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Abstract

Interference alignment (IA) and non-orthogonal multiple access (NOMA) are key technologies for achieving the
capacity scaling required by next generation networks to overcome the unprecedented growth of data network
traffic. Each of these technologies was proved to present excellent performance for MIMO systems. In this article, we
propose a joint IA and power allocation (PA) framework for NOMA-based multi-user MIMO (MU-MIMO) systems.
Different approaches for applying IA in downlink NOMA-based MU-MIMO systems will be addressed while
implementing a PA technique that fully exploits the characteristics of NOMA-based systems. The proposed framework
aims to maximize the sum-rate of the NOMA-based MU-MIMO system through combining IA with PA. The process
begins by initially grouping the system users into clusters for optimum implementation of NOMA. The sum-rate
maximization is carried out under cluster power budget, user quality-of-service (QoS), and robust successive
interference cancellation (SIC) constraints. Meanwhile, it uses the power domain multiplexing strategy to allow the
users within each cluster to share the data streams without exerting interference to one another. Three iterative joint
IA and PA algorithms are proposed for NOMA-based MU-MIMO systems. Moreover, these algorithms are compared
with orthogonal multiple access (OMA)-based MU-MIMO counterpart as well as the state-of-the-art techniques
presented for NOMA-based MU-MIMO systems. Numerical simulations verify that the proposed framework can greatly
improve the performance of NOMA-based MU-MIMO systems in terms of the achievable sum-rate when compared
with OMA-based MU-MIMO and the state-of-the-art NOMA-based MU-MIMO systems.

Keywords: Non-orthogonal multiple access (NOMA), Interference alignment (IA), Power allocation, Joint
optimization, Grassmann manifold

1 Introduction
One of the key challenges facing the fifth generation
(5G) mobile networks is the overwhelming growth of
data network traffic. Accordingly, non-orthogonal multi-
ple access (NOMA) has recently attracted much atten-
tion as a promising radio access technology in 5G
mobile networks due to its superior spectral efficiency
[1]. The concept behind NOMA is the exploitation of
the power domain for implementing a multiple access
mechanism in mobile networks. Specifically, the sig-
nals of NOMA users are assigned with different power
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allocation (PA) coefficients according to their chan-
nel conditions. Users with poor channel conditions
are assigned more power level, and users with bet-
ter channel conditions are assigned lower power level
[2, 3]. One of the major advantages of the NOMA
technique is its excellent ability to balance between
sum-rate and fairness, and accordingly achieves an
optimized spectral efficiency for all the served users [2, 4].
The NOMA technique was the core of many research

studies in the last few years [1–7]. In [5], a compari-
son between NOMA and its orthogonal counterparts, in
terms of the achievable sum-rate, has been accomplished
and the results demonstrated the superiority of NOMA
as a radio access technology for future 5G cellular net-
works. In [6], the NOMA technique is used to implement
a cooperative transmission strategy for spectrum-sharing
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cognitive radio networks. The user fairness for NOMA-
based cellular systems has been addressed in [4]. NOMA
technique is also used in cognitive radio networks in order
to maintain some pre-defined quality-of-service (QoS)
conditions [7]. The application of MIMO-NOMA to the
downlink mobile communication networks is addressed
in [2]. Specifically, they implement MIMO-NOMA to
both cellular and cognitive inspired wireless networks.
Additionally, they explored the outage probability for
MIMO-NOMA systems and study the sum-rate gap
between NOMA-based networks and their orthogonal
multiple access (OMA) counterparts.
During the last decade, interference alignment (IA)

technique is also proposed as an excellent solution to the
interference problem arising in wireless multi-user (MU)
communication networks that significantly improve its
sum-rate [8]. Specifically, implementing IA technique in
wireless networks results in sum-rate that can scale lin-
early and without bound with the number of users in
the network at high signal-to-noise power ratio (SNR)
[8, 9]. The key idea behind the IA technique is to align
interference signals into a reduced dimensional subspace
leaving the remaining subspace for the transmission of
useful signal without any interference. Accordingly, max-
imum degrees of freedom (DoFs) for the whole network
can be achieved. The IA scheme is studied for many dif-
ferent networks, e.g., X channel [10], K-user interference
channel (IC) [8, 11], heterogeneous networks [12–14], and
cognitive radio networks [15, 16]. Moreover, the impor-
tance of the channel state information (CSI) for successful
IA implementation is addressed in many works [17, 18].
Additionally, the feasibility conditions for IA implementa-
tion were the core of careful research studies [8–10].
Evaluating the capacity of a general IC is still a dif-

ficult goal for researchers in wireless communications
and information theory [19] communities. However, IA
technique is introduced as a DoFs optimal approach to
interference management [10, 11]. This means that it can
achieve the capacity of the IC at high SNR value. Note that
IA approach can be achieved in time, frequency, and space
dimensions. However, applying IA approach in the space
dimension is the most popular due to the widespread use
of MIMO technology. In MIMO networks, IA technique
is applied using transmit beamforming matrices that help
keeping all undesired received signals at each receiver
within the same minimum dimensional sub-space, leav-
ing the desired signal sub-spaces interference-free. Then,
a receive beamforming matrix orthogonal to the inter-
ference sub-spaces at each receiver is used to completely
eliminate the undesired interference signals [18, 20].
Recently, maximizing the capacity and accordingly

the sum-rate for NOMA-based MU-MIMO communi-
cation networks becomes a target for many research
works [21–24]. In [21], the problem of maximizing the

sum-rate for NOMA-based MIMO communication sys-
tems is studied under both total transmit power and
minimum rate per user constraints. However, this study
gives no attention to the applicability of successive inter-
ference cancellation (SIC) technique for networks with
large number of users. In this work, they proposed PA
scheme based on the CSI corresponding to full-rate trans-
mission condition. The concept of signal alignment for
both uplink and downlink transmissions in NOMA-based
MIMO systems is addressed in [22]. Specifically, the
authors used stochastic geometry to evaluate the perfor-
mance of the proposed transmission framework with both
randomly deployed users and interferers. The authors
in [23] proposed a user-clustering algorithm for con-
ventional NOMA-based MU-MIMO systems. They also
investigated the performance of NOMA-based MIMO
systems compared to OMA-based MIMO systems and
concludes that NOMA-based MIMO systems are offering
better capacity than the conventional OMA-basedMIMO
counterparts. Unlike our work, the method presented
in [23] does not consider working with IA-based net-
works. In [24], the authors proposed a resource allocation
scheme based on IA for NOMA-based networks. Specif-
ically, they proposed a PA algorithm for 2-users NOMA
network that implements the singular value decompo-
sition (SVD)-based IA scheme which is not scalable to
networks with large number of users. Additionally, they
targeted optimizing the sum-rate under total power con-
straint. However, the generalization of the PA to the
case where there are K > 2 users in the network is
done in heuristically non-optimal manner based on 2-
users pairing. Moreover, the solutions presented in [24]
totally ignores the practical feasibility of SIC technique
as well as the QoS requirements at each user, which
are all considered in our proposed joint optimization
algorithms.
In this article, we propose a joint IA and PA framework

for optimizing the sum-rate of the NOMA-based MU-
MIMO systems. The main contributions in our article can
be summarized as follows:

• We propose a system and signal model for
NOMA-based MU-MIMO systems that implements
both the IA and PA techniques.

• We formulate the IA problem for NOMA-based MU-
MIMO systems as an optimization problem and then
find the optimum solutions according to the approach
of IA employed for maximizing the system sum-rate.

• A PA technique for NOMA-based MU-MIMO
system that employs IA transceivers is introduced,
aiming to maximize the sum-rate under total power,
robust SIC feasibility, and user QoS constraints.

• We devise three iterative algorithms for solving the
optimization problem in the previous item, through
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jointly optimizing the IA transceivers and PA
coefficients of the system users.

• Compare the performance of the joint
optimization-based iterative algorithms in both
OMA and NOMA-based MU-MIMO systems.

The remaining sections are organized as follow:
Section 2 introduces the signal and system model for the
considered downlink NOMA-based MU-MIMO system.
Then, different approaches for realizing the IA conditions
for the downlink NOMA-based MU-MIMO systems with
full CSI available at the base-station (BS) are addressed in
Section 3 together with a simple solution for the case of
no CSI available at the BS. This is followed by exploiting
the role of both the optimum PA and clustering in maxi-
mizing the achievable sum-rate, in Section 4. Simulation
results with their discussion are presented in Section 5,
and Section 6 concludes our work.
Notation: Vectors and matrices are written in boldface

lower-case and upper-case letters, respectively. The A†

and A∗ are referred to as the complex Hermitian trans-
pose, and the complex conjugate of matrixA, respectively.
The symbols tr(A) and ‖A‖2 represent the trace and
2−norm of matrix A, respectively. Moreover, ‖a‖ repre-
sents the absolute value for the vector a. The matrix In
stands for the identity matrix of size n × n. The x ∼
CN (μ,�) means that x is complex Gaussian distributed
with mean μ and covariance matrix �. The expression
σ 2
max(H) refers to the maximum eigenvalue of the matrix

H. The null(A) refers to the null space of the matrix A.

2 System and signal models
Consider a downlink MU-MIMO communication sce-
nario where a BS with M transmit antennas is communi-
cating with multiple UEs, each equipped with N receiving
antennas. The served UEs are grouped into M clusters
with K UEs in each cluster (Fig. 1). In this work, we are
considering scenarios in which the number of antennas at
each user, namely N, is greater than the number of anten-
nas equipped at the BS, namely M, that is to say N ≥ M.
This assumption is popular in some 5G scenarios such as
ultra-dense small cells and cloud-radio access networks
(C-RANs) [2]. Through this assumption we are trying to
consider some of the realistic scenarios that all 5G com-
munities and mobile communication companies agreed
that it will be challenging in the near future. One of the
main pillars upon which the next generation mobile net-
works will based for achieving the 1000 times capacity
scaling is the ultra-dense small-cell networks. In such net-
work design, low-power low-cost small-cell BSs will be
employed for mobile data offloading. So, it is very likely
that it owns the same number of antennas as the UE or
even less, given the rapid progress in increasing the capa-
bilities of such UEs. Another network design that support
our assumption is the C-RANs, in which UEs are served

by a small number of low-cost remote radio heads (RRHs)
to reduce the fronthaul overhead [2].
The power-domain multiplexed signal of the users’ sig-

nals in clusterm is expressed as:

s̃m = αm,1sm,1 + αm,2sm,2 + · · · + αm,Ksm,K , (1)

where sm,k is the useful information signal to be trans-
mitted to the kth user in the mth cluster, and αm,k is
its corresponding NOMA PA coefficient. The signals to
be transmitted by the BS in the downlink direction is
firstly precoded using the beamforming filter V ∈ C

M×M.
Accordingly, the BS downlink transmitted signal can be
written as:

x = Vs̃, (2)

where x = [x1x2 · · · xM]T ∈ C
M×1 is the combined signal

transmitted from the BS to all users in different clusters,

with xm =
K∑

k=1
αm,ksm,k is the data to be transmitted from

the BS to the mth cluster (Fig. 1). Let the radio chan-
nel over which the BS transmits its signals is denoted
as H = [

H1
TH2

TH3
T · · ·HM

T ]T ∈ C
MKN×M, where

Hm ∈ C
KN×M are the channels between the BS and users

in cluster m which are all Rayleigh fading channels, and
the channel between the BS and the kth user in the mth

cluster is denoted as Hm,k . The vector s̃ represents the
power-domain multiplexed signals for all the M clusters,
which can be expressed in matrix form as:

s̃ =
⎡

⎢
⎣

s̃1
...
s̃M

⎤

⎥
⎦ =

⎡

⎢
⎣

α1,1s1,1 + α1,2s1,2 + · · · + α1,Ks1,K
...

αM,1sM,1 + αM,2sM,2 + · · · + αM,KsM,K

⎤

⎥
⎦ .

(3)

Accordingly, the signal received at the kth user in the mth

cluster is decoded using um,k to give the detected signal as

uHm,kym,k = uHm,kHm,kVs̃ + uHm,knm,k . (4)

Assuming that V = [v1v2 · · · vM] and Ui =[
ui,1ui,2 · · ·ui,K

] ∈ C
N×K , ∀i ∈ {1, 2, · · · ,M}. The signal

model in (4) can be rewritten as:

uHm,kym,k = uHm,kHm,kvm
(
αm,1sm,1 + · · · + αm,Ksm,K

)

+ uHm,kHm,k

M∑

i=1
i�=m

vis̃i + uHm,knm,k . (5)

The interference signals generated in the assumed sce-
nario can be divided into two parts, namely, the intra-
cluster interference and the inter-cluster interference.
The intra-cluster interference results from the inten-
tional overlapping/superimposing of signals that are to be
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Fig. 1 One-cell downlink multi-user scenario composed of one BS equipped with M transmit antennas. The BS serves some users each equipped
with N receive antennas and the users are grouped to M clusters with N ≥ M

transmitted to users belonging to the cluster of the user of
interest, namely, the self-interference generated due to the
implementation of the NOMA technique. On the other
hand, the inter-user interference originated due to the
transmission of signals to users who are not belonging to
the same cluster of the considered user. Using the notation
of intra-cluster and inter-cluster interference, the signal
model in (5) can be detailed as:

uHm,kym,k = uHm,kHm,kvmαm,ksm,k
︸ ︷︷ ︸

Desired Signal

+ uHm,kHm,k

K∑

j=1
j �=k

vmαm,jsm,j

︸ ︷︷ ︸
Intra-cluster Interference

+ uHm,kHm,k

M∑

i=1
i�=m

vis̃i

︸ ︷︷ ︸
Inter-cluster Interference

+ uHm,knm,k
︸ ︷︷ ︸

Noise

. (6)

where i,m ∈ {1, 2, · · · ,M}, and j, k ∈ {1, 2, · · · ,K}.
Equation (6) shows how IA and NOMA schemes are inte-
grated together to optimize the sum-rate of MU-MIMO
network. The IA technique is applied through implement-
ing the transmit and receive beamformers, um,k and vm.
On the other hand, NOMA is applied through superim-
posing the signals of all users in the cluster together using
power domain multiplexing, and this is achieved through

careful evaluation of the PA coefficients. Our proposed
algorithms will jointly optimize the beamforming vectors
and the PA coefficients based on different objectives that
are all related to the system sum-rate. The knowledge of
the channel conditions is very critical for the implemen-
tation of NOMA systems. Accordingly and without loss
of generality, we will assume the channels such that the
effective channel gains are ordered as follows:

∣
∣uHm,1Hm,1vm

∣
∣2 ≥ · · · · · · · · · ≥ ∣

∣uHm,KHm,Kvm
∣
∣2 , (7)

and according to the principles of NOMA technique, the
PA coefficients of the users with in the mth cluster are
ordered as follow:

α2
m,1 ≤ · · · · · · · · · ≤ α2

m,K . (8)
Based on (6), the signal-to-interference-plus-noise power
(SINR) ratio for the Kth user, the user with smallest effec-
tive channel gain in themth cluster, is given by

SINRm,K = (9)
∣
∣
∣uHm,KHm,Kvm

∣
∣
∣
2
α2
m,K

K−1∑

j=1

∣
∣
∣uHm,KHm,Kvm

∣
∣
∣
2
α2
m,j +

M∑

i=1
i�=m

∣
∣
∣uHm,KHm,Kvi

∣
∣
∣
2 + ∣

∣um,K
∣
∣2 1

ρ

,

where ρ refers to the transmit SNR. According to the princi-
ples of the NOMA technique, the kthuser,∀ 1 < k < K in the
mth cluster, needs to decode the messages sent to other users
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with poorer channel conditions first before decoding its own
message. Accordingly, the message sm,j, K ≥ j ≥ (k+1), can be
detected at kth user in themth cluster with SINR expressed as:

SINRj
m,k = (10)

∣
∣
∣uHm,kHm,kvm

∣
∣
∣
2
α2
m,j

j−1∑

l=1

∣
∣
∣uHm,kHm,kvm

∣
∣
∣
2
α2
m,l +

M∑

i=1
i�=m

∣
∣
∣uHm,kHm,kvi

∣
∣
∣
2 + ∣

∣um,k
∣
∣2 1

ρ

.

It is the role of the SIC to remove the message sm,j from the
observation of the kth user. This message can be decoded suc-
cessfully only when meeting the condition log(1+ SINRj

m,k) >

Rm,j, with Rm,j denoting the jth user target data rate. The oper-
ation of the SIC technique will continue until the kth user
decodes its own message with SINR equals SINRk

m,k . The first
user in the mth cluster, which is the user with largest effective
channel gain, is responsible for decoding all the messages of
other users in the cluster . If it is successful, it can decode its
own message with SINR equals

SINR1
m,1 =

∣
∣uHm,1Hm,1vm

∣
∣2 α2

m,1
M∑

i=1
i�=m

∣
∣uHm,1Hm,1vi

∣
∣2 + ∣

∣um,1
∣
∣2 1

ρ

. (11)

IA and PA techniques are both used to improve the sum-
rate for many different wireless communication scenarios [25].
However, up to the best of our knowledge, the study of
combining IA approach with PA technique in NOMA-based
MU-MIMO environment is not sufficiently conducted. In our
proposed framework, the design of the PA scheme depends
mainly on the IA strategy to be employed. So, the design of the
precoding and decoding filters based on the principles of IA is
accomplished first and consequently the PA strategies will be
achieved. In the following section, the problem formulation for
designing the IA-based precoding and decoding matrices for
different IA approaches will be manipulated. This will be fol-
lowed with the PA design problem which will be addressed in
Section 4.

3 IA solutions for multi-user MIMO-NOMA
The design of the precoding and decoding filters for all the
network nodes depends on the objective of the IA design pro-
cess and the availability of the CSI. In this section, we consider
the case where no global CSI available at the BS followed
by the case with full global CSI available at the BS and IA
transceivers design in each case. In our designs for NOMA-
based MU-MIMO system with full global CSI at the BS, the
considered objectives of IA technique are SINR maximiza-
tion approach (max-SINR), interference leakage minimization
approach (MIL), and sum-rate maximization approach (Max-
SR). The derivations and details of each approach are discussed
in the below subsections.

3.1 The case with no CSI available at the BS
In the proposed framework, the IA technique is responsible for
removing the inter-cluster interference leaving the intra-cluster

interference to the SIC technique implicitly implemented in
the NOMA design. Accordingly, the IA conditions that guar-
antee the removal of inter-cluster interference are expressed as
follows:

uHm,kHm,kvi = 0, ∀ i �= m (12)

The availability of CSI at the BS can be considered as a
great system overhead. Accordingly, designing IA precoding
and decoding filters with no CSI available at the BS, however, it
is non-optimal, but it is considered in many practical scenarios
because of its reduced system overhead of acquiring the global
CSI from all the system nodes. One of the possible solutions to
(12) is to choose V, as V = IM . Choosing V in this form means
that the BS broadcasts user messages without any processing,
which reduces the overhead due to handshaking messages in
acquiring and forwarding CSI in the network. Accordingly, the
decoding filters can be evaluated by substituting in (12) as:

uHm,khi,mk = 0, ∀ i �= m (13)

where hi,mk is the ith column ofHm,k . As a result of that, the IA
constraints at the kth user in themth cluster can be written as:

uHm,k
[
h1,mk · · ·hm−1,mkhm+1,mk · · ·hM,mk

]

︸ ︷︷ ︸
H̃m,k∈CN×M

= 0, (14)

The above equation can be solved for um,k as:

um,k = null
(
H̃m,k

)
, ∀k ∈ {1, 2, · · · ,K}, andm ∈ {1, 2, · · · ,M}

(15)
By using the precoding and decoding matrices derived in this

section, the inter-cluster interference will be eliminated, and
the SINR for Kth user in themth cluster will be given by:

SINRj
m,K =

∣
∣
∣uHm,Khm,mK

∣
∣
∣
2
α2
m,K

K−1∑

j=1

∣
∣
∣uHm,Khm,mK

∣
∣
∣
2
α2
m,j +

∣
∣um,K

∣
∣2 1

ρ

, (16)

similarly, messages of users j, K ≥ j ≥ k + 1 ≥ 1 will be
successfully detected at the kth user, K > k > 1 with SINR:

SINRj
m,k =

∣
∣
∣uHm,khm,mk

∣
∣
∣
2
α2
m,j

j−1∑

l=1

∣
∣
∣uHm,khm,mk

∣
∣
∣
2
α2
m,l +

∣
∣um,k

∣
∣2 1

ρ

, (17)

The SIC scheme implemented with NOMA technique will
take care of the remaining intra-cluster interference. Specifi-
cally, for the users k, and j, with K ≥ j ≥ k + 1 ≥ 1, when
the message sj,1 is successfully detected at the kth user, it will
be removed from the kth user’s superimposed received signal,
and SIC scheme will continue working until its own message
is received with SINR equals SINRk

m,k . The evaluation of the
optimum values of the PA coefficients will be discussed in
Section 4.

3.2 The case with full global CSI available at the BS
In this section, we discuss different approaches for evaluat-
ing IA-based precoding and decoding filters according to the
objective of the IA optimization problem. For each approach,
we will formulate the optimization problem which is used at
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the BS to determine the optimal IA transceiver design for all
users and the BS. Specifically, we explain how to design the
optimal IA precoder and decoder for each user-BS pair using
the MIL, Max-SINR, and Max-SR approaches through solv-
ing their respective optimization problems. The general idea
of using IA in our scenario is to align the unwanted received
signals at the user of interest (the power multiplexed signals
assigned to other clusters), into an interference subspace and
reducing its projection within the desired signal subspace (the
power multiplexed signals of users in its cluster). For example,
for the kth user in themth cluster, the IA constraints are:

rank
(
uHm,kHm,kvm

) = M, (18)

uHm,kHm,kvi = 0, ∀ i �= m (19)

∀m ∈ {1, 2, · · · ,M}& k ∈ {1, 2, · · · ,K}
IA is used to align the effect of all other clusters by consid-

ering them as interference and directing their effects into the
interference subspace. This will leave each user only with the
effect of its cluster-partners which can be dealt with the SIC
technique which is already the core of the NOMA radio access
technology.

3.2.1 Interference leakageminimization approach
As the name implies, this approach targets minimizing the
other clusters-interference signals deliberated to the desired
signal subspace at the user, and the process can be accom-
plished for the whole cluster at one shot by solving the cor-
responding optimization problem. The optimization problem
corresponding to themth cluster is formulated as:

minimize{Um ,V} lm (20)

s.t. UmUH
m = IN ,

VVH = IM ,
where lm = tr

[
UH
mQmUm

]
is the total interference leakage

deliberated to the useful subspace of cluster m, and Qm is
the interference covariance matrix for the mth cluster, Qm =

M∑

i=1; i�=m

∑K
k=1 αm,kHm,kVVHHH

m,k [8]. This optimization prob-

lem can be solved by fixing a subset of variables (either Um
or V), and then optimize for the others, then alternate the
roles between the fixed constant variables and the optimiza-
tion variables. This technique tries to minimize interference
leakage by alternatively optimizing the IA beamforming fil-
ters. Thus, at the BS, suppose the transmission is carried out
in a specific communication direction, the optimization prob-
lem (20) is subject to UmUH

m = IN , where we optimize for
the decoding filters Um. On the other hand, when the com-
munication direction is reversed, the precoding and decoding
filters are interchanged, and the optimization problem is now
constrained to VVH = IM instead. If we denote dm as dm =
min(M,N), the resulted optimization problem in each direc-
tion can be solved iteratively using alternative minimization
by finding the dm eigenvectors corresponding to smallest dm
number of eigenvalues of the interference covariance matrix
Qm at each iteration [8]. Therefore, the dm columns of Um
are given by:

U[d]
m = νd [Qm] , ∀d = {1, · · · , dm} (21)

where νd [A] refers to the eigenvectors corresponding to the d
smallest eigenvalues of A.

3.2.2 Maximum-SINR approach
Another criteria that typically used as an objective to the IA
design is the SINR-maximization approach. Specifically, the
IA transceiver filters can be designed to maximize the SINR
instead of only minimizing the interference leakage, where
the MIL approach gives no attempt to maximize the desired
signal power within the desired signal subspace. In other
words, the MIL approach does not depend at all on the chan-
nels through which the desired signal arrives at the intended
receiver. According to [8], the IA filters are obtained by:

um,k =
(
Bm,k

)−1 Hm,kvm∥
∥
∥
(
Bm,k

)−1 Hm,kvm
∥
∥
∥
, (22)

where

Bm,k =
M∑

i=1

K∑

j=1
α2
i,jHi,jvmvHmHH

i,j − α2
m,kHm,kvmvHmHH

m,k − I.

(23)

The last criteria and optimization problem that is used to
design the IA transceiver filters at the BS is the sum-rate max-
imization. The goal is to design the optimum transceivers that
maximize the sum-rate.

3.2.3 Sum-ratemaximization approach
With this approach, we want to obtain the optimum transceiver
filters that maximize the total system sum-rate. Accordingly,
the optimization problem that will be implemented to evaluate
the IA transceivers have the following form:

minimize{um,k ,vm} Rsum =
M∑

m=1

K∑

k=1
Rm,k (24)

s.t. UmUH
m = IN ,

VVH = IM ,

where Rm,k represents themutual information rate between the
BS and the kth user in themth cluster, and it is given by:

Rm,k = log2

∣
∣
∣
∣
∣
I +

M∑

i=1

K∑

k=1
α2
i,ku

H
m,kHi,kvivHi HH

i,kum,k

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
I +

M∑

i=1,
i�=m

K∑

k=1
α2
i,ku

H
m,kHi,kvivHi HH

i,kum,k

∣
∣
∣
∣
∣
∣
∣

, (25)

For solving the optimization problem in (24), we will use an
iterative algorithm based on Riemannian optimization method
[26], which can be considered as a generalization of the
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standard euclidean optimization by formulating the optimiza-
tion problem over smooth manifolds instead of the standard
euclidean space [27–29]. The update rule for the IA itera-
tive algorithm that based on maximizing the sum-rate is given
by the Riemannian optimization over the Grassmann mani-
fold and based on geodesics of a straight line in the euclidean
space to the manifold. The update rule of the decoding matrix
Um, m ∈ {1, 2, · · · ,M} over the Grassmann manifold Gr with
gradient descent method is expressed as [27]:

Un+1
m = φGr

(
Un
m, gradUmRsum,μ

)
, (26)

= exp
(
μ
(
�Rsum (Um)UH

m − Um�Rsum (Um)H
))
Um,

(27)

where φGr(.) is the geodesic emanating from Um on the Grass-
mann manifolds Gr, Um ∈ Gr, in the direction of the gradient
of the function Rsum, expressed as “gradUmRsum”, and μ is
the step size. The gradient, gradUmRsum, on the Grassmann
manifold Gr is computed as:

gradGrUmRsum = �Rsum (Um) − UmUH
m�Rsum (Um) . (28)

The natural gradient of Rsum (Um), expressed as �Rsum (Um)

is a real valued function. However, Um is a matrix whose com-
ponents are complex, so according to [30], the gradient can be
evaluated as

�Rsum (Um) = 2
δ (Rsum (Um))

δU∗
m

= 2
(

δ (Rsum (Um))

δUm

)∗

(29)

= 2
ln2

M∑

i=1

K∑

k=1
αi,kUmHH

i,kX
−1
i Hi,k

− 2
ln2

M∑

i=1,
i�=m

K∑

k=1
αi,kUmHH

i,kY
−1
i Hi,k , (30)

where δ(f (x))
δx refers to the partial derivative of the function f (x)

with respect to x. The matrices X and Y are expressed as:

Xm = I +
M∑

i=1

K∑

k=1
αi,kUH

mHi,kHH
i,kUm.

Ym = I +
M∑

i=1,
i�=m

K∑

k=1
αi,kUH

mHi,kHH
i,kUm.

The update rule for the iterative algorithm that computes
the decoding matrices Um is derived by substituting (28) and
(30) in (27).

4 The proposed joint PA and IAmethods
In this section, the applied user clustering models are first
explained; then, the concepts and details of the proposed PA
algorithms are manipulated. Finally, the proposed joint PA and
IA algorithms is proposed based on both the clustering and PA
concepts.

4.1 User clustering models
User pairing is demonstrated to be very beneficial for the
implementation of the NOMA technique in downlink MU
scenarios [2]. In a similar fashion, we will illustrate the gain
of grouping the users into clusters in the case of downlink
NOMA-based MU-MIMO system with the implementation of
joint IA and PA optimization. The clustering process and its
optimization is beyond the scope of this article. However, we
will implement two extrememodels for user clustering to prove
the importance of using it, in terms of sum-rate, when dealing
with IA and PA for downlink NOMA-based MU-MIMO sys-
tems. The first model depends on grouping the K users with
the best channels together in the first cluster, then the following
K best channels’ users are grouped within the second cluster,
and so on. On the other hand, the second model depends on
distributing the M users with best channel gains, one in each
of the M clusters, then the following M best channels is dis-
tributed in the same fashion, and so on. Figure 2 illustrates the
concepts of the two clustering models. In the following dis-
cussion, we will refer to the first and second models as the
best-with-best and the best-with-poor models, respectively. In
both clustering models, the user with the best channel gain can
be considered as the cluster head.

4.2 Power allocation approach
We consider that the downlink NOMA-basedMU-MIMO sys-
tem is divided into clusters and the beamforming process is
designed such that a single beam used to send all the data mes-
sages to their respective users within a specific cluster. Since
each cluster contains the same number of users and their chan-
nel gains follow the same random distribution, we assume the
power budget of the BS will be divided equally between all
the clusters. If we assume that the power budget of the BS is
denoted as PBS, subsequently, this power is allocated equally
between the M clusters with each cluster allocated an amount
equal to (PBS/M). The power budget for each cluster will be
allocated among the scheduled users within the cluster accord-
ing to the principles of the NOMA technique. For the PA
among the users within the cluster, the sum-rate is maximized
under cluster power budget constraints, minimum user sum-
rate (as quality of service metric) constraints, and constraints
related to the implementation of SIC technique, i.e. minimum
power differences amongNOMA received signals as illustrated
in [31]. The PA strategy will be applied separately with each
cluster. Without loss of generality, we assume that the effec-
tive channel gains of the users within the mth cluster satisfying∣
∣um,1Hm,1Vm

∣
∣ >

∣
∣um,2Hm,2Vm

∣
∣ > · · · >

∣
∣um,kHm,kVm

∣
∣ >

· · · >
∣
∣um,KHm,KVm

∣
∣. Additionally, we refer to the minimum

sum-rate values that must be guaranteed by all users within the
cluster as Rm,1,Rm,2, · · · ,Rm,K where Rm,k > 0, ∀m and∀ k.
Since we are choosing the number of clusters equal to the
number of transmitting antennas at the BS, each cluster will
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Fig. 2 The clustering models for downlink multi-user MIMO-NOMA with joint IA and PA optimization: a The users’ effective channel gains are
ordered in descending fashion. b The users are clustered according to the best-with-best model. c The users are clustered according to the
best-with-poor model

use the whole system bandwidth BW to serve its users. The PA
optimization problem for the users within the mth cluster can
be reformulated as:

maximize
{α2

m,k}Kk=1

K∑

k=1
BW log2

⎛

⎝1+ α2
m,k

∣
∣um,kHm,kVm

∣
∣2

∣
∣um,kHm,kVm

∣
∣2 ∑k−1

j=1 α2
m,j + 1/ρ

⎞

⎠

s.t. : C1 :
K∑

k=1
α2
m,k ≤ 1,

C2 : BW log2

⎛

⎝1+ α2
m,k

∣
∣um,kHm,kVm

∣
∣2

∣
∣um,kHm,kVm

∣
∣2 ∑k−1

j=1 α2
m,j + 1/ρ

⎞

⎠

≥Rm,k , ∀k

C3 :

⎛

⎝α2
m,k −

k−1∑

j=1
α2
m,j

⎞

⎠
∣
∣um,k−1Hm,k−1Vm

∣
∣2

≥ Pth, ∀k �= 1
(31)

where Pth denotes the threshold minimum received power dif-
ference between users’ signals required for carrying out the
SIC technique. The previous optimization problem is similar
in notation to those mentioned in [31, 32], and accordingly the
closed form solution presented in [32] can be applied directly
to solve the optimization problem in (31). Let B and C denote
the complementary set of users in themth cluster that meet the
minimum sum-rate for the users and SIC visibility constraints,
respectively. The optimal PA for the first user within the mth

cluster is given by:

α2m,1= 1

K∏

j=2
j/∈B

2

[
Rm,j
BW

]

K∏

j=2
j∈B

2

−
K∑

j=2
j/∈B

⎛

⎝2

[
Rm,j
BW

]

− 1

⎞

⎠

( PBS
M

) ∣
∣um,jHm,jVm

∣
∣2

j∏

i=2
i/∈B

2

[
Rm,j
BW

]
j∏

i=2
i∈B

2

−
K∑

j=2
j/∈C

Pth
( 2PBS

M

) ∣
∣um,j−1Hm,j−1Vm

∣
∣2

j−1∏

i=2
i/∈B

2

[
Rm,j
BW

]
j−1∏

i=2
i∈B

2

.

(32)
Additionally, the PA coefficient for the kth user, with k �= 1,

within themth cluster can be expressed as:
• If k /∈ B

α2
m,k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
K∏

j=k
j/∈B

2
[ Rm,j

BW

] K∏

j=k
j∈B

2
−

K∑

j=k
j/∈B

(

2
[ Rm,j

BW

]

− 1
)

(
PBS
M

) ∣
∣um,jHm,jVm

∣
∣2

j∏

i=k
i/∈B

2
[ Rm,i

BW

] j∏

i=k
i∈B

2

−
K∑

j=k
j/∈C

Pth
(
2PBS
M

) ∣
∣um,j−1Hm,j−1Vm

∣
∣2

j−1∏

i=k
i/∈B

2
[ Rm,i

BW

] j−1∏

i=k
i∈B

2

+ 1
(
PBS
M

) ∣
∣um,kHm,kVm

∣
∣2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×
(

2
[ Rm,k

BW

]

− 1
)

.

(33)
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• If k ∈ B

α2m,k = 1

K∏

j=k
j/∈B

2

[
Rm,j
BW

]

K∏

j=k
j∈B

2

−
K∑

j=k
j/∈B

⎛

⎝2

[
Rm,j
BW

]

− 1

⎞

⎠

(PBS
M

) ∣
∣um,jHm,jVm

∣
∣2

j∏

i=k
i/∈B

2
[ Rm,i
BW

] j∏

i=k
i∈B

2

−
K∑

j=k
j/∈C

Pth
( 2PBS

M

) ∣
∣um,j−1Hm,j−1Vm

∣
∣2

j−1∏

i=k
i/∈B

2
[ Rm,i
BW

] j−1∏

i=k
i∈B

2

+ Pth( PBS
M

) ∣
∣um,k−1Hm,k−1Vm

∣
∣2
.

(34)

The detailed steps for the proposed joint IA and PA
framework based on different IA approaches are given in
Algorithms 1, 2, and 3.

Algorithm 1 The MIL based IA approach for NOMA-
based MU-MIMO systems
1: Initialize the beamforming filters, Vm, ∀ m ∈

{1, 2, · · · ,M}, for the clusters with unitary matri-
ces, and initialize the PA coefficients αm,k , ∀ m ∈
{1, 2, · · · ,M}, and k ∈ {1, 2, · · · ,K} while keeping the
NOMA PA constraints.

2: Calculate the interference covariance matrix for each
cluster,m, as:

Qm =
M∑

i=1; i�=m

K∑

k=1
αm,kHm,kVVHHH

m,k ,

3: Compute the decoding matrices that minimize the
interference leakage due to undesired messages, Um,
according to (21).

4: Compute the beamforming matrices using Steps 2
and 3, where we assume a reverse communication
direction and initializing the decoding matrices by
the values obtained in the previous step and replace
the decodingmatrices with the beamformingmatrices
and vice-versa.

5: Update the PA coefficients for all users using (32),
(33), and (34).

6: Repeat the Steps from 2 to 5 until the algorithm
convergences.

7: Distribute the calculated transceiver filters, and the
PA coefficients to the corresponding users.

Note that the PA coefficients are initialized in all the three
algorithms as αm,k = 1/K . Each of the algorithms is dependent
on a specific criteria for achieving the IA conditions as
explained in Subsection 3.2. All these algorithms rely on the
availability of CSI, and all apply the same power allocation
algorithm introduced in Section 4. Since the evaluation of the

Algorithm 2 The Max-SINR based IA approach for
NOMA-based MU-MIMO systems
1: Initialize the beamforming filters, Vm, ∀ m ∈

{1, 2, · · · ,M}, for the clusters with unitary matri-
ces, and initialize the PA coefficients αm,k , ∀ m ∈
{1, 2, · · · ,M}, andk ∈ {1, 2, · · · ,K} while keeping the
NOMA PA constraints.

2: Calculate the matrix Bm,k for each user using (23).
3: Compute the decoding matrices that maximize the

SINR, Um, according to (22).
4: Compute the decoding matrices using Steps 2 and

3, where we assume a reverse communication direc-
tion and initializing the decoding matrices by the
values obtained in the previous step and replace the
decoding matrices with the beamforming matrices
and vice-versa.

5: Update the PA coefficients for all users using (32),
(33), and (34).

6: Repeat the Steps from 2 to 5 until the algorithm
convergences.

7: Distribute the calculated transceiver filters, and the
PA coefficients to the corresponding users.

Algorithm 3 TheMax-SR based IA approach for NOMA-
based MU-MIMO systems
1: Initialize the beamforming filters, Vm, ∀ m ∈

{1, 2, · · · ,M}, for the clusters with unitary matrices,
the step size μ with 0.1, and initialize the PA coeffi-
cients αm,k , ∀ m ∈ {1, 2, · · · ,M}, andk ∈ {1, 2, · · · ,K}
while keeping the NOMA PA constraints.

2: Calculate the matrix Bm,k for each user using (23).
3: Compute the decoding matrices that maximize the

SINR, Um, according to (22).
4: Update the beamforming matrices, Vm along the

geodesic over the Grassmann manifold in the direc-
tion given by the gradient of Rsum using (27) and
(30).

5: Update the PA coefficients for all users using (32),
(33), and (34).

6: Update the optimization step size μ = μ × 0.95.
7: Repeat the Steps from 2 to 6 in the reverse communi-

cation direction until the algorithm convergences.
8: Distribute the calculated transceiver filters, and the

PA coefficients to the corresponding users.

matrices Qm, and Bm,k depends on the PA coefficients, the
PA coefficients accordingly affect the design of the transmit
and decode beamforming matrices. As a result, the proposed
algorithms are jointly optimizing both the PA coefficients and
the transceiver filters aiming to eventually optimize the system
sum-rate. The joint optimization is solved under total power
budget, user QoS, and robust SIC constraints as explained
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in details in Section 4. It is worth noting that the proposed
iterative IA techniques are carried out offline as we are assum-
ing stationary block fading channels, which remains constant
during the transmission process. Accordingly, the complexity
analysis of the algorithms is not as important as the gain in the
system sum-rate.

5 Simulation results and discussion
In this section, we introduce simulation results to illustrate
the sum-rate improvement resulted due to joint optimization
of IA transceivers and PA coefficients for downlink NOMA-
based MU-MIMO systems. Additionally, the simulation
results for the proposed NOMA-based MU-MIMO system
with joint IA and PA optimization is compared with those of
the conventional NOMA-based MU-MIMO as well as the
OMA-based MU-MIMO systems. The channels between the
BS and the users are all assumed to be Gaussian distributed
Rayleigh fading with zero mean and unit variance in addition
to the shadowing and the pathloss effects with parameters
as mentioned in [32]. Additionally, we assume that perfect
full global CSI is available at the BS. In other words, the BS
owns a copy of the channel between it and each user in the
system [8–18, 32]. The simulation results are obtained through
averaging the measurements over 5000 channel realizations.
For the proposed NOMA-based MU-MIMO network with
clustering model employed, we have assumed that the number
of clusters in the system equals the number of antennas at
the BS, and all clusters have the same size (number of users
in the cluster). A list of all the simulation parameters used
in evaluating our results are in Table 1. The algorithms that
will be involved in the comparison are MIL-IA implemented
in OMA-based MU-MIMO system (MIL-IA-MIMO-OMA),
MIL-IA implemented in conventional NOMA-based MU-
MIMO system (MIL-IA-Conv-MIMO-NOMA), MIL-IA
implemented in the proposed NOMA-based MU-MIMO
system (MIL-IA-Proposed-MIMO-NOMA), Max-SINR-IA
implemented in OMA-based MU-MIMO system (Max-
SINR-IA-MIMO-OMA), Max-SINR-IA implemented in
conventional NOMA-based MU-MIMO system (Max-SINR-
IA-Conv-MIMO-NOMA),Max-SINR-IA implemented in
the proposed NOMA-based MU-MIMO system (Max-SINR-
IA-Proposed-MIMO-NOMA), Max-SR-IA implemented in
OMA-based MU-MIMO system (Max-SR-IA-MIMO-OMA),
Max-SR-IA implemented in conventional NOMA-based
MU-MIMO system (Max-SR-IA-Conv-MIMO-NOMA),
Max-SR-IA implemented in the proposed NOMA-based
MU-MIMO (Max-SR-IA-Proposed-MIMO-NOMA),
SVD-based IA implemented in OMA-based MU-MIMO
(SVD-IA-MIMO-OMA), SVD-based IA implemented in
conventional NOMA-based MU-MIMO system introduced
in [24] (SVD-IA-Conv-MIMO-NOMA in [24]), SVD-based
IA implemented in the proposed NOMA-based MU-MIMO
system (SVD-IA-Proposed-MIMO-NOMA), and the con-
ventional NOMA-based MU-MIMO system without IA
(Conv-NOMA without IA [23]).
Figure 3 shows the variation of the sum-rate versus the trans-

mitted power, Ptr, with different IA approaches for the pro-
posed NOMA-based MU-MIMO as well as the conventional

Table 1 Simulation parameters

Parameter name Value

System effective bandwidth (BW) 20 MHz

Bandwidth of a resource block 200 KHz

Number of available resource blocks 100

Transmit power budget 46 dBm

Detection threshold at SIC receiver (Pth) 10 dBm

Cell diameter 600 m

Path-loss Exponent 4

Noise power density (N0) − 174 dBm/Hz

No. of users per cluster (K) 4

No. of transmitting antennas (M) 2

No. of receiving antennas (N) 4

Shadowing standard deviation 8 dB

Path-loss equation at 2 GHz band 15.3 + 37.6log10(d0)

Initial power allocation coefficients
(
α2
m,k

)
1/K

MIMO-NOMA and MIMO-OMA systems. In these simula-
tion results, we have assumed that users having the same order
within the clusters will be assigned the same minimum sum-
rate value, which is inserted in (31) as the minimum sum-rate
constraint, mathematically speaking, we assume that Rm−1,k =
Rm,k = Rm+1,k , ∀ m ∈ {1, 2, · · · ,M}. It is obvious from the
results that, the IA approach that depends on maximizing the
system sum-rate over the Grassmann manifold outperforms
both the MIL and Max-SINR approaches with both the pro-
posed and the conventional systems. The cause behind that fact
is that the sum-rate maximization approach considers optimiz-
ing all the Shanonn’s capacity equation’s parameters, namely
the spatial DoFs, desired signal power, and the undesired inter-
ference power, while other approaches consider optimizing
only one or two of these parameters. Additionally, the proposed
NOMA-basedMU-MIMO system that employs clustering, IA,
and optimum PA obtained by solving (31) provides the most
higher sum-rate performance, followed by the conventional
NOMA-based MU-MIMO system, and the OMA-based MU-
MIMO system provides the worst performance in the compar-
ison. Moreover, it is obvious that all the proposed algorithms
outperform the state-of-the-art algorithms [23, 24].
Figure 4 shows the effect of choosing the clustering model

within the proposed NOMA-based MU-MIMO system. In our
work, we employed the two clustering models shown in Fig. 2.
It is very clear from the results that the proposedNOMA-based
MU-MIMO system performs better with the best-with-poor
clustering model than with the case of best-with-best cluster-
ing model. This is due to the effectiveness of the SIC technique
with the best-with-poor model than with the best-with-best
model. In other words, the clustering model somehow governs
and keeps the minimum received power differences among the
signals of different users with the NOMA-based MU-MIMO
system improving the performance of the SIC technique and
accordingly provides optimum interference cancellation within
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Fig. 3 The transmitted power Ptr in (dBm) versus the sum-rate in (bits/sec/Hz) for the proposed MIMO-NOMA approach (With joint IA and PA), in
comparison with the conventional MIMO-NOMA approach (no clustering and the power distributed equally between users), and the case of IA with
MIMO-OMA

the cluster. Another important observation is that the supe-
riority of the best-with-poor clustering model than the best-
with-best clustering model is guaranteed with any of the IA
approaches. At a transmitted power of 35 dB, the proposed
MIMO-NOMA with Max-SR IA approach achieves around
11 (bits\sec\Hz) more sum-rate with best-with-poor clustering
model than with best-with-best model. Similar conclusions can
be reported with other IA approaches at different transmitted
power levels.
Figure 5 shows the effect of the cluster size, defined as the

number of users per cluster, on the system sum-rate. The
sum-rate grows almost linearly with the cluster size for all IA

approaches until reaching a specific cluster size, 10 and 12
users at transmission power levels 15dBm and 35dBm, respec-
tively. After that, the sum-rate begins to decay due to the lower
efficiency of the SIC technique and accordingly the growth
of intra-cluster interference. In other words, the sum-rate for
the NOMA-based MU-MIMO system grows with the cluster
size as long as the system meets the constraint of minimum
received power differences among the users. Once the sys-
tem violates this constraint, the SIC technique provides lower
efficiency in canceling the intra-cluster interference and the
sum-rate begins to decrease. This behavior is common among
all IA approaches with different transmission powers.

Fig. 4 The transmitted power in (dBm) versus the sum-rate in (Bits/sec/Hz) for the proposed MIMO-NOMA approach (with joint IA and PA) with
different IA approaches and different clustering models
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Fig. 5 The cluster size in (users/cluster) versus the sum-rate in (Bits/sec/Hz) for different IA approaches with the proposed MIMO-NOMA with
transmitted power of 15dBm, and 35dBm

6 Conclusions
In this article, we have studied the application of different IA
approaches to downlink NOMA-based MU-MIMO systems.
Specifically, we have proposed a joint IA and PA framework
for maximizing the sum-rate of the NOMA-based MU-MIMO
system under different approaches of IA. It turns out from the
simulation results that IA is still an excellent scheme for access-
ing the maximum DoFs of the next generation NOMA-based
networks. Additionally, user clustering is proven to be a crit-
ical step for the joint optimization of the PA coefficients and
IA transceivers in NOMA-based MU-MIMO systems. Finally,
we concluded that accompanying the NOMA access technol-
ogy with IA combined with optimum PA algorithm can be
considered as a key solution for achieving the capacity scaling
targeted by next generation 5G networks. As a future work,
the performance of the proposed algorithms would be stud-
ied under both instantaneous and statistical CSI. Moreover,
the performance of the IA-based transceivers in NOMA-based
MU-MIMO system will be investigated with partial CSI.
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