 2095 3494 80.76
TLD 40.60  25.08 116.58 62.10 8.76 2.54 42.61
DSST 106.79  12.79 142.57 28.80 5.96 125.15 70.43
CSK 89.13  18.65 50.40 17.27 9.38 47.56 38.73
SRDCF 89.29  18.90 69.38 15.28 24.26 3.97 36.85
Staple 90.85 12.20 18.99 2.82 4.95 34.54 27.39
BACF 89.20  12.66 52.14 13.65 44.83 4.11 36.10
ACorT 104.24  19.22 50.42 2.26 770  123.25 51.18
Struck 119.72  12.08 69.26 6.14 26.72 11.33 40.88
MEEM 1353 11.94 31.58 3.29 16.93 6.50 13.96
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Table 2 reports the AUC scores of all the com-
pared trackers under some challenging problems
which were posed in the OTB sequences including
31 sequences with target in-plane rotation (IPR), 39
sequences with target out-of-plane rotation (OPR),
19 sequences with target deformation (DEF), includ-
ing 29 sequences with target occlusion (OCC) and
17 sequences with target fast motion (FM). In a de-
scending order, the top three results are shown in
red, blue, and green fonts. Our tracker achieves
highest AUC scores in all these challenging
attributes.

4 Conclusions

In order to alleviate the deformation, this paper presents to
online learn an adaptive complementation tracking algo-
rithm. The proposed strategy can dynamically adapt the im-
portance of each sub tracker according to the real-time
status of the scene, making the tracker more robust for vari-
ous target appearance changes. In addition to, joint learning
model reliability weights and tracker can also effectively
control the reliability of training samples and improved the
discriminability of the tracker. Experimental results show
that our approach outperforms state-of-the art tracking al-
gorithms on many challenging videos from the OTB.

Table 2 Average AUC of the ten trackers in terms of different attributes

IPR OPR DEF occC FM
Ours 0.62 0.62 0.61 0.62 0.60
BACF 0.59 0.60 0.59 0.61 0.58
Staple 0.56 0.54 0.56 0.50
SRDCF 0.54
DAT 0.32 0.35 0.36 0.35 0.29
TLD 0.41 0.41 0.36 0.40 0.41
DSST 0.50 0.48 0.45 0.49 0.42
CSK 0.39 0.37 0.34 0.37 0.31
ACorT 0.44 0.42 0.42 0.43 0.35
Struck 0.43 0.43 0.40 0.42 0.41
MEEM 0.50 0.52 0.48 0.50 0.49
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