
Hai et al. EURASIP Journal onWireless Communications and
Networking  (2018) 2018:187 
https://doi.org/10.1186/s13638-018-1202-6

RESEARCH Open Access

LDMC design for low complexity MIMO
detection and efficient decoding
Han Hai1, Xue-Qin Jiang1*, Poongundran Selvaprabhu2, Sunil Chinnadurai3, Jia Hou4 and Moon Ho Lee5

Abstract

Low-density multiple-input multiple-output code (LDMC) can reduce the complexity of tree-search detection in
MIMO systems. In this paper, we present a new modified progressive edge-growth (PEG) algorithm to construct large
girth LDMCs, which are referred to as PEG-LDMCs. We analyze the complexity of the LDMC constrained sphere
decoding (SD) and show that the LDMC constrained SD detection can be used for high reliability of the data
transmission in MIMO systems. Furthermore, we propose two new efficient iterative decoding algorithms for LDMCs,
which are high speed serial decoding and fast convergence shuffled decoding. Finally, we compare the bit error rate
(BER) performance of PEG-LDMCs to that of the existing LDMCs. The simulation results show that the PEG-LDMCs can
achieve better BER performance than that of the existing LDMCs.

Keywords: Low-density parity-check (LDPC) codes, Multiple-input multiple-output (MIMO), Sphere decoding (SD),
Low-density MIMO codes (LDMCs)

1 Introduction
Multiple-input multiple-output (MIMO) techniques have
been widely studied during the past decades as they
can provide significant multiplexing and diversity gains
in transmission. Therefore, MIMO techniques have been
identified as one of the most practical methods to combat
fading and to increase the capacity of wireless channels in
the recent years [1–4].
In order to provide high reliability of the data transmis-

sion in MIMO systems, special attention has to be paid in
the receiver design. Maximum-likelihood (ML) detection
is the optimal detection for MIMO systems [5, 6]. How-
ever, the complexity of the exhaustive searching in ML
detection is too high for practical use. Therefore, subopti-
mal but low complexity detections were proposed, which
include linear detection, such as zero-forcing (ZF) [7, 8],
minimummean-square error (MMSE) [9], and non-linear
detection, such as sphere decoding (SD) [10]. The per-
formance of MMSE detection is better than that of ZF
detection, due to the fact that the correlation between the
noises in ZF detection is neglected in the projection oper-
ation. However, both the ZF detection and the MMSE
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detection suffer from serious performance degradation
with respect to the optimal ML detection. On the other
hand, the SD detection draws attention of researchers as
it can achieve a near-ML detection performance [11]. The
main idea of the SD detection is that it only searches the
ML candidate symbols which lie inside a specific sphere.
For a given sphere size, the detection complexity of SD
detection in MIMO systems becomes very high when the
number of candidates is large.
Practically, error-correction codes are usually applied

in MIMO systems. In particular, low-density parity-check
(LDPC) codes have drawn attention of many researchers
due to their Shannon limit approaching performance
[12–14]. As a subclass of LDPC codes, low-densityMIMO
codes (LDMCs) were presented in [15, 16], which reduce
the complexity of the ML detection by introducing con-
straints in each transmission vector. The transmission
vector is defined as the set of symbols which are transmit-
ted simultaneously via multiple antennas. In [17], LDMCs
with low-encoding complexity are further presented.
Motivated by the near-ML detection performance of the

SD detection and the complexity reduction property of the
LDMCs, in this paper, we study the design of LDMCs and
the concatenation strategy of LDMCs and SD detection in
MIMO systems.
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Furthermore, we proposemore efficient iterative decod-
ing algorithms for LDMCs. It is well known that the
iterative decoding converges to the optimal solution pro-
vided that the parity-check matrix of the code is of large
girth [18]. Therefore, LDMCs of large girth are particu-
larly desirable. Hence, we propose a modified progressive
edge-growth (PEG) algorithm to construct LDMCs of
large girth. The contributions of this paper are as follows:

• We propose a new modified PEG algorithm to
construct large girth LDMCs for good performance.

• We analyze the complexity of SD detection in the
LDMC-coded MIMO systems, which indicates that
the LDMC-constrained SD detection can be used for
MIMO systems with large number of transmit
antennas.

• We propose two efficient iterative decoding
algorithms for LDMCs for high speed and fast
convergence decoding.

This paper is organized as follows. In Section 2, we
review MIMO systems and LDMCs. In Section 3, we
introduce a modified PEG algorithm to construct large
girth LDMCs. In Section 4, we compare the complex-
ity of LDMC-constrained SD detection with that of the
MMSE and ZF detections. In Section 5, we introduce two
new shuffled decoding algorithms for LDMCs. Examples
of the LDMC-constrained SD detection in MIMO sys-
tems and the corresponding simulation results are given
in Section 6. Finally, Section 7 concludes the paper.
Notation: bold lower case letters represent vectors,

while bold upper case letters denote matrices. (·)T , (·)H ,
and ‖ · ‖ denote transpose, Hermitian, and norm opera-
tions, respectively. Cm×n stands for the complex space of
sizem × n.

2 Preliminaries
This section introduces some background concepts that
will be used throughout the paper.

2.1 MIMO systems
Let Mt be the number of transmit antennas and Mr
be the number of receive antennas. The source binary
information bits b =[ b1, · · · , bnR] are first encoded
using an LDPC encoder to generate a codeword w =[
w1,w2, · · · ,w n

MtQ

]
, where R is the code rate and n is the

length of the codeword. Then, each group of MtQ coded
bitswi =[ b1, · · · , bMtQ] is mapped to a group ofMt trans-
mission vector x =[ x1, · · · , xMt ]T , where xj is taken out of
the constellations of size 2Q. x is then passed to the trans-
mit filter and sent through the Mt transmit antennas. x is
denoted as the transmission vector in the following.
Without loss of generality, we express the system

model as

y = Hx + z. (1)

Here, y ∈ C
Mr×1 is the complex received signal vec-

tor. H ∈ C
Mr×Mt is the Rayleigh fading channel matrix

with independent entries that are complex Gaussian dis-
tributed with zero mean and unit variance. H is assumed
to be known to the receiver, but not to the transmitter, and
the channel coefficient randomly varys in time. z ∈ C

Mr×1

is complex white Gaussian noise with variance σ 2 per
dimension.
Referring to [22–24], the received signal is iteratively

detected and decoded by mutually exchanging soft infor-
mation between the detector and LDPC decoders. The
detection computes the log-likelihood ratios (LLRs), Li,
for each coded bit by using

Li = log
(
Pr[wi = 1|y,H]
Pr[wi = 0|y,H]

)
,

= log

⎛
⎝

∑
x:wi=1 e

−‖y−Hx‖2+∑
j logPr[wj]

∑
x:wi=0 e

−‖y−Hx‖2+∑
j logPr[wj]

⎞
⎠ , (2)

where i = 1, 2, . . . , n. Transforming (2) into a tree-search
problem and using the SD detection allows efficient com-
putation of the LLRs [22, 23].
Let (3) denote the distribution of the searching candi-

dates in the searching space,

ηSD = (1, . . . , 1︸ ︷︷ ︸
ηP

,Q, . . . ,Q︸ ︷︷ ︸
ηQ

), (3)

each of whose elements is the number of constellation
symbols to be searched at each antenna. Here, ηP + ηQ =
Mt . ηQ denotes the number of candidates, which are con-
sidered to be fully searched, and ηP denotes the number of
candidates are not required to be searched. It is clear that
if ηQ = Mt , the SD detection becomes the ML detection.
The search over bit possibilities within x scales expo-

nentially with the number of antennasMt and the constel-
lation size Q. In addition, the complexity of SD detection
is very high when the number of bits mapped to the trans-
mission vector and the constellation are large. Then, the
complexity of the SD detection is the major problem for
applying SD detection to MIMO systems with large num-
ber of transmit antennas. In the next subsection, we will
describe that the LDMC is a subclass of LDPC codes and
can reduce the complexity of the SD detection for MIMO
systems.

2.2 Low-density MIMO codes
LDMCs are linear block codes which can be described by
PwT = 0, where P is a parity-check matrix of n columns
and m rows. Therefore, the overall code rate is R = 1 −
m/n. The LDMC parity-check matrix can be described by
two layers as
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P =
(
Pg
Pe

)
=

⎛
⎜⎜⎜⎝

Pg
P′
e · · · 0

0
. . . 0

0 · · · P′
e

⎞
⎟⎟⎟⎠ . (4)

The first layer Pg is a sparse parity-check matrix, while
the second layer Pe is defined by multiple, unconnected
sub-codes P′

e. Each sub-code P′
e corresponding towi has a

code lengthN ′
e ≤ MtQ. LetNg = n/N ′

e denote the number
of sub-codes in an LDMC codeword. The size of P′

e is q ×
MtQ and the size of Pg is (m − Ngq) × n.
As mentioned before, each transmission vector x carries

MtQ bits. It has to be guaranteed that all bits of a sub-code
P′
e are transmitted within one transmission vector x. Thus,

each transmission vector x carries an embedded code P′
e,

i.e., P′
ewT

i = 0.
It has been shown that, the SD detection achieves near-

ML performance if ηQ ≥ √
Mt − 1 [19]. Therefore, it

requires at least 2Q(
√
Mt−1) times searching to achieve

near-ML performance. With q constraints in LDMC-
constrained SD detection, the number of searching in
LDMC-constrained SD will downscale to 2Q(

√
Mt−1)−q

[15, 16].

3 LDMC design based on PEG algorithm
It was stated in [18] that large girths facilitate iterative
decoding and impose a respectable minimum distance
bound that enhances decoding performance. Among the
existing approaches for constructing LDPC codes, one of
the most successful approaches is PEG algorithm [17].
Recently, several PEG algorithms have been proposed
[25–27], which can be applied to construct Pe. For a given
symbol node sj, define its neighborhood within depth l,
Nl
sj , as the set consisting of all check nodes reached by a

subgraph (or a tree) spreading from symbol node sj within
depth l. Its complementary set, N̄ l

sj , is defined as Vc\Nl
sj ,

or equivalently N̄ l
sj

⋃
Nl
sj = Vc. Denote the symbol-degree

sequence by

Ds = {ds0 , ds1 , . . . , dsn−1} (5)

in which dsj is the degree of symbol node sj, 0 ≤ j ≤ n − 1
and ds0 ≤ ds1 · · · ≤ dsn−1 . The PEG algorithm constructs a
Tanner graph by operating progressively on symbol nodes
to establish edges required by Ds. To establish an edge
incident to sj, the PEG algorithm first spreads a tree from
sj up to maximum depth l and then chooses a check node
ci at random from the check nodes of the lowest degree
in N̄ l

sj . In this section, we introduce a modified PEG algo-
rithm to construct large girth LDMCs, which is referred
to as PEG-LDMC algorithm and the corresponding codes
as PEG-LDMCs in this paper.
Let Dg and De denote the degree sequence associated

with Pg and Pe, respectively. The parity-check matrix P of

Algorithm 1 High-level description of PEG-LDMC algo-
rithm

Input: code length n, sub-code length Ne, parity
length n, sub-code parity length q, the symbol-degree
sequence Dg and De
for k = 1 to Ng do

Construct P′
e with the P′

e-PEG algorithm and
symbol-degree sequence De.

for j = k · N ′
e to (k + 1) · N ′

e do
Construct the jth column of Pg with the Pg-

PEG algorithm and symbol-degree sequence Dg .
end for

end for
Output: parity-check matrix P

Algorithm 2 P′
e-PEG algorithm

Input: sub-code length N ′
e, sub-code parity length q,

symbol-degree sequence De
for j = 0 to N ′

e − 1 do
if j ≤ q then

Establish the edge (ci, sj).

else

Establish the edge (ci, sj) with the PEG algorithm.

end if
end for
Output: parity-check matrix P′

e

LDMC can be constructed by the PEG-LDMC algorithm
with the following steps.

Preprocessing process :
From the optimized degree distribution for the
code rate 1 − (m − Ngq)/n and code rate 1 −
q/N ′

e, generate the symbol-degree sequences Dg =
{ds0 , ds1 , . . . , ds(N ′e−1)

} andDe = {ds0 , ds1 , . . . , ds(N ′e−1)
},

respectively.
Constructing process :

Step 1. Construct q × N ′
e submatrix P′

e of the form P′
e =

[ P̄′
e I] with the PEG algorithm and symbol-degree

sequence De, where I denotes an identity matrix of
size q × q and P̄′

e is of size q × (N ′
e − q).

Step 2. Construct the columns of Pg , which are in the
same columns as Pe in P. If the construction of P is
not finished, go back to Step 1. Otherwise, stop the
construction.

It is worth pointing out that in the PEG-LDMC algo-
rithm, the submatrices Pe and Pg of the parity-check



Hai et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:187 Page 4 of 8

Algorithm 3 Pg-PEG algorithm
Input: dsj
for k = 0 to dsj − 1 do

Expand a subgraph from sj up to depth l under the
current graph setting such that the cardinality ofNl

sj
stops increasing but is less than m, or N̄ l

sj �= Ø but
N̄ l+1
sj = Ø, then Eksj ← edge(ci, sj), where Eksj is the

kth edge incident on sj and ci is a check node picked
from N̄ l

sj having the lowest check-node degree.

end for
Output: the jth column of Pg

matrix P are constructed simultaneously. Therefore, the
girth of P is optimized. A high-level description of the
PEG-LDMC algorithm is given in Algorithm 1 and the
algorithms for steps 1 and 2 are given in Algorithm 2 and
Algorithm 3, respectively.

4 Analysis of detection complexity
In this section, we compare the detection complexity
of the LDMC-constrained SD detection in the LDMC
coded MIMO system with that of ZF and MMSE detec-
tions. To estimate the computational complexity, we use
the number of multiplications required in the detection.
Rough computational complexity estimations are given
in Table 1. The number of additions is relatively small,
therefore, it is omitted in the analysis.
Generally, SD is a searching algorithm for detection. It

performs an exhaustive search based on setting a radius
constraint. This has been proved by Hassibi [11] that the
expected total number of points visited by the sphere
decoding is proportional to the total number of candidates
inside spheres of dimension k = 1 . . .m:

ω =
m∑
k=1

π
k
2

�
(
k
2 + 1

)k , (6)

where d is radius and �(n) = (n − 1) ! represents the
Gamma function. Clearly, ω depends on the radius d.
Therefore, the channel state information (CSI) estimation
does not impact the complexity in SD.

Table 1 Number of multiplications in LDMC-constrained SD, ZF,
and MMSE detections

Detection technique Computational complexity

LDMC-constrained SD 2Q(
√
Mt−1)−q(Mt + 2)

Zero forcing 2M3
t

MMSE 2M3
t

Specifically, if SD is performed in an LDMC coded
MIMO system, the norm ‖ y − Hx ‖2 in the LDMC-
constrained SD detection in (2) needs 2(Mt + 2) multipli-
cations. Thus, the total number of multiplications in the
LDMC-constrained SD detection is

CLDMC = 2Q(
√
Mt−1)−q+1(Mt + 2). (7)

On the other hand, the ZF detection is represented by

x̄ = (HHH)−1HHy, (8)

and the MMSE detection is represented by

x̄ = (HHH + σ 2I)−1HHy. (9)

From the (8) and (9), it is clear that the MMSE and
ZF detections consist of a complex inversion of Mt × Mt
matrix, and some matrix multiplications and additions.
Mt × Mt matrix inverse and matrix multiplication opera-
tions are both known to need M3

t multiplications. Conse-
quently, the total number of multiplications in MMSE and
ZF detections are both

CMMSE = CZF = 2M3
t . (10)

Note that the computational complexity of linear detec-
tor mainly depend on Mt while the computational com-
plexity of LDMC-constrained SD detection depends on
Mt , Q, and q. If q is large enough, it is possible that
the computational complexity of LDMC-constrained SD
detection is lower than that of ZF and MMSE detections.
LetM3

t ≥ 2Q(
√
Mt−1)−q2(Mt + 2), we have

q ≥ Q(
√
Mt − 1) + 1 − log2

M3
t

Mt + 2
. (11)

If q satisfies condition (11), the computational com-
plexity of LDMC-constrained SD detection with near-ML
performance can be lower than that of ZF and MMSE
detections. From Fig. 1, we can see that the complexity
of the LDMC-constrained SD detection is lower than that
of the MMSE and ZF detections if we choose q prop-
erly. Note that a larger q reduces the size of Pg of the
LDMC matrix, which is constructed by the PEG algo-
rithm. Among the existing approaches for constructing
LDPC codes, the most successful one is the PEG algo-
rithm. The LDPC code constructed by the PEG algo-
rithm is one of the best codes of good error-correcting
performance. Therefore, a larger q not only leads to
worse error-correcting performance, but also lower SD
detection complexity. Hence, there is a trade-off between
performance and detection complexity by choosing the
value q.

5 Efficient decoding algorithm
In this section, we proposed two new decoding algorithms
for LDMCs for high speed decoding and fast convergence
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Fig. 1 Complexity comparison of MMSE, ZF, and LDMC-constrained SD detections for varyingMt and q

decoding. We denote the set of symbol nodes that par-
ticipate in check node ci by N(i) = {j : Pij = 1},
and the set of check nodes in which sj participates as
M(j) = {i : Pij = 1}.
The standard belief propagation (BP) decoding algo-

rithm consists of initialization, check-node updating,
symbol-node updating, stopping criterion test, and out-
put steps [20]. In the proposed decoding algorithms, the
initialization, stopping criterion test, and output steps
remain the same as that in the standard BP algorithm, and
therefore omitted here.

5.1 High-speed serial decoding
In LDMCs, the code length n can be divided into sub-
codes P′

e of length N ′
e. In the high-speed shuffled decod-

ing algorithm, the updating of sub-codes is processed
sequential, but the updating of symbol nodes and check
nodes corresponding to each sub-code P′

e remain in
parallel. Let rlij and glij be the LLRs sent from check
node ci to symbol node sj, and sent from the sym-
bol node sj to check node ci, respectively, in the lth
iteration.
In the standard BP algorithm, all value rlij should be

updated before updating all value glij. We observe that,
since the sub-codes P′

e in transmission vectors should not
be connected to each other as shown by (4), all value
rlij for updating g(l+1)

ij of kth sub-code have already been
updated before updating rlij of the (k + 1)th sub-code,
1 ≤ k ≤ (Ng − 1). Therefore, the updating of g(l+1)

ij
for kth sub-code can be computed in parallel with the

updating of rlij for (k + 1)th sub-code. In the high-speed
serial decoding (HSSD), the check-node updating and
the symbol-node updating of the HSSD are carried out
alternately as follows.
Check-node updating corresponding to Pg : for 1 ≤

i ≤ (m − Ngq) and each j ∈ N(i), process

τ lij =
∏

j′∈N(i)\j
tanh

⎛
⎝g(l−1)

ij′

2

⎞
⎠ (12)

rlij = log
1 + τ lij

1 − τ lij
. (13)

For 1 ≤ k ≤ Ng , process jointly the following two steps.

• Check-node updating: for k · q ≤ i ≤ (k + 1) · q and
each j ∈ N(i), process (12) and (13).

• Symbol-node updating: for k ·N ′
e ≤ j ≤ (k + 1) ·N ′

e
and each i ∈ M(j), process

glij = Lj +
∑

i′∈M(j)\i
rlij (14)

glj = Lj +
∑

i∈M(j)
rlij, (15)

where Lj is the LLR of j th bit and initially set
Lj = (4/N0)yj.

Note that compared to the serial BP algorithm, our algo-
rithm has higher decoding speed without increasing the
complexity.
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5.2 Fast convergence shuffled decoding
In the HSSD algorithm, the check-node updating cor-
responding to Pg should be done for only once in
each iteration. To increase the convergence speed, we
modified the HSSD and propose the fast convergence
shuffled decoding (FCSD) algorithm in this subsec-
tion. In this decoding algorithm, the check-node updat-
ing corresponding to Pg will be done at each time
the check-node updating corresponding to sub-code
is done. The check-node updating and the symbol-
node updating of the FCSD are carried out as fol-
lows. For 1 ≤ g ≤ Ng , process jointly the following
two steps:

• Check-node updating: for 1 ≤ i ≤ (m − Ngq),
k · q ≤ i ≤ (k + 1) · q and each j ∈ N(i), process (12)
and (13).

• Symbol-node updating: for k ·N ′
e ≤ j ≤ (k + 1) ·N ′

e
and each i ∈ M(j), process (14) and (15).

Note that compared to the high-speed serial decoding,
this algorithm has faster convergence speed [21].

6 Simulation results
In this section, we compare the bit error rate (BER)
performance of the PEG-LDMCs, LDMCs proposed in
[17] and original LDMCs [16]. The PEG-LDMCs are
constructed with the proposed PEG-LDMCs algorithm.
The code rate is R = 0.5. The channel matrix H is
assumed to remain constant during the transmission
of each codeword. We perform three outer-iterations
between MIMO detector and LDPC decoder. In each
outer-iteration, MIMO detection is performed followed
by 40 inner-iterations inside LDPC decoder. The decod-
ing process is halted if the decoder converges to a valid
code or a maximum number of outer and inner itera-
tions are reached. Note that in [16, 17], only the phys-
ical layer is considered. Therefore, for the sake of fair-
ness, we have only considered the LDMCs of the same
length as that of [16, 17], which are transmitted over the
physical layer.
Figure 2 shows the BER performance of proposed PEG-

LDMCs, LDMCs proposed in [17] and original LDMCs
[16]. The transmission is over a 4×4MIMO channel with
16-QAM and 64-QAM modulations. The first layer Pg is
of size 480 × 1920 and 480 × 2880 for each modulation,
respectively. Therefore, the parity-check matrix P of the
corresponding LDMCs is of size 960 × 1920 and 1440 ×
2880 for 16-QAM and 64-QAM. Thus, the code length
is n = 1920 for 16-QAM and n = 2880 for 64-QAM,
respectively. For the proposed PEG-LDMCs, the HSSD
and FCSD algorithms are both applied for decoding. It can
be seen that our proposed PEG-LDMCs with HSSD and
FCSD algorithms have about 0.3 and 0.5 dB performance

gain compared to original LDMCs with 16-QAMmodula-
tion, and they have about 0.1 and 0.3 dB performance gain
compared to LDMCs in [17] with 16-QAM modulation.
The proposed PEG-LDMCs with HSSD and FCSD algo-
rithms also have about 0.4dB and 0.6dB performance gain
compared to original LDMCs with 64-QAM modulation,
and they have about 0.15 and 0.35 dB performance gain
compared to LDMCs in [17] with 64-QAM modulation.
This is due to the reason that the girth of the PEG-LDMC
is optimized globally by the PEG-LDMC algorithm and
the FCSD has faster convergence speed. Therefore, the
performance of PEG-LDMCs with FCSD algorithm is bet-
ter than that of PEG-LDMCs with HSSD algorithm and
original LDMCs in [16].
Figure 3 shows the BER performance of proposed PEG-

LDMCs, LDMCs proposed in [17] and original LDMCs.
The simulations are under 4 × 4 MIMO and 16 × 16
MIMO with 16-QAM modulations. For the proposed
PEG-LDMCs, the proposed HSSD and FCSD algorithms
are also applied for decoding. It can be seen from Fig. 3
that our proposed PEG-LDMCs with HSSD and FCSD
algorithms have about 0.5 and 0.6 dB performance gain
compared to original LDMCs over a 16×16MIMO chan-
nel, and they have about 0.1 and 0.3 dB performance
gain compared to LDMCs in [17] over a 16 × 16 MIMO
channel. This is due to the reason that the performance
of LDMCs depends on the girth, and our proposed new
modified PEG algorithm can construct PEG-LDMCs with
a girth of 8, which is larger than that of LDMCs proposed
in [17].

7 Conclusions
In this paper, we have introduced the PEG-LDMC algo-
rithm to construct LDMCs of large girth. In order
to reduce the complexity of detection, SD detection
has been adopted into LDMC coded MIMO sys-
tems. The complexity of LDMC-constrained SD detec-
tion has been analyzed and compared to that of
MMSE and ZF detections. Two new decoding algo-
rithms have also been proposed for high-speed decoding
and fast convergence decoding. The simulation results
have shown that the proposed PEG-LDMCs with new
decoding algorithms achieved better BER performance
than that of LDMCs proposed in [17] and original
LDMCs in [16].

8 Methods/Experimental
The purpose of this work is to reduce the detec-
tion complexity in the MIMO systems and to achieve
a good BER performance. For this purpose, we use
the method which is referred to as LDMC-constrained
SD detection. Since LDMCs with large girth have
good performance, we propose a new modified PEG
algorithm to construct large girth LDMCs. In this
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paper, we analyze the complexity of SD detection in
the LDMC coded MIMO systems, and compare it to
ZF detection and MMSE detection. Furthermore, we
propose high-speed serial decoding and fast conver-
gence shuffled decoding in order to improve the BER
performance.
In this paper, the comparison of BER perfor-

mance among the PEG-LDMCs, original LDMCs

[16], and LDMCs proposed in [17] is presented. The
PEG-LDMCs are constructed with the proposed
PEG-LDMCs algorithm. The function to generate
the LDMCs and proposed PEG-LDMCs algorithm
for MIMO systems can be made by MATLAB code.
Experimental results in this paper had performed
by using MATLAB R2016a on Intel Core i7-4790 @
3.60GHz platform.
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