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Abstract

In this paper, we consider a massive MIMO-enabled multi-way amplify-and-forward relay network with channel
aging, where multiple users mutually exchange information via an intermediate relay equipped with massive
antennas. For this system, we propose an energy-efficient power allocation scheme for the optimization of energy
efficiency (EE). Specifically, we firstly derive accurate closed-form expressions of the system sum rate with aged
channel state information (CSI) and predicted CSI. Secondly, based on the derived analytical results, a unified power
allocation optimization problem with aged/predicted CSI is formulated for maximizing the system EE. To solve this
challenging problem, the successive convex approximation technique is invoked to transform the original
optimization problem into a tractable concave fractional programming problem. Then, Dinkelbach’s algorithm and
Lagrangian dual method are adopted to find the optimal solution. In addition, to strike a balance between the
computational complexity and the optimality, the EE maximization problem using the equal power allocation scheme
is solved by extreme value theorem, leading to a closed-form optimal solution. Numerical results demonstrate the
accuracy of our analytical results and the effectiveness of the proposed algorithms. Moreover, the impact of several
important system parameters on the system performance achieved by the proposed algorithms is also illustrated.
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1 Introduction
With the unprecedented growth of mobile data traffic
volumes, the carbon emission of information and commu-
nication technologies is becoming an increasingly serious
problem. Internationally, several academic and industrial
research projects have been dedicated to maximize the
overall network capacity and improve the energy effi-
ciency (EE) of wireless communication systems (i.e., min-
imizing the amount of energy required to transmit data)
[1–4]. More recently, as one of the major candidate tech-
nologies for fifth-generation (5G) wireless systems, mas-
sive multiple-input multiple-output (MIMO) has received
tremendous attention from both academic and industry in
wireless fields [5, 6].
More specifically, it was shown in [7] that massive

MIMO systems (equipped with a very large number of
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antennas) are capable of achieving three orders of mag-
nitude EE gains compared with single-antenna systems.
The energy-efficient design ofmassiveMIMO systems has
emerged as a new research trend for 5G wireless commu-
nications [8, 9]. For example, in [10], the EE was analyzed
in massive MIMO systems, under the effect of a general
transceiver hardware impairments. In [11], the EE was
maximized in a multi-user massive MIMO system, and
the optimal system parameters (includes the number of
base station (BS)’s antennas and users). In [12], the BS
density, transmit power levels and number of antennas are
optimized for maximizing EE in massive MIMO-enabled
heterogeneous networks.
As another promising approach, multi-way relay net-

works (MWRNs) have recently received plenty of research
interest [13, 14]. In general, as compared to one-way
relay networks (OWRNs) and two-way relay networks
(TWRNs), MWRNs are capable of achieving higher
capacity and spectral efficiency (SE) and thus can be
employed to effectively deal with the ever increasing
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demand for higher data rate and SE in a multi-user sce-
nario. Therefore, the integration of massive MIMO and
MWRN is regarded as a promising network architecture
to meet the significant demand for mobile data appli-
cations. Additionally, it was shown in [15] that using
simple relay transceivers (e.g., linear zero-forcing (ZF)
transceiver), a multi-way MIMO relay system is capa-
ble of significantly alleviating the interference among
different data streams/user equipments (UEs). Further-
more, similar to the observations in massive MIMO-
enabled OWRNs [16] and TWRNs [17, 18], it was shown
in [19] that by invoking a large-scale antenna array-
equipped relay and a low-complexity ZF transceiver, the
SE of MWRNs is also proportional to the number of
relay antennas. At present, the existing related research
on massive MIMO-enabled MWRNs mainly focused on
analyzing the performance limits in various specific sys-
tem configurations [19–24]. For instance, in [19], the
asymptotic signal-to-interference-plus-noise ratio (SINR)
of massive MIMO-enabled MWRNs was studied. Later
on, the authors of [20] further analyzed the asymptotic
SINR and average error rate performance and obtained
the optimal pilot sequence length for maximizing the SE
of multi-cell massiveMIMO-enabledMWRNs.Moreover,
the SE and asymptotic SINR of massive MIMO-enabled
MWRNs are first analyzed with maximum-ratio process-
ing, and then the same authors derived a closed form
expression of the SE of massive MIMO-enabled MWRNs
with ZF processing.
Moreover, prior works [19–22] considered the effect

of channel imperfection due to channel estimation (CE),
but ignored another important aspect of practical chan-
nel impairments known as channel aging, which refers
to the phenomenon affected by the relative movement of
users. This scenario is of high practical value in urban
environments, where users move rapidly within a geo-
graphical area. Despite its significance, very few works
have investigated its impact on the performance of mas-
sive MIMO systems. For point-to-point massive MIMO
system, the impact of channel aging on the SINR perfor-
mance was firstly studied by assuming matched filtering
[25]. The impact of channel aging was lately investigated
with ZF precoders [26] and minimum mean square error
(MMSE) receivers [27]. For massive MIMO relay system,
the asymptotic impact of channel aging on the perfor-
mance ofmassiveMIMO-enabledMWRNswas studied in
[23]. Later on, the analysis was extended to the multi-cell
massive MIMO-enabled MWRNs scenario for simulta-
neous wireless information and power transfer [24]. To
the best of the authors’s knowledge, there is a paucity
of contributions on energy-efficient transmission strate-
gies of massive MIMO-enabled MWRNS, considering the
effect of channel aging. It is challenging to extend the
existing energy-efficient designs conceived for single-hop

massive MIMO systems [10–12] to massive MIMO-
enabled relay systems. Due to this fact, compared to
single-hop transmission schemes, both signal processing
schemes and the performance analysis of massive MIMO-
enabled relay systems are fundamentally dependent on the
more complex two-hop channels. Therefore, it is impor-
tant to design energy-efficient transmission strategy for
massive MIMO-enabled relay systems. Furthermore, the
consideration of channel aging is of paramount impor-
tance because it can provide the robustness against the
practical setting of user mobility that results to delayed
and degraded channel state information (CSI).
Motivated by the above discussions, in this paper, we

investigate low-complexity energy-efficient power alloca-
tion strategies for a massive MIMO-enabled MWRN with
channel aging. 1 We assume that the CSI is estimated rely-
ing on theMMSE criterion, and the relay employs the low-
complexity linear ZF transceivers. Themain contributions
of this paper are summarized as follows.

• We respectively derive closed-form expression of the
achievable sum rate (SR) for aged and predicted CSI,
which enables us to efficiently evaluate the system
performance, thus facilitating the energy-efficient
power allocation strategies.

• Based on the derived closed-form expressions, we
formulate a unified optimization problem that
optimizes power allocation of all UEs for maximizing
the system EE, subject to limited transmit power, and
minimum quality-of-service (QoS) constraints.
Because of the intractable non-convexity of the
formulated optimization problem, the successive
convex approximation (SCA) technique is involved to
transform the non-convex problem into a concave
fractional programming (CFP) problem, which is
then efficiently solved by Dinkelbach’s algorithm and
Lagrangian dual method.

• Furthermore, to strike a balance between the
computational complexity and the optimality, a
closed-form power control algorithm is provided
under the assumption of equal power allocation
(EPA) among multiple UEs, without requiring
complicated iterative algorithms.

• By simulation, the impact of the maximal transmit
power, of the QoS constraint, and of the transmit
power of each pilot symbol on the optimum EE is
quantified. Moreover, our numerical results show
that the EPA scheme-based power optimization
strategies strike an attractive tradeoff between the
achievable EE performance and the computational
complexity imposed.

The remainder of this paper is organized as follows. The
system model is described in Section 3. In Section 4, the
closed-form expressions for SR are derived under aged
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and predicted CSI scenarios. In Section 5, we present the
energy-efficient power allocation optimization problem
under different performance criterions and constraints.
The power allocation strategies are provided in Section 6,
and the simulation results are given in Section 7. Finally,
the conclusions are made in Section 8.
Notations: We use uppercase and lowercase boldface

letters for denoting matrices and vectors, respectively.
(·)∗, (·)T , and (·)H denote the conjugate, transpose, and
conjugate transpose, respectively. || · ||, tr{·}, E[ ·], Cov(·),
and Var[ ·] stand for the Euclidean norm, the trace of
matrices, the expectation, covariation, and variance oper-
ators, respectively. The diag {x} denotes a diagonal matrix
with the vector x being its diagonal entries, and the opera-
tors modN (x) denote the modulo N of x. [A]i,j represents
the entry at the i-th row and the j-th column of a matrix
A. Finally, CN (0,�) denotes the circularly symmetric
complex Gaussian distribution with zero mean and the
covariance matrix �.

2 Method
This paper studies the energy-efficient power alloca-
tion problem of massive MIMO-enabled multi-way relay
systems, under channel aging. The performance of the
proposed framework was in depth examined through a
series of simulation experiments including different sys-
tem parameters, whereas the superiority of the proposed
approach was clearly demonstrated by comparing it with
other research works in the literature. Specifically, it has
been shown that the different implementations of the pro-
posed algorithm succeed in providing considerably higher
EE in all different system settings while at the same time
maintaining QoS at high levels. Moreover, the impact of
normalized Doppler shifts fDTS (i.e., channel aging) on the
system achievable rate is also illustrated. The simulation
code was written in MATLAB.

3 Systemmodel and transmission scheme
As shown in Fig. 1, we consider a massive MIMO-enabled
AF MWRN with non-pairwise ZF transmission,2 where
K spatially distributed single-antenna UEs (UEk , k ∈
{1, · · · ,K}) exchange their information-bearing signals in
K time slots among one another via a shared relay (R)
equipped with M antennas.3 Without loss of significant
generality, we assume that the number of relay antennas
is greater than the number of UEs served at the same
time-frequency resources (i.e.,M > K). The system oper-
ates over a bandwidth of B Hz and the channels are static
within the time-frequency coherence blocks composed
of T = BCTC data symbols, where BC and TC are the
coherence bandwidth and coherence time, respectively. It
is assumed that the channel coefficients do not change
within one-symbol duration, but vary slowly from sym-
bol to symbol. We assume that the relay operates on the

half-duplex TDD mode. Each coherence interval is
divided into three time phases, i.e., the CE phase, the
multiple-access and broadcast phases. The multiple-
access phase consists of only one time slot, whereas the
broadcast phase contains K − 1 time slots.

3.1 Data transmission
In the multiple-access phase, all K UEs simultaneously
transmit their signals xU[n] to the relay. These signals
can be expressed as xU[n]= P1/2

u s[n]∈ C
K×1, where

s[n]=[ s1[n] , . . . , sK [n] ]T is the information-bearing sym-
bol vector with E

[
s[n] sH [n]

] = IK and Pu =
diag

{
p1, · · · , pk , · · · , pK

}
, pk is the transmit power of the

kth UE. The received signal yR ∈ C
M×1 at the relay is

given by

yR[n]= G[n] xU[n]+nR[n] , (1)

where G[n]∈ C
M×K represents the channel matrix from

K UEs to the relay and nR[n] denotes the additive white
Gaussian noise (AWGN) that obeys CN

(
0, σ 2

r IM
)
at the

relay.
To be specific, the channelmatrixG[n] can be expressed as

G[n]= H[n]D1/2, (2)

where H[n]∈ C
M×K is the small-scale fading (SSF) chan-

nel matrix and their entries obey independent identically
distributed (i.i.d.) Gaussian distribution as CN (0, 1). D is
a K × K diagonal matrix with [D]k,k = βk , which mod-
els the large-scale fading (LSF) capturing both path-loss
and shadowing fading effects. Moreover, βk is assumed
to remain constant for all n and is assumed to be known
a priori as it changes very slowly compared with SSF
channel coefficients.
In the broadcast phase, the relay simply performs

transceive processing, which firstly detects the signals
received and transmitted to all UEs in K − 1 subse-
quent time slots. Here, we consider an intermediate jth
(j ∈ {1, · · · ,K − 1}) time slot of the broadcast phase for
the sake of exposition. In the context, the relay transmitted
signal in the jth time slot of the broadcast phase is given by

x(j)
R [n] = ϑjFj[n] yR[n] . (3)

where Fj[n]= W2[n]π jW1[n] is the combined beam-
forming matrix at the relay, W1[n] is a ZF detection
matrix, and W2[n] is a ZF precoding matrix. Moreover,
π j is the permutation matrix employed at the relay in the
jth time slot of the broadcast phase, which is designed to
ensure that the kth (k ∈ {1, · · · ,K}) UE, receives the sig-
nal from the k′th UE, with k′ = modK (k + j). Specifically,
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Fig. 1 An illustration of the massive MIMO-enabled MWRN model in which the relay helps multiple users to simultaneously exchange messages

π j is constructed as π j = (πo)j, and the K × K primary
permutation matrix, πo, can be written as

πo = [eK , e1, e2, · · · , eK−2, eK−1] , (4)

where ek denotes a column vector of length K with 1 in
the kth position and 0 in every other position. ϑj is the
amplification factor designed to constrain the long-term
relay transmit power pr, which is given as follows.

ϑj =
√√
√
√

pr
E

[ ∥
∥Fj[n] yR[n]

∥
∥ 2

] . (5)

Then, the received signal vector at K UEs in the jth time
slot of the broadcast phase can be written as follows.

y(j)
u [n] = GT [n] x(j)

R [n]+nu[n] , (6)

where nu[n] is the AWGN vector satisfying nu[n]∼
CN

(
0, σ 2

u IK
)
. The aforementioned broadcast phase con-

tinues until the completion of all K−1 relay transmissions
in K − 1 consecutive time slots.
Substituting (1) and (3) into (6), the received signal at

the kth UE in the jth time slot of the broadcast phase is
expressed as

y(j)
u,k[n] = ϑj

√pk′gTk [n]Fj[n] gk′ [n] sk′ [n]
︸ ︷︷ ︸

desired signal

+ ϑj
√pkgTk [n]Fj[n] gk[n] sk[n]︸ ︷︷ ︸

self-interference

+ ϑj

K∑

i�=k,k′

√pigTk [n]Fj[n] gi[n] si[n]

︸ ︷︷ ︸
inter-user interference

+ ϑjgTk [n]Fj[n]nR[n]︸ ︷︷ ︸
noise from relay

+ nu,k[n]︸ ︷︷ ︸
noise at user

,

(7)

where gk[n] is the k-th column of G[n] and nu,k[n] is the
k-th element of nu[n].

3.2 Channel estimation
The relay estimates the channel coefficients by transmit-
ting orthogonal pilot sequences. AllK UEs simultaneously
transmit their pilot sequences of τr (τr ≥ K) symbols to
the relay. The received pilot matrix at the relay is given by

X[n] = √
τrppG[n]� + Z[n] , (8)

where pp is the transmit power of each pilot symbol and
Z[n]∈ C

M×τr is a noise matrix whose elements are i.i.d
CN

(
0, σ 2

r
)
. � ∈ C

K×τs is the pilot sequence matrix trans-
mitted from K UEs, satisfying ��H = IK . Correlation of
the received signal X[n] with 1√

τrpp �H obtains

X̃[n] = 1√
τrpp

X[n]�H . (9)
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Therefore, the noisy observation of the channel vector
from kth UE to the relay is expressed as

x̃k[n]= gk[n]+ 1√
τrpp

z̃k[n] . (10)

where z̃k[n] are the kth columns of the matrix Z̃[n]=
Z[n]�H . Since ��H = IK , z̃k[n]∼ CN

(
0, σ 2

r IM
)
.

Exploiting the MMSE criterion [28], the estimate of
gk[n], ĝk[n] is distributed as

ĝk[n] ∼ CN
(
0 β̂kIM

)
, (11)

where β̂k = τrppβ2
k

σ 2
r +τrppβk

.
Due to the orthogonality property of MMSE estimation,

gk[n] can be decomposed into

gk[n] = ĝk[n]+g̃k[n] , (12)

where g̃k[n]∼ CN
(
0,
(
βk − β̂k

)
IM

)
is the CE error and is

uncorrelated with ĝk[n].

3.3 Channel aging
To analyze the impact of channel aging, in our analysis, we
adopt an autoregressive model of order 1 for approximat-
ing the temporally correlated fading channel coefficient.
As such, the channel vectors for the k-th UE at time n+ 1
can be expressed as [25]

gk [n + 1] = αgk[n]+εk [n + 1] , (13)

where εk[ n + 1]∼ CN
(
0,
(
1 − α2)βkI

)
is a tempo-

rally uncorrelated complex Gaussian random process. We
denote α = J0(2π fDTS) as a temporal correlation parame-
ter, where J0(·) is the zero-order first-kind Bessel function.
TS is the channel sampling duration and fD = vfc

c is the
maximum Doppler frequency shift, where v, fc, and c are
the UEs’ velocity, carrier frequency, and the speed of light,
respectively. Without loss of generality, we assume that all
users move with the same velocity. As a result, the time
variation does not depend on the user index. While this
seems not realistic, we stay very near to the practical case
by considering the worst-case scenario where we set all
users with the velocity corresponding to the most varying
user.
To this end, a model accounting for the combined

effects of the CE error and channel aging effect can be
expressed as

gk [n + 1] = αĝk[n]+αg̃k[n]+εk [n + 1]
︸ ︷︷ ︸

ξ a,k [n+1]

(14)

= ḡa,k [n + 1] + ξ a,k [n + 1] ,

where ξ a,k[ n + 1]∼ CN
(
0, β̃a,kIM

)
is mutually indepen-

dent of ḡa,k[ n + 1]∼ CN
(
0, β̄a,kIM

)
with β̄a,k = α2β̂k ,

β̃a,k =βk−α2β̂k . Obviously, the combined error ξ a,k[ n+1]
consists of both the CE error and aged CSI effects.

3.4 Channel prediction
Channel prediction is an important approach to alleviate
the channel aging effect [29–31]. In this subsection, we
focus on predicting gk [n + 1] based on the current and
previous received training signals. The detailed procedure
for predicting gk [n + 1] is given as follows.
We adopt a Wiener predictor. Then, gk [n + 1] is pre-

dicted according to x̄k[n], where

x̄k[n]=
[
x̃Tk [n] , x̃

T
k [n − 1] , · · · , x̃Tk

[
n − p

]]T
, (15)

with p being the predictor order. The predicted CSI is
provided as follows.

ḡp,k [n + 1] = Vk x̄k[n] , (16)

where the optimal p-th linear Wiener predictor is given
as [31]

Vk = αβk
[
δ (p,α) ⊗ IM

]
T−1
k (p,α) , (17)

Specifically, we have δ (p,α) = [1,α, · · · ,αp] and

Tk (p,α) = βk
[
� (p,α) ⊗ IM

] + 1
τrpp

IM(p+1) (18)

with

� (p,α) �

⎡

⎢
⎢
⎢
⎣

1 α · · · αp

α 1 · · · αp−1

...
...

. . .
...

αp αp−1 · · · 1

⎤

⎥
⎥
⎥
⎦
. (19)

According to [30], the covariance matrix of ḡp,k [n + 1]
is given by α2�k (p,α), where

�k (p,α) � β2
k
[
δ (p,α) ⊗ IM

]
T−1
k (p,α)

[
δ (p,α) ⊗ IM

]
.

(20)

Thus, the real channel can be decomposed as [31]

gk [n + 1] = ḡp,k [n + 1] + ξp,k [n + 1] , (21)

where ξp,k [n + 1] is the channel prediction error vec-
tor with covariance matrix βkIM − α2�k (p,α), which is
independent of ḡp,k [n + 1]. According to [29], it can be
obtained that

ḡp,k [n + 1] ∼ CN
(
0,α2�k (p,α)

)
,

ξp,k [n + 1] ∼ CN
(
0,βkIM − α2�k (p,α)

)
.

(22)

According to the result in ([31], Lemma 2), �k (p,α)

is a scaled identity matrix of size M × M, which can be
straightforwardly shown as follows.

ḡp,k [n + 1] ∼ CN
(
0, β̄p,kIM

)
,

ξp,k [n + 1] ∼ CN
(
0, β̃p,kIM

)
,

(23)

with β̄p,k = 1
M tr

(
α2�k(p,α)

)
, β̃p,k = 1

M tr (βkIM−
α2�k(p,α)

)
.
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4 Performance analysis for achievable sum rate
In this section, we consider two different scenarios, i.e.,
aged and predicted CSI. We first provide a unified achiev-
able SR expression for two scenarios. Next, we derive
closed-form expressions for achievable SR under aged and
predicted CSI scenarios, which are desirable for the subse-
quent energy-efficient optimization problem formulation.
We assume that the temporal correlation parameter α

and the LSF channel matrix D are known a priori at the
relay. Hence, we can have the following CSI

ḡk[ n + 1]=
{
ḡa,k[ n + 1] , for aged CSI
ḡp,k[ n + 1] , for predicted CSI (24)

Then, the ZF-receive matrix W1 [n + 1] and ZF-
transmit matrixW2 [n + 1] are respectively expressed as

W1[ n + 1] = (
ḠH [ n + 1] Ḡ[ n + 1]

)−1 ḠH [ n + 1] ,
(25)

W2[ n + 1] = Ḡ∗[ n + 1]
(
ḠT [ n + 1] Ḡ∗[ n + 1]

)−1
,

where Ḡ[ n + 1]�[ ḡ1[ n + 1] , · · · , ḡK [ n + 1] ].
After the imperfect self-interference cancelation (SIC),

the received signal at the kth UE of the jth time slot of the
broadcast phase can be rewritten as

y(j)
u,k[ n + 1] = ϑj

√pk′gTk [n + 1]Fj [n + 1] gk′ [ n + 1] sk′ [ n + 1]
︸ ︷︷ ︸

desired signal

+ ϑj
√pkλksk[ n + 1]

︸ ︷︷ ︸
residual self-interference

+ ϑj

K∑

i�=k,k′

√pigTk [ n + 1]Fj[n] gi[ n + 1] si[ n + 1]

︸ ︷︷ ︸
inter-user interference

+ ϑjgTk [ n + 1]Fj[ n + 1]nR[ n + 1]
︸ ︷︷ ︸

noise at the relay

+ nu,k[ n + 1]
︸ ︷︷ ︸
noise at the user

,

(26)

where λk =gTk [ n+1]Fj[ n+1] gk[n]−ḡTk [ n+1]Fj[ n+1]
ḡk[ n + 1] is the SIC coefficient for the kth UE.
From (26), the ergodic achievable rate of the kth UE in

the jth time slot of the broadcast phase can be expressed as

R(j)
k = E

[
log2

(
1 + γ

(j)
k

)]
(27)

where

γ
(j)
k = DS(j)

k

RSI(j)k + IUI(j)k + NR(j)
k + NUk

, (28)

with DS(j)
k � ϑ2

j pk′
∣
∣gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

∣
∣2 ,

RSI(j)k � ϑ2
j pk|λk|2, NUk �

∣
∣nu,k[ n + 1]

∣
∣2 , IUI(j)k �

ϑ2
j pi

∣
∣gTk [ n + 1]Fj[ n + 1] gi[ n + 1]

∣
∣ and NR(j)

k �
ϑ2
j
∣
∣gTk [ n + 1]Fj[ n + 1]nR[ n + 1]

∣
∣.

However, further derivation of (27) is difficult because
of the intractability to carry out the ensemble average ana-
lytically. Instead, we adopt another technique to derive a
worst-case lower bound of achievable rate. According to
[32], we can rewrite y(j)

u,k[ n + 1] as

y(j)
u,k[ n + 1]= ϑj

√pk′E
[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]

sk′ [ n + 1]+ñk[ n + 1]
(29)

with

ñk[ n + 1] = ϑj
√pk′

(
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

−E

[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

])
sk′ [ n + 1]

+ ϑj
√pkλksk[ n + 1]

+ ϑj

K∑

i�=k,k′

√pigTk [ n + 1]Fj[ n + 1] gi[ n + 1] si[ n + 1]

+ ϑjgTk [ n + 1]Fj[ n + 1]nR[ n + 1]+nu,k[ n + 1] .

(30)

In (29), the first part ϑj
√pk′E

[
gTk [ n + 1]Fj[ n + 1]

gk′ [ n + 1]
]
sk′ [ n+1] is considered as “desired signal,” and

the second term ñk[ n+1] is considered as “effective noise,”
uncorrelated with the first term. Therefore, by approxi-
mating the effective noise as independent Gaussian noise
of the same variance [32], we can obtain the statistical CSI
based achievable rate of the kth UE in the jth time slot of
the broadcast phase as

R̂(j)
k = log2

(
1 + γ̂

(j)
k

)
, (31)

with

γ̂
(j)
k = ϑ2

j pk′
∣
∣E

[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]∣∣2

ϑ2
j pk′Var

[
gTk [n+1]Fj[n+1] gk′ [n+1]

] + ϑ2
j SI

(j)
k +ϑ2

j UI
(j)
k +ϑ2

j NR(j)
k +NUk

,

(32)

where SI(j)k , UI(j)k , NR(j)
k , and NUk denote the residual

self-interference after SIC, the inter-user interference, the
amplified noise from the relay, and the noise at kth UE,
respectively, i.e.,

SI(j)k � pkE
[|λk|2

]
, (33)

UI(j)k �
K∑

i�=k,k′
piE

[∣
∣
∣gTk [n + 1]Fj [n + 1] gi [n + 1]

∣
∣
∣
2
]
,

NR(j)
k � E

[∣
∣
∣gTk [n + 1]Fj [n + 1]nR [n + 1]

∣
∣
∣
2
]
,

NUk � E

[∣
∣nu,k [n + 1]

∣
∣2
]
.

Remark 1 The above worst-case lower bound of achiev-
able rate in (31) is obtained by assuming that UEk uses
only statistical information of the channel gains (i.e.,
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E
[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
) to decode the signal

transmitted by UEk′ . By contrast, the ergodic rate in (27)
is obtained by a sophisticated receiver, i.e., UEk knows per-
fectly gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]. In Section 8, it is
demonstrated via simulations that the performance gap
between the achievable SRs given by (31) and (27) is rather
small in massive MIMO-enabled MWRNs. It is clear that
(31) is a very useful metric for obtaining the achievable rate
in practical applications where CSI is not available.

Accordingly, the statistical CSI-based achievable SR of
the considered system with aged and predicted CSI is
uniformly given as

R̂ =
K∑

k=1

K−1∑

j
R̂(j)

k , (34)

In the following theorems, two accurate closed-form
expressions for the worst-case lower bound of achievable
SR are derived under aged and predicted CSI scenarios.

Theorem 1 For ZF transceivers, with aged CSI, the
worst-case lower bound of achievable SR in the considered
massive MIMO-enabled MWRNs is given by

R̂a =
K∑

k=1

K−1∑

j=1
R̂(j)

ak , (35)

where the closed-form formula ofR(j)
ak is defined as

R̂(j)
ak = log2

⎛

⎝1 + pk′pr
pr
(
ζ

(j)
a1,k + ζ

(j)
a2,k + ζ

(j)
a3,k

)
+ ζ

(j)
a4,kζ

(j)
a

⎞

⎠ ,

(36)

in which

ζ
(j)
a1,k = pk′

(
μ1β̃a,k′ β̄−1

a,k′ + μ1β̃a,k β̄
−1
a,k + μ2β̃a,kβ̃a,k′Aaj

)
,

ζ
(j)
a2,k = pk

(
μ1β̃a,k β̄

−1
a,k′ + μ1β̃a,kβ̄

−1
a,k′′ + μ2β̃

2
a,kAaj

)
,

ζ
(j)
a3,k =

K∑

i�=k,k′
pi
(
μ1β̃a,iβ̄

−1
a,k′ + μ1β̃a,k β̄

−1
a,i′′ + μ2β̃a,iβ̃a,kAaj

)
,

ζ
(j)
a4,k = μ1σ

2
r β̄−1

a,k′ + σ 2
r β̃a,kAaj + σ 2

u ,

ζ
(j)
a =

K∑

k=1
pk

(
μ1β̄

−1
a,k′′ + μ2β̃a,kAaj

)
+ μ2σ

2
r Aaj,

(37)

where k′′ = modK (K + k − j), i′′ = modK (K + i − j),
μ1 = 1

M−K−1 , μ2 = (2+(M−K)(M−K−3))
(M−K)(M−K−1)2(M−K−3) and

Aaj = ∑K
k=1 β̄−1

a,k β̄−1
a,k′′ .

Proof Please see Appendix 1.

For predicted CSI, a closed-form expression for the
statistical CSI-based achievable SR is derived as follows.

Theorem 2 For ZF transceivers, with predicted CSI, the
worst-case lower bound of achievable SR in the considered
massive MIMO-enabled MWRNs is given by

R̂p =
K∑

k=1

K−1∑

j=1
R̂(j)

pk , (38)

where R̂(j)
pk is derived as

R̂(j)
pk = log2

⎛

⎝1 + pk′pr
pr
(
ζ

(j)
p1,k + ζ

(j)
p2,k + ζ

(j)
p3,k

)
+ ζ

(j)
p4,kζ

(j)
p

⎞

⎠ ,

(39)

in which

ζ
(j)
p1,k = pk′

(
μ1β̃p,k′ β̄−1

p,k′ + μ1β̃p,k β̄
−1
p,k + μ2β̃p,k β̃p,k′Apj

)
,

ζ
(j)
p2,k = pk

(
μ1β̃p,k β̄

−1
p,k′ + μ1β̃p,k β̄

−1
p,k′′ + μ2β̃

2
p,kApj

)
,

ζ
(j)
p3,k =

K∑

i�=k,k′
pi
(
μ1β̃p,iβ̄

−1
p,k′ + μ1β̃p,k β̄

−1
p,i′′ + μ2β̃p,iβ̃p,kApj

)
,

ζ
(j)
p4,k = μ1σ

2
r β̄−1

p,k′ + σ 2
r β̃p,kApj + σ 2

u ,

ζ
(j)
p =

K∑

k=1
pk

(
μ1β̄

−1
p,k′′ + μ2β̃p,kApj

)
+ μ2σ

2
r Apj.

(40)

whereApj = ∑K
k=1 β̄−1

p,k β̄−1
p,k′′ .

Proof Since the proof follows similar lines as the proof
of Theorem 1, it is omitted.

Remark 2 Through Theorems 1 and 2, two simple
closed-form expression of the SR of the considered system
have been derived. The advantage of these expressions are
that it only depends on the LSF channel coefficients and
the configurable system parameters. Thus, complicated
calculations involving large-dimensional matrix variables
that represent the SSF channel coefficients are avoided.
In this way, the computational complexity which relates
to the SSF-based signal processing is greatly reduced. It
is underlined that these closed-form expressions establish
an explicit functional relationship between the SR, the
transmit powers of UEs, thus facilitating the introduction
of the following novel energy-efficient resource allocation
methodology.

5 EE optimization problem formulation
In the EE optimization, we employ a realistic power con-
sumption model similar to those used in [11, 33]. The
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total power consumption of the considered system can be
quantified as

Ptot = PPA + PC, (41)

where PPA is the power consumed by power amplifiers
(PAs) given as

PPA =
(
1 − τr

T
)∑K

k=1 pk
ηPA,U

+
τr
T Kpp
ηPA,U

+
(
1 − τr

T
)
(K − 1)pr

ηPA,R
,

(42)

in which ηPA,U ∈ (0, 1) and ηPA,R ∈ (0, 1) are the effi-
ciency of PAs at the UEs and at the relay, respectively. PC
denotes the total circuit power consumption, to be more
specific, we have

PC = KPcU + PCE + PLP + M (PRR + PcR) + Pf, (43)

in which PCE = M log2(τr)Rflops
ηC

is the power consumed
for CE at the relay, Rflops is the floating-point operations
per second (flops) per antenna for each user, and ηC is
the power efficiency of computing measured in flops/W.
PLP = 2M (K+K2)Rflops

ηC
is the power consumed for the

ZF-receive detector and ZF-transmit precoder. PRR is the
other baseband processing power (such as ADC/DAC,
modulation/demodulation) at each antenna, PcR and PcU
are the power consumed at circuit components of each
antenna at the relay and each UE, respectively, and Pf is
the fixed power consumption at the relay.
The power consumption in (41) can be rewritten as

Ptot � υ1

K∑

k=1
pk + Pfixed, (44)

where υ1 � (1− τr
T )

ηPA,U
, Pfixed =

τr
T Kpp
ηPA,U

+ (1− τr
T )(K−1)pr
ηPA,R

+
KPcU + PCE + PLP + M (PRR + PcR) + Pf.
Given the values of the other system parameters, the EE

ηEE [bits/Joule] under aged and predicted CSI scenarios is
unifiedly defined as

ηEE = B
(
1 − τr

T
) K−1

K
∑K

k=1
∑K−1

j=1 R̂(j)
k

Ptot
, (45)

where

R̂(j)
k = log2

⎛

⎝1 + prpk′
∑K

i=1 piρ
(j)
k,i + μ

j
k

⎞

⎠ , (46)

with ρ
(j)
i,k , μ

(j)
k are constant value (independent of transmit

powers), which are different for aged CSI and predicted
CSI. More precisely,

• For aged CSI, ρ(j)
k,i = pr

(
μ1β̃a,iβ̄

−1
a,k′ + μ1β̃a,kβ̄

−1
a,i′′+

μ2β̃a,iβ̃a,kAaj
)

+ σ 2
u

(
μ1β̄

−1
a,i′′ + μ2β̃a,iAaj

)
,

μ
(j)
k = pr

(
μ1σ 2

r β̄−1
a,k′ + μ2σ 2

r β̃a,kAaj
)

+ μ2σ 2
uσ 2

r Aaj.

• For predictedCSI,ρ(j)
k,i =pr

(
μ1β̃p,iβ̄

−1
p,k′ + μ1β̃p,kβ̄

−1
p,i′′+

μ2β̃p,iβ̃p,kApj
)

+ σ 2
u

(
μ1β̄

−1
p,i′′ + μ2β̃p,iApj

)
,

μ
(j)
k = pr

(
μ1σ 2

r β̄−1
p,k′ + μ2σ 2

r β̃p,kApj
)

+ μ2σ 2
uσ 2

r Apj.

Remark 3 In (45), the pre-log factor
(
1 − τr

T
)
is due to the

fact that during each coherence interval of T symbols, we
spend τr symbols for pilot-based CE. Moreover, the numer-
ator K − 1 of the pre-log factor K−1

K is due to the fact that
any user node receives signals from other K − 1 user nodes,
while the denominator K follows by the single time slot in
the multiple-access phase and K − 1 time slots used for
full-data exchange in the broadcast phase.

It is seen from (45) that the EE ηEE is a function of the
transmit powers of K UEs,

{
pk
}K
k=1. How to wisely allo-

cate the transmit power among the K UEs is crucial for
achieving the optimum EE in the context of green com-
munications. Hence, the energy-efficient power allocation
is formulated as the following optimization problem:

max
{pk}Kk=1

ηEE

s. t.

⎧
⎨

⎩

C1 : pk ≥ 0,∀k
C2 : pk ≤ pmax,∀k
C3 : R̂(j)

k ≥ R0.∀k, j
(47)

where the objective function ηEE is defined by (45), and
pmax is the maximum transmit power of each UE. The
constraints C1 and C2 are the boundary values for the
transmit powers of K UEs. The constraint C3 guarantees
the transmission link quality by satisfying the minimum
QoS requirement R0 for each UE at each time slot of the
broadcast phase. Here, R0 denotes the required achievable
rate for all UEs.

6 Energy-efficient power allocation algorithm
6.1 Optimal power allocation (OPA) scheme
It is easy to observe that (47) is not a CFP optimization
problem, because the numerator of the objection func-
tion ηEE and the QoS constraints C3 are non-convex with
respect to

{
pk
}K
k=1. Therefore, (47) cannot be directly

solved by classic fractional programming tools. To over-
come this difficulty, we employ the SCA technique pro-
posed in [34–36] to sequently approximate R(j)

k by using
the following inequality:

log2
(
1 + zk,j

) ≥ ak,j log2 zk,j + bk,j. (48)

The above inequation is tight at a particular value zk,j = z̄k,j
when the approximation constants ak,j and bk,j are chosen as

ak,j = z̄k,j
1 + z̄k,j

, bk,j = log2
(
1 + z̄k,j

)− z̄k,j
1 + z̄k,j

log2 z̄k,j.

(49)
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Motivated by the above convexity approximation, we
employ the inequality (48) to approximate R̂(j)

k , where zk,j
corresponds to γ̂k,j = prpk′∑K

i=1 piρ
(j)
k,i+μ

j
k
. Then, the variable

change pk = 2qk , for ∀k was used. Finally, we arrive at the
following approximated optimization problem

max
{qk}Kk=1

η̃EE(Q) = B
(
1 − τr

T
) K−1

K
∑K

k=1
∑K−1

j=1 R̃(j)
k (Q)

Ptot(Q)

(50)

s. t.

⎧
⎨

⎩

C1′ : 2qk ≥ 0,∀k
C2′ : 2qk ≤ pmax,∀k
C3′ : R̃(j)

k (Q) ≥ R0.∀k, j
where Q = diag

{
q1 · · · , qk · · · , qK

}
, Ptot (Q) =

υ1
∑K

k=1 2qk + Pfixed and

R̃(j)
k (Q) = bk,j + ak,j log2 (pr)

+ ak,jqk′ − ak,j log2

( K∑

i=1
2qiρ(j)

k,i + μ
(j)
k

)

,

(51)

with ak,j = γ̄
(j)
k

1+γ̄
(j)
k

and bk,j = log2
(
1 + γ̄

(j)
k

)
− γ̄

(j)
k

1+γ̄
(j)
k

log2 γ̄
(j)
k being the approximation constants computed as

(49), where γ̄
(j)
k = pr2qk′

∑K
i=1 2qiρ

(j)
k,i+μ

j
k
. For any fixed ak,j and

bk,j, it can be easily verified that (51) is convex with
respect to

{
qk
}K
k=1.

4 Therefore, the optimization prob-
lem (50) is a CFP problem with a quasi-concave objective
function η̃EE(Q)5 and convex constraints, which can be
transformed into a convex optimization in a subtractive by
the Dinkelbach’s method as follows [37].

max
Q

F(Q, λ) (52)

s. t.C1′ − C3′,

where

F(Q, λ) = B
(
1 − τr

T

) K − 1
K

K∑

k=1

K−1∑

j=1
R̃(j)

k (Q)−λPtot(Q).

(53)

Here, λ is a non-negative parameter, it can be noted that
when λ → 0, it implies that the energy-efficient prob-
lem (52) is degenerated to an optimization problem for the
SE maximization. The optimal factor λ∗ (i.e., the optimal
objective function value of (50)) works as the optimal EE
for the system. For fixed parameters ak,j, bk,j, and λ, the
optimization problem (52) is a convex optimization prob-
lem, which can be efficiently solved using standard convex

optimization tools, e.g., CVX [38]. Next, we derive an iter-
ative algorithm for solving this optimization by applying
the Lagrangian dual method.
Thus, the dual problem associated with the primal prob-

lem (52) can be written as

L (Q, λ,μ,ψ) = B
(
1 − τr

T

) K − 1
K

K∑

k=1

K−1∑

j=1
R̃(j)

k (Q)

− λ

(

υ1

K∑

k=1
2qk + Pfixed

)

−
K∑

k=1
μk

(
2qk − pmax

)

+
K∑

k=1

K−1∑

j=1
ψk,j

(
R̃(j)

k − R0
)

(54)

where μ = {μk} ,∀k are the Lagrangian multipliers asso-
ciated with the transmit power constraints C2′. while
ψ = {

ψk,j
}
,∀k, j are the Lagrangian multipliers for QoS

constraints C3′.
In the following, we solve the dual problem (54) using

Lagrangian dual approach, which alternates between a
subproblem (inner problem), updating the power alloca-
tion variables Q by fixing the Lagrangian multipliers μ,
ψ , and a master problem (outer problem), updating the
Lagrangian multipliers μ, ψ for the obtained solution of
the inner problem Q∗. The Lagrangian dual approach is
outlined as follows.
The optimization problem (54) is in a standard concave

form, which can be efficiently solved by using standard
optimization techniques and KKT conditions [38]. Thus,
to obtain the optimal power allocation for users, we take
the partial derivative of (54) with qk , k = 1, · · · ,K , and
equate the results to zero, thus the power allocation at the
(m + 1)th iteration is updated as follows.

qk(m + 1)= log2

⎡

⎢⎢
⎢
⎣

∑K
k=1

∑K−1
j=1

(
B
(
1 − τr

T
) K−1

K + ψk,j
)

ρ
(j)
k,kak,j

∑K
i=1 2qi (m)ρ

(j)
k,i+μ

(j)
k

(μk + λυ1) ln 2

⎤

⎥⎥
⎥
⎦

+

(55)

where [ x]+ = max{0, x}.
Since the dual problem in (54) is differentiable, the

gradient method may be readily used for updating the
Lagrangian dual variables μk and ψk,j,∀k, j as follows [39].
μk(m + 1) = [

μk(m) − ε1(m)
(
pmax − 2qk

)]+ ,∀k, (56)

ψk,j(m+1) =
[
ψk,j(m) − ε2(m)

(
R̃(j)

k − R0
)]+

,∀k, j, (57)
where ε1(m) and ε2(m) are the step sizes used for
moving in the direction of the negative gradient for
the Lagrangian multipliers μk and ψk,j, respectively. The
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updated Lagrange multipliers are used for updating the
power allocation policy. We repeat this process until con-
vergence. The detailed iterative procedure is summarized
in Algorithm 1.

Algorithm 1 Iteration algorithm for optimizing the trans-
mit powers of the users
1. Set the maximum number of iterations Imax 1;
2. Initialize the iteration counter l = 0 and penalty factor

λ(l) = 0.01;
3. repeat (Corresponding to the outer loop)

(a) Set the maximum number of iteration lmax 2;
(b) Initialize the iteration counterm = 0 and the

step ε1(m), ε2(m),
(
ak,j, bk,j

)
by (1, 0), μk(m),

ψk,j(m) and qk(m), ∀k, j;
repeat (Corresponding to the inner loop) repeat
(Solving optimization problem (54))

(a) Update qk(m) using (55);
(b) Update μk(m) and ψk,j(m) using (56) and (57),

respectively;

Until convergence to the optimal solution q∗
k , ∀k

4. Update the coefficients
(
ak,j, bk,j

)

5. Set qk (m + 1) ← q∗
k , ∀k

6. m ← m + 1
until convergence orm > Imax 2

7. Update λ (l + 1) = B(1− τr
T ) K−1

K
∑K

k=1
∑K−1

j=1 R̃(j)
k (Q∗)

Ptot(Q∗)
8. l ← l + 1
9. Until convergence or l > lmax 1
10. Obtain the optimal power allocation p∗

k = 2q
∗
k ,∀k.

To get a better insight into the computational complex-
ity of our proposed algorithm, we perform an exhaus-
tive complexity analysis. First, it is assumed that the
network factor λ converges in W iterations. The opti-
mization problem (52) consists of K × (K − 1) sub-
problems due to K UEs operating on K − 1 effective
time slots. Besides, the computational complexity resulted
by these constraints C1′ − C3′ is O

(
V 3 + 2

)
, where V

denotes each UE’s power level. Furthermore, the compu-
tational complexity of updating Lagrangian dual variables
is given as O (K� ) (for example � = 2 if the ellip-
soid method is used [40]). Let us suppose if the dual
objective function (54) converges in G iterations, then the
total complexity for the proposed OPA scheme becomes
O
(
2WG (K − 1) (K)�+2 (V 3 + 2

))
.

6.2 Equal power allocation (EPA) scheme
To strike a balance between the computational complexity
and the optimality, we propose another lower-complexity

power allocation scheme in this paper, i.e., an EPA scheme
among all UEs. The same-level transmit powers of K UEs
is set as pk = pu, for ∀k; then, the optimization problem
(47) under the EPA scheme is simplified as

max
pu

ηEE (pu) (58)

s. t.

⎧
⎨

⎩

C4 : pu ≥ 0,
C5 : pu ≤ pmax,
C6 : R(j)

k (pu) ≥ R0,∀k, j,
where

ηEE (pu) = B
(
1 − τr

T
) K−1

K
∑K

k=1
∑K−1

j=1 R(j)
k (pu)

υ1Kpu + Pfixed
,

(59)

R(j)
k (pu) = log2

⎛

⎝1 + prpu
pu

∑K
i=1 ρ

(j)
k,i + μ

(j)
k

⎞

⎠ . (60)

To solve the above optimization problem (58), we firstly
find the feasible region of pu and then find the global
extrema values. The detailed steps are shown as follows.
Firstly, we solve the Eq. R(j)

k (pu) = R0 and get the
solution p∗

u,k,j for ∀k, j. It can be easily determined that

R(j)
k (pu) is a monotonically increasing function for pu.

Hence, the QoS constraints of (58) can be reset as pu ≥
p∗
u,k,j for ∀k, j, i.e.,

pu ≥ p∗
u,max, (61)

where p∗
u,max = max

{
p∗
u,1,1 · · · , p∗

u,k,j, · · · p∗
u,K ,K−1

}
. Con-

sidering both C5 and (61), the feasible region of pu for
(58) becomes

[
p∗
u,max, pmax

]
. If p∗

u,max > pmax, the opti-
mization problem becomes infeasible. Namely, there is no
solution of pu satisfying the QoS constraints, so the algo-
rithm should adjust pmax. If p∗

u,max < pmax, (58) is feasible
on

[
p∗
u,max, pmax

]
.

Once feasible, we can find the global maximum of
ηEE (pu) in

[
p∗
u,max, pmax

]
. To be more specific, it can be

readily proved that ηEE (pu) is quasi-concave in pu and
therefore has a unique stationary point pu, which coin-
cides with its global maximizer and can be found from
the first-order derivative (i.e., ∂ηEE(pu)

∂pu
= 0). Then, since

ηEE (pu) is strictly increasing for pu ≤ pu and strictly
decreasing for pu > pu. Therefore, the solution of (58), p∗

u
is obtained as follows.

p∗
u =

⎧
⎨

⎩

p∗
u,max, if pu ≤ p∗

u,max,
pu, if p∗

u,max < pu < pmax,
pmax, if pmax ≤ pu.

(62)
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Remark 4 Compared to the optimization problem (47),
where K variables

{
pk
}K
k=1 are optimized, the new for-

mulation (58) only uses pu as the optimization vari-
able. Hence, the computational complexity of the EPA
scheme in (58) is significantly lower than that of the OPA
scheme solving (47). Moreover, the OPA scheme based
(47) is solved by the iterative Dinkelbach’s algorithm and
Lagrangian dual method, which requires a complexity
of O

(
2WG (K − 1) (K)�+2 (V 3 + 2

))
, the EPA scheme

based (58) can obtain a closed-form optimal solution by
comparing extreme values and boundary values of the
optimization problem (58), without iteration. In contrast
to OPA scheme, the computational complexity of the EPA
scheme can be negligible.

7 Numerical results
In this section, we evaluate the EE performance of the
considered massive MIMO-enabled MWRN that uses the
proposed energy-efficient power allocation strategies, and
demonstrate the accuracy of our analytical results as well
as the impacts of several relevant parameters on the opti-
mum EE via numerical simulations. Several key simula-
tion parameters are set as Table 1 [11, 33]. Assume that
the relay coverage area is modeled as a disc and the relay is
located at the geometric center of the disc. Furthermore,
all UEs are assumed to be randomly and uniformly dis-
tributed in the circular cell with a radius R, we assume that
no UE is closer to the relay than Rmin, and the log-normal
shadowing ξk ∼ lnN

(
0, σ 2

k
)
.

7.1 Accuracy of analytical results
In this subsection, we evaluate the accuracy of analytical
results given in (35) with aged CSI, as well as in (38) with
predicted CSI for different fDTS and p. We use normalized
Doppler shifts fDTS to characterize channel aging. Larger

Table 1 Simulation parameters

Parameter Value

Reference distance: Rmin 30 m

Variance of log-normal shadowing fading: σ 2
k 8 dB

Transmission bandwidth: B 20 MHz

PA efficiency at the relay: ηr 0.39

Channel coherence bandwidth: Bc 180 kHz

PA efficiency at UEs: ηu 0.3

Channel coherence time: Tc 10 ms

Circuit power consumption at the relay: PcR 1 W

Fixed power consumption: Pf 20 W

Circuit power consumption at UEs: PcU 0.1 W

Power efficiency of float-point operation:
Rflops
ηC

1800

baseband processing power consumption at the relay: PRR 29.6 W

normalized Doppler shifts correspond to large CSI delays
(i.e., the more serious channel aging effect). We choose
σ 2
r = σ 2

u = 1 and τr = K . For the clarity of analysis,
we assume that the EPA scheme used at UEs is consid-
ered, i.e., pk = pu. All the simulated values are obtained
by averaging over 106 independent Monte Carlo channel
realizations.
Figure 2 shows the system’s achievable SR versus the

number of antennas at the relay M for different normal-
ized Doppler shifts fDTS. It can be clearly seen from Fig. 2
that the relative performance gaps between the analyti-
cal results (35) (marked as Analytical) and the simulated
values (27) (marked as Simulated) are very small, which
demonstrates analytical results’ accuracy. In addition, we
can see a intuitive result that channel aging degrades the
system’s achievable SR. Again, it is noted that increasing
the number of relay antennas M improves the system’s
achievable SR, as expected. This observation also implies
that, when fDTS is relatively large, the contribution of the
increasing ofM diminishes quickly.
We now investigate the benefits of channel prediction

on the achievable SR in Fig. 3. As can be readily, our
analytical results (38) are in perfect agreement with the
simulated curves (27), demonstrating the accuracy of ana-
lytical results. In addition, it is noted that, as the normal-
ized Doppler shift fDTS becomes large, the achievable SR
loss increases significantly. Apparently, when the chan-
nel prediction order grows large, the achievable SR gain
improves considerably. We also observe that, when the
channel aging effect is less severe (i.e., fDTS is small), chan-
nel prediction becomes more important. Finally, it can be
observed that, the predicted CSI case achieves a higher
SR than the current CSI (no channel aging) case when
fDTS is small, while its performance degrades substantially
when fDTS is large and becomes worse than that with the
current CSI case.

7.2 Optimality of the proposed optimization strategy
In Fig. 4, we show the convergence behavior of the pro-
posed power allocation strategies (including both theOPA
and the EPA schemes) under different channel predic-
tion orders p. It can be observed that the EEs of the OPA
scheme (by solving (47)) are monotonically increased with
the iteration number, then converge to the optimal EE
value after only a few iterations. In addition, in order
to further demonstrate the effectiveness of the proposed
schemes, a performance comparison is given with other
algorithm (i.e., Charnes-Cooper transformation (CCT)-
based method) for power allocation in [41]. From Fig. 4,
we can observe that the OPA scheme with the CCT-
based method is slightly superior to the proposed OPA
scheme with lower iterations, but the CCT-based method
involves perspective transformations, which increases the
computational complexity.
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At the same time, the lower-complexity EPA schemes
for solving (58) achieve near-optimum performances, dis-
pensing with any iteration. Moreover, it can be observed
that the obtained EE performances of the EPA schemes
are slightly worse those of the OPA schemes. Finally, in
order to valid the accuracy of the derived lower bound and
the optimality of the proposed power allocation strate-
gies, in Fig. 4, we provide a performance benchmark that
correspond to solving the problem (47) via the high-
complexity brute-force searching relying on the ergodic
achievable SR in (27). From Fig. 4, we can see that the EEs
of the proposedmethods are slightly inferior to the bench-
marks, and this is mainly because the proposed schemes
are sub-optimal methods which involve iterations and
convex approximation. When using OPA scheme, K vari-
ables

{
pk
}K
k=1 must be optimized. By contrast, with EPA

scheme, we only need to optimize the single variable pu.
Furthermore, the OPA scheme obtains the optimal power
allocation solution in virtue of the complicated iterative
Dinkelbach’s algorithm and Lagrangian dual method. The
EPA scheme can obtain a closed-form optimal solution by
only comparing extreme values and boundary values of
the optimization problem (58), without iteration. Hence,
compared with the the OPA scheme, the computational
complexity of the EPA scheme is significantly reduced.
Therefore, the EPA scheme is a good choice in terms of
the tradeoff between the achievable EE performance and
the computational complexity. Finally, numerical results

also reveal that higher prediction order can obtain the
improvement of EE performance.
Figure 5 illustrates the optimum EE achieved by the

proposed power allocation strategies versus the transmit
power constraint pmax. It is observed that the OPA scheme
slightly outperforms the EPA scheme in terms of the opti-
mum EE achieved. Furthermore, we can see that, when
pmax ≤ 26 dBm, the optimum EEs achieved by these
proposed schemes can be substantially improved as pmax
increases. This observation suggests that at this region
[10, 26] dBm, increasing the available power budget is an
energy-efficient choice. However, when pmax ≥ 26 dBm,
the optimum EEs of the proposed power allocation
scheme converge to a certain stable level. This important
observation suggests that, when pmax is large enough, the
increasing of transmit power may not be a good choice
from the perspective of EE. Finally, it is observed that the
smaller fSTD achieves a higher EE for either power allo-
cation strategy. This is rather expected, since the smaller
fSTD means the less serious channel aging effect, and the
EE loss becomes smaller accordingly.
Figure 6 illustrates the impact of the QoS threshold R0

on the optimum EEs achieved by the proposed power
allocation schemes. It can be readily noted that when
R0 ≤ 4 bit/s/Hz, each optimum EE remains unchanged.
This happens because when R0 takes small values, it is
easy to satisfy the link’s QoS requirement. This obser-
vation suggests that, at the low QoS requirement region
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R0 ≤ 4 bit/s/Hz, we can make the best use of all the
available power to achieve the maximum EE, without hav-
ing to waste more power on unfavorable links. Meanwhile,
when R0 ≥ 4 bit/s/Hz, the optimum EEs decrease as R0
increases. This is due to the fact that whenR0 increases, an
excess fraction of power has to be allocated to compensate
for disadvantageous links, which results in a degradation
of optimum EE. In other works, a higher minimum rate R0
is satisfied at the expense of a reduction of the optimum EE.
In Fig. 7, we show the impact of the transmit power of

each pilot symbol pp on the optimum EEs achieved by the
proposed power allocation schemes. From these results
and as it was expected, it can readily be observed that the
the optimum EEs of all schemes increases with increas-
ing pp. Moreover, as pp grows large, the growth of the
achievable EE gradually slows down and saturates to the
value that relies on perfect CSI estimation. This implies
that although the systemwith high transmit power of each
pilot symbol (i.e., pp = 50 dBm) is capable of improving
the CE accuracy, then achieves a better EE performance,
the extremely high CE accuracy is not a wise choice at the
cost of consuming more power.

8 Conclusions
In this paper, we have provided the performance anal-
ysis of the system’s achievable SR and proposed low-
complexity power allocation strategies for maximizing the
EE of a massive MIMO-enabled MWRN with channel

aging. Specifically, we derived closed-form expressions
for the system’s achievable SR with/without channel pre-
diction. Based on the derived analytical results, a uni-
fied power allocation optimization problem is established,
under the transmit power and QoS constraints. Owing
to the non-convexity of the objective function and QoS
constraints, the original non-convex problem is sequently
approximated as a solvable CFP problem with the aid of
the SCA technique, which can be efficiently solved by
the Dinkelbach’s algorithm and Lagrangian dual method.
Moreover, we have proposed a closed-form power con-
trol algorithm for the lower-complexity EPA scheme. The
impacts of normalized Doppler shifts fDTS, channel pre-
diction order, and other relevant system parameters on
the SR and EE performance are investigated via numeri-
cal simulations, which have verified the accuracy of our
analytical results, and confirmed the effectiveness of the
proposed power allocation schemes.

Endnotes
1Although we respectively studied the resource allo-

cation for EE maximization in the massive MIMO-
enabled OWRNs and MWRNS in [42, 43], the works in
[42, 43] only considered the channel estimation (CE) error
and ignored the effect of channel aging. Contrast to the
transmission schemes proposed in [42, 43], the perfor-
mance analysis and power allocation algorithms in this
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paper have stronger robustness over the practical commu-
nication scenario.

2 This setup is general enough tomodel a variety of com-
munication scenarios. Certain practical applications such
as multimedia teleconferencing via a satellite or mutual
data exchange between sensor nodes and the data fusion
center in wireless sensor networks require mutual data
exchange among more than just two terminals.

3 In this paper, for simplicity and tractability, we
assumed that the direct link between any two UEs is
ignored due to severe path loss. This assumption has been
widely made in multi-way relay systems [13, 14], and it is
easily extended to complex system models with a direct
communication link between two UEs.

4The log-sum-exp is convex [38].
5 The numerator is concave, and the denominator is

convex [38].

Appendix 1
Proof of Theorem 1
With aged CSI, ḡk [n + 1] ∼ CN

(
0, β̄a,kIK

)
is independent

of ξ a,k [n + 1] ∼ CN
(
0, β̃a,kIK

)
.

1. Derive ϑj: According to (3) and (25), we have

pr
ϑ2
j

= E

[∥
∥Fj[ n + 1] yR[ n + 1]

∥
∥2
]

= Ψ
(j)
1 +Ψ

(j)
2 +Ψ

(j)
3 ,

(63)

where

Ψ
(j)
1 = E

[∥
∥Fj[ n + 1] Ḡ[ n + 1] xU[ n + 1]

∥
∥2
]

(64)

Ψ
(j)
2 = E

[∥
∥Fj[ n + 1] G̃[ n + 1] xU[ n + 1]

∥
∥2
]

Ψ
(j)
3 = σ 2

r E
[∥
∥Fj[ n + 1]

∥
∥2
]
.

with G̃[ n + 1]= [
ξ a,1[ n + 1] , · · · , ξ a,K [ n + 1]

]
.

• Compute Ψ
(j)
1 : According to the definition of

Fj [n + 1], we have

Ψ
(j)
1

(a)= E

[
Tr

{
PπH

j WH
2 [ n + 1]W2[ n + 1]π j

}]

=
K∑

k=1
pkE

[[
πH
j
(
ḠH [ n + 1] Ḡ[ n + 1]

)−1
π j
]

k,k

]

(b)= μ1

K∑

k=1
pkβ̄−1

a,k′′ ,

(65)

where μ1 = 1
M−K−1 and

k′′ = modK (K + k − j). (a) results from the
property Tr{AB} = Tr{BA}. As to the detailed
derivation of (b), we use the identity as follows
[44]: 
 �

(
ḠH [ n + 1] Ḡ[ n + 1]

)−1 is an
inverted Wishart matrix, i.e.,

 ∼ W−1

K
(
M + K + 1, D̂−1

a
)
with

D̂−1
a = diag

{
β̄−1
a,1 , · · · , β̄−1

a,K

}
. Hence, we have

[45]

E[
]= E

[(
ḠH [ n + 1] Ḡ[ n + 1]

)−1] = D̂−1
a

M − K − 1
.

(66)

• Compute Ψ
(j)
2 : Since Ḡ[ n + 1] and G̃[ n + 1] are

independent, we obtain

Ψ
(j)
2

(a)= E

[
Tr

{
PG̃H [n+1]FHj [n+1]Fj[n+1] G̃[n+1]

}]

=
K∑

k=1
pk β̃a,kE

[
Tr

{
FHj [ n + 1]Fj[ n + 1]

}]
,

(67)

in which

E

[
Tr

{
FHj [ n + 1]Fj[ n + 1]

}]
= E

[
Tr

{
πH
j 
π j


}]

=
K∑

k=1
E
[
[
]k′′ ,k′′ [
]k,k

]

+
K∑

m=1,m�=k
E
[
[
]k′′ ,m′′ [
]m,k

]

(c)= μ2Aaj

(68)

wherem′′ = modK (K + m − j),
μ2 = (2+(M−K)(M−K−3))

(M−K)(M−K−1)2(M−K−3) and
Aaj = ∑K

k=1 β̄−1
a,k β̄−1

a,k′′ . The detailed derivation
of (c) is given as follows [45]:

E
[
[�]k,k [�]k′′ ,k′′

] = Cov
(
[�]k,k [�]k′′ ,k′′

)

+ E[ [�]k,k ]E
[
[�]k′′ ,k′′

]

= 2β̄−1
a,k β̄−1

a,k′′ + (M − K)(M − K − 3)β̄−1
a,k β̄−1

a,k′′

(M − K)(M − K − 1)2(M − K − 3)
.

(69)

and form �= k

E
[
[
]k′′,m′′ [
]m,k

] = 0. (70)

According to (71) and (68), we get

Ψ
(j)
2 = μ2Aaj

K∑

k=1
pkβ̃a,k . (71)
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• Compute Ψ
(j)
3 : Similarly, according to (68), we

can obtain

Ψ
(j)
3 = σ 2

r E
[
Tr

{
Fj [n + 1]FHj [ n + 1]

}]

= μ2σ
2
r Aaj.

(72)

Substituting (65), (71), and (72) into (8), we have

ϑ2
j = pr

Ψ
(j)
1 + Ψ

(j)
2 + Ψ

(j)
3

(73)

= pr
∑K

k=1 pk
(
μ1β̄

−1
a,k′′ + μ2β̃a,kAaj

)
+ μ2σ 2

r Aaj
.

2. Derive R̂(j)
k : From (31), we need to compute

E
[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
, SI(j)k , UI(j)k , NR(j)

k ,
NUk , and Var

[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
.

• Compute E
[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
:

We have

E

[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
= ϕ1 + ϕ2 + ϕ3 + ϕ4,

(74)

with

ϕ1 = E

[
ḡTk [ n + 1]Fj[ n + 1] ḡk′ [ n + 1]

]
= 1,

ϕ2 = E

[
ḡTk [ n + 1]Fj[ n + 1] ξ a,k′ [ n + 1]

]
(d)= 0,

ϕ3 = E

[
ξTa,k[ n + 1]Fj[ n + 1] ḡk′ [ n + 1]

]
(d)= 0,

ϕ4 = E

[
ξTa,k[ n + 1]Fj[ n + 1] ξ a,k′ [ n + 1]

]
(d)= 0,

(75)

where (d) results from the independence
between ḡi[ n + 1] and ξ a,j[ n + 1] for ∀i, j.
Hence, we have

E

[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
= 1.

(76)

• Compute Var
[
gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1]

]
:

According to the definition of variance, we have

Var
[∣
∣ςk,j

∣
∣2
]

= E

[∣
∣ςk,j

∣
∣2
]
−(

E[ ςk,j]
)2 , (77)

where ςk,j = gTk [ n + 1]Fj[ n + 1] gk′ [ n + 1],
E

[∣
∣ςk,j

∣
∣2
]
can be decomposed into the

following parts:

E

[∣
∣ςk,j

∣
∣2
]

= ω1 + ω2 + ω3 + ω4, (78)

with

ω1 = E

[∣
∣∣ḡTk [ n + 1]Fj[ n + 1] ḡk′ [ n + 1]

∣
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2
]

= E

[
eTk π jek′ek′πH

j ek
]

= 1,

ω2 = E
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∣
2
]

= β̃a,k′E
[
eTk π jW1[ n + 1]WH
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j ek

]

= β̃a,k′E
[
[
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] (b)= μ1β̃a,k′ β̄−1
a,k′ ,

ω3 = E
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∣
∣
∣
2
]

= β̃a,kE
[
eTk′πH

j WH
2 [ n + 1]W2[ n + 1]π jek′

]

= β̃a,kE
[
[
]k,k

] (b)= μ1β̃a,kβ̄
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a,k ,

ω4 = E

[∣
∣
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∣
∣
∣
2
]

= β̃a,kβ̃a,k′E
[
Tr

{
FHj [ n + 1]Fj[ n + 1]

}]

= β̃a,kβ̃a,k′
K∑

k=1
E
[
[
]k,k [�]k′′,k′′

]

(c)= μ2β̃a,k β̃a,k′Aaj.
(79)

According to (77)–(79), we obtain

Var
(
ςk,j

) = μ1β̃a,k′ β̄−1
a,k′ + μ1β̃a,kβ̄

−1
a,k

+ μ2β̃a,k β̃a,k′Aaj.
(80)

• Compute SI(j)k : We have

E
[|λk|2

] (e)= E

[∣
∣
∣gTk [ n + 1]Fj[ n + 1] gk[ n + 1]

∣
∣
∣
2
]

= ω5 + ω6 + ω7 + ω8,
(81)

where (e) results from the property ḡTk [ n + 1]
Fj[ n + 1] ḡk[ n + 1]= eTk π jek = 0, and
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ω5 = E
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(82)

Substituting (82) into (81), we obtain

E
[|λk|2

] = μ1β̃a,k β̄
−1
a,k′ +μ1β̃a,kβ̄

−1
a,k′′ +μ2β̃

2
a,kAaj.
(83)

• Compute UI(j)k : Following the same
methodology used for computing E

[|λk|2
]
, we

can easily derive

E

[∣
∣
∣gTk [ n + 1]Fj [n + 1] gi[ n + 1]

∣
∣
∣
2
]

= ω9 + ω10

+ ω11 + ω12

(84)

with

ω9 = E

[∣
∣
∣ḡTk [ n + 1]Fj[ n + 1] ḡi[ n + 1]

∣
∣
∣
2
]

= eTk π jeieTi πH
j ek = 0,

ω10 = E

[∣
∣
∣ḡTk [ n + 1]Fj[ n + 1] ξ a,i[ n + 1]

∣
∣
∣
2
]

= β̃a,iE
[
eTk π j
πH

j ek
]

(b)= μ1β̃a,iβ̄
−1
a,k′ ,

(85)

ω11 = E

[∣
∣
∣ξTa,k[ n + 1]Fj[ n + 1] ḡi [n + 1]

∣
∣
∣
2
]

= β̃a,kE
[
eTi πH

j 
π jei
]

(b)= μ1β̃a,k β̄
−1
a,i′′ ,

ω12 = E

[∣∣
∣ξTa,k[ n + 1]Fj[ n + 1] ξ a,i[ n + 1]

∣∣
∣
2
]

= β̃a,k β̃a,iE
[
Tr

{
Fj[ n + 1]FHj [ n + 1]

}]

=(c)= μ2β̃a,kβ̃a,iAaj.
(86)

where i′′ = modK
(
K + i − j

)
.

According to (84) and (85), we can obtain

E

[∣
∣
∣gTk [n + 1]Fj [n + 1] gi [n + 1]

∣
∣
∣
2
]

= μ1β̃a,iβ̄
−1
a,k′

+ μ1β̃a,k β̄
−1
a,i′′

+ μ2β̃a,iβ̃a,kAaj.
(87)

Therefore, we can conclude

UI(j)k =
K∑

i�=k,k′
piμ1β̃a,iβ̄

−1
a,k′ +piμ1β̃a,kβ̄

−1
a,i′′ +μ2β̃a,iβ̃a,kAaj.

(88)

• Compute NR(j)
k : We have

E

[∣
∣
∣gTk [ n + 1]Fj[ n + 1]nR[ n + 1]

∣
∣
∣
2
]

= ω13+ω14,

(89)

with

ω13 = E

[∣
∣
∣ḡTk [ n + 1]Fj[ n + 1]nR [n + 1]

∣
∣
∣
2
]

= σ 2
r E

[
eTk π j
πH

j ek
]

(b)= μ1σ
2
r β̄−1

a,k′ ,

ω14 = E

[∣
∣∣ξTa,k[ n + 1]Fj [n + 1]nR[ n + 1]

∣
∣∣
2
]

= σ 2
r β̃a,kE

[
Tr

{
FHj [ n + 1]Fj[ n + 1]

}]

(c)= μ2σ
2
r β̃a,kAa,j.

(90)

Substituting (90) into (89), we can obtain

NR(j)
k = μ1σ

2
r β̄−1

a,k′ + μ2σ
2
r β̃a,kAaj. (91)

• Compute NUk : We have

NUk � E

[∣
∣nu,k [n + 1]

∣
∣2
]

= σ 2
u . (92)

Substituting (73), (76), (80), (83), (88), (91), and (92)
into (32), we can obtain (35) after some simple algebraic
manipulations. Thus, the proof of Theorem 1 is complete.
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