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Sparse representation of signals based on a redundant dictionary is a new signal representation theory. Recent
research activities in this field have concentrated mainly on the study of dictionary design and sparse decomposition
algorithms. Currently, the application of sparse representation on an Automatic Identification System (AIS) signal still
requires further investigations. In this paper, a novel sparse representation of the AlS signal is proposed based on an
adaptive redundant dictionary. Considering the characteristics of the AlS signal, an adaptive redundant dictionary is
constructed using the K singular value decomposition (K-SVD) algorithm. Furthermore, an effective pursuit algorithm is
proposed to obtain the sparse representation of AlS signal using the adaptive dictionary. The binary AlS message is
demodulated from the sparse representation of AlS signal. The experimental results indicate that the sparse
representation of the AIS signal has high accuracy and the reconstructive error rate can be under 10%; thus, the
reconstructive precision is simultaneously guaranteed. The processing time of the proposed sparse representation
algorithm is less than 26.7 ms which satisfies the requirements of AIS real-time signal processing. It shows that
introducing the signal sparse representation in a real-time signal system obtains a satisfactory result.

Keywords: Automatic Identification System (AIS) signal, Sparse representation, K singular value decomposition (K-SVD),

1 Introduction

The AIS is composed of shore-based stations and ship-
borne equipment. It is a digital vessel navigation aid sys-
tem that can identify vessels, assist in tracking targets,
streamline information exchange and provide other auxil-
iary information to avoid collisions, etc. [1, 2]. The Inter-
national Maritime Organization (IMO) has already
required that all vessels should be equipped with both
space- and land-based dual-positioning system in the fu-
ture. To achieve the urgent requirements of IMO, the util-
isation of the existing AIS shore stations has been studied
for positioning. Therefore, the AIS can serve as a
land-based wireless positioning system for coastal vessels,
and the shipborne AIS equipment can perform both com-
munication and positioning functions, which is referred to
as the AIS autonomous positioning system (AAPS) [3].
The AAPS achieves autonomous positioning by measur-
ing very high frequency (VHF) radio signals from AIS base
stations which are established all over the world. However,
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the existing AIS is essentially a communication system,
and the positioning function has not been considered in
the initial design and construction of the system. There
are many technical problems exist that need to be solved
using the AIS shore station for positioning, for example,
how to extract location information from the AIS [4, 5]
and develop the secondary phase correction model [6, 7]
and the new carrier phase-measurement technology. The
carriers currently used in the positioning system are all
dual-phase-modulated carriers with the same frequency,
and the equipment can be accurately positioned by carrier
phase-measurement technology. However, according to
the demands of communication, the carrier of an AIS sig-
nal is dual-frequency Gaussian-filtered minimum shift
keying (GMSK) modulated, which is much more compli-
cated than the dual-phase modulation. The AIS signal
cannot be applied to the carrier tracking and measure-
ment method in traditional positioning system because of
its characteristics in terms of frequency difference and
non-periodicity. Therefore, a new carrier measurement
method of AIS signal is needed, which is referred as the
AIS signal holographic correlation detection. Since the
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AIS is a real-time system, in the method, obtaining the
data of AIS signal within a certain time interval is the pri-
mary problem to be addressed. To solve this problem, the
sparse representation theory is introduced into the AIS in
the present study.

In the field of signal processing, an important issue is
how to utilise the space transform to effectively express
the signal and improve the compression efficiency. Con-
ventional signal representation is usually based on ‘base
expansion’ such as the classical Fourier transform and the
wavelet transform. However, this type of signal expansion,
which is based on an orthogonal basis, suffers from some
limitations. For example, it cannot always achieve a de-
sired result, especially for signals that have a wide vari-
ation range in the time and frequency. An ideal method of
signal expansion should be based on the characteristics of
the processed signal and adaptively select the appropriate
base function to complete the decomposition of the signal.
Mallat and Zhang proposed the cogitation of the signal
sparse representation on a redundant dictionary in 1993
[8]. The so-called redundant dictionary was an ultra-
complete redundant function library. The result of the sig-
nal sparse decomposition on the redundant dictionary was
that the coefficients of most of the base functions in the
signal expansion were zero, and only a few base functions
had large non-zero coefficients. The base functions in the
present study are the elements in the dictionary that are
called atoms. Therefore, the main features of the signal
can be expressed by a small number of atoms. The com-
pressed sensing theory proposed by Candes, Romberg,
Tao and Donoho in 2004 raised the signal sparse represen-
tation to a new level [9—11]. The compressed sensing the-
ory was different from the traditional signal processing
which was based on the Nyquist sampling theory. It indi-
cated that as long as the signal contains sparsity in a cer-
tain space, it can be reconstructed with high probability at
a sampling frequency that is much lower than the Nyquist
sampling frequency. In this theoretical framework, the
sampling rate depends on the structure and content of the
signal and not on the bandwidth of the signal. Therefore,
further research on the signal sparse representation is ex-
tremely significant in terms of theoretical and practical
applications. The primary issue of signal sparse represen-
tation is the construction of a redundant dictionary. The
existing redundant dictionary schemes cannot always
guarantee sparsity of the signal [12]. In recent years,
methods to obtain a redundant dictionary through
learning and training have been vigorously developed,
one of which is the K singular value decomposition
(K-SVD) [13].

In the present study, we construct the redundant dic-
tionary adapted to AIS signal based on the K-SVD algo-
rithm and carry out the sparse representation of AIS
signal using the orthogonal matching pursuit (OMP)
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algorithm. The suitable parameters of the sparse repre-
sentation are calculated considering the noise. The bin-
ary codes demodulated from the sparse AIS signal are
obtained. The experimental results show that the whole
sparse representation method exhibits good perform-
ance. The adaptive redundant dictionary based on
K-SVD makes the number of atoms required for the
sparse decomposition small, and the accuracy of the AIS
signal sparse representation is simultaneously guaran-
teed. The sparse representation of the AIS signal is
achieved with high accuracy within the required time,
and the error rate of the demodulated sparse AIS signal
is within the required range. We can obtain the data we
need from the sparse representation of AIS signals, and
the amount of data that needs to be processed reduces
greatly as well as the time when compared with the ori-
ginal AIS signals. The work presented in this paper lays
the foundation for realising the AIS signal holographic
correlation detection mathematical mode. It is an im-
portant part of realising the autonomous positioning
function of the AIS. The proposed method provides a
reference to signal processing systems that need to ob-
tain or save information from real-time signals.

The remainder of this paper is organised as follows.
Section 2 introduces the principle of sparse representa-
tion, including the AIS signal model and the theory of sig-
nal sparse representation. Section 3 presents the sparse
representation method including the adaptive redundant
dictionary construction algorithm based on K-SVD and
the sparse decomposition algorithm. Section 1 provides
and discusses the experimental results. Section 5 con-
cludes this paper.

2 Principle of sparse representation

2.1 AIS signal model

The AAPS is composed of a master AIS base station,
some slave base stations and shipborne AIS equipment.
The system configuration is shown in Fig. 1. All the base
stations take turns in sending signals, and the shipborne
AIS equipment receives these signals. An additional sec-
ondary factor correction system is present, which is used
to improve the positioning accuracy.

The existing AIS operates in the VHF band of 161.975
and 162.025 MHz with a bandwidth of 25 kHz. The sig-
nal modulation method is GMSK, and the transmission
rate is 9.6 kb/s. The AIS signal model can be viewed as a
GMSK signal model and expressed as

s(¢) = A cos[w.t + 0(¢)]
= A[ cosO(t) cosw t- sinf(t) sinw,t] (1)

The phase 6(¢) is expressed as
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where g(f) is the rectangular impulse response of the
Gaussian filter, g(¢) is the integral of g(¢#) and the modu-
lation index /4 equals 0.5, i.e.

q(t) = 2mh [;g(r)dr = ﬂ[;g(r)dr (3)

The transfer function of the Gaussian filter is expressed as

H(f) = exp(-a’f?) (4)

where «a is a parameter related to the Gaussian filter with
3-dB bandwidth B. The definition of B is given as

H(B) = (5)
exp (—2a232) :% (6)
B=/ 12/ , 7)

The impulse response of the Gaussian filter is expressed

as
_ v n
h(t) = pal _azt

GMSK is the MSK modulation of a baseband digital
signal processed by a Gaussian low-pass filter. The signal
characteristics such as the mutual influence degree be-
tween adjacent symbols are related to the parameters of
the Gaussian filter. The value of the product with 3-dB
bandwidth B of the Gaussian filter and input symbol

(8)

width T is usually considered as among the main param-
eters for designing a Gaussian filter. According to the
AIS standard specification, the maximum BT product of
the GMSK modulator used for transmitting data in the
AIS should be 0.4, and the maximum figure should be
0.5 when receiving data [14].

Figure 2 shows that the smaller the BT product is, the
slower is the decay of the GMSK signal-power spectral
density with the frequency and the bigger is the main lobe.
In this paper, for convenience of calculation, the BT prod-
uct is set to 0.3. According to Recommendation ITU-R
M.1371-4, the AIS data transmission should begin with a
24-bit demodulator training sequence (preamble) consist-
ing of one segment synchronisation, as shown in Fig. 3.
This segment should consist of alternating zeros and ones
using the non-return-to-zero-inverted encoding. This se-
quence always starts with a zero [14].

2.2 Sparse representation theory

The recent years have witnessed a rapid growth in interest
in the research of signal sparse representation. From the
Fourier transform to the wavelet transform to the
multi-scale geometric analysis, the purpose of the re-
searchers is to provide a more concise and direct analysis
of signals in different function spaces. All these transforms
are aimed at discovering the signal features and obtaining
the sparse representation of the signal. The signal sparse
representation is derived from the nonlinear approxima-
tion theory. Given dictionary D ={d;, k=1,2,...,K}, its
atoms are the unit vectors that span the whole Hilbert
space H=RY(K>N). For any signal x € H, we adaptively
select m atoms for m approximation of signal x in D.

<xa dk>
(i, di) "

X = Fx = Z a(k)dy = Z

kel,, kel,,

©)
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in which Card(I,,) = m and a = [a(1), ..., a(K)]” is the
vector of the decomposition factor. The approxima-
tion absolute error is ¢, = llx - F,xll,. When D is an
orthogonal base, we preserve the largest m atoms of
|a(k)|, and the optimal m approximation of signal x is
obtained. When D is a redundant dictionary, multiple
solutions of Eq. 9 are available. The objective of the
signal sparse representation is to choose the one with
the sparsest coefficient or that with the smallest m
value [15]. For a random redundant dictionary, this is
a nondeterministic polynomial (NP) problem.

3 The sparse representation method

3.1 Adaptive redundant dictionary training algorithm
based on K-SVD

The singular value of a matrix is a mathematical concept,
usually obtained by singular value decomposition (SVD).
SVD has a wide range of applications in data compression,
such as image compression and noise reduction. Singular
values often correspond to the important information hid-
den in the matrix, and the importance is positively corre-
lated with the size of the singular value. The K-SVD
algorithm is based on this concept. In the AAPS, we need
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to obtain and save the AIS signal within a certain time
interval and we cannot lose its main features. In this re-
gard, we construct the dictionary using the K-SVD algo-
rithm for the AIS signal sparse representation.

For a given set of training signals, it adaptively obtains a
redundant dictionary for sparse representation according
to the training characteristics of the signals and sparse
constraint conditions. K-SVD is characterised by the alter-
nating application of a norm sparse constraint and SVD
algorithms as well as the synchronous update of sparse
dictionary and coefficients, which have strong sparse rep-
resentation ability. The algorithm is flexible and works
with any pursuit algorithm.

We assume that matrix ¥ = [yi}i.\il

ing signals, y; represents one of these signals, D = [di];_,

represents the train-

represents the dictionary to be trained and X = [x,], is
the sparse coefficient. The essence of dictionary training is
the optimization problem shown by the following equation:

. 2 .
g’l)l(n{HY—DXHF} st Vi, ||xllg<To (10)

in which T, represents the sparseness.
In order to implement the K-SVD algorithm, we sum-
marise the specific steps, as follows:

1. Initialisation
We assign an initial value to dictionary matrix
D. In general, we simply set the training signals in
the matrix columns, and the optimisation problem
is transformed into a problem of finding sparse
representation X of sample set Y.

2. Sparse coding
We use OMP algorithm to compute the sparse
coefficient, i.e.
n;'in{||y[—Dxi||§} st |lxillosTo i=1,2,...,N
(11)
3. Dictionary update

We update the dictionary column by column. We
suppose that the column that needs to be updated
is the kth column of the dictionary matrix, which is
expressed as dy and x; represents the kth row of
matrix X. Equation 10 is thus rewritten as
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K 2
|Y-DX|3 = ||Y-> _djx;
j=1 F
2
= H (Y— Z d/Xj) —dkx}'
jzk F
= || Ex—dic; | (12)

in which Ej is the error in the kth column of the diction-
ary and can be expressed as

Ec=Y-) dw; (13)

jzk

Thus, we decompose the multiplication DX to the sum
of K rank 1 matrices. K-1 terms are assumed fixed, and
one remains in question.

Applying SVD on E, we can obtain

Ex=uavT (14)

The resulting first column of U is an update of the kth
column of the dictionary, and the first column of V
multiplied by A(1,1) is an update of the kth coefficient
vector. When all the columns of the dictionary are up-
dated, we repeat step 2 until the iteration is completed.

Two conditions are available for stopping the iteration.
In detail, the first one is to set the number of iterations.
The second one is to set a fixed sparse error rate so that
the iteration stops when the target value is reached.

An important issue of the K-SVD algorithm is its con-
vergence [16, 17]. In the dictionary update stage of the
K-SVD algorithm, SVD can ensure that the mean square
error decreases or remains unchanged without affecting
the sparse constraint conditions. The mean square error
after iteration monotonically decreases, which ensures
that the K-SVD converges to a local minimum. However,
this does not mean that the convergence of the K-SVD
algorithm is established. Instead, it depends on the con-
vergence of the pursuit algorithm. Fortunately, the clas-
sical matching pursuit (MP), OMP and basis pursuit
(BP) algorithms all exhibit good performance when T is
sufficiently small; thus, convergence of the K-SVD can
be guaranteed.

- 1 frame / 60s / 2250 slots -
liamp up [Training sequence Start flag Data CRC |End flag] Buffer
8 bits 24 bits 8 bits 168 bits |16 bits| 8 bits |24 bits
Fig. 4 Structure of AlS signal
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Fig. 5 Sparse AlS signal
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3.2 Orthogonal matching pursuit

As discussed in Section 2.2, Eq. 9 is an NP problem. On
the surface, solving it appears to be hopeless. However, ac-
cording to the premise that the signal is sparse, this prob-
lem can be solved. Researchers have conducted extensive
and in-depth research on this issue and proposed many al-
gorithms for the signal sparse approximation, such as the
convex relaxation and greedy algorithms [18, 19]. BP is
one type of convex relaxation algorithms. It has the advan-
tages of global optimisation, but its computational com-
plexity is very high. MP is a typical greedy algorithm. It
converges faster than the BP, but it does not have global
optimality. The basic idea of the MP algorithm is to select
an atom (one column) that best matches the signal from

the dictionary matrix to construct a sparse approximation
and calculate the signal residual. Then, it iteratively con-
tinues to select the atom that best matches the signal re-
sidual. The signal can be represented by the linear
combination of these atoms and the last residual value.
Obviously, if the residual value is negligible, the signal is a
linear combination of these atoms. However, if the signal
is non-orthogonal in the vertical projection of the selected
atom, this will make the result of each iteration subopti-
mal, thus requiring more iterations. In this circumstance,
the idea of OMP was proposed [20, 21]. The main im-
provement of OMP is to orthogonalise all the selected
atoms at every step of the decomposition, which leads to
faster convergence than the MP under the same accuracy
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Fig. 6 Performances of different iterations: time and RMSE performances of different numbers of iterations. a Time performance. b RMSE performance
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Fig. 7 Performances of different K and L: time and RMSE performances of different values of K and L. a Time performances when iteration is 6. b
RMSE performances when iteration is 6. ¢ Time performances when iteration is 8. d RMSE performances when iteration is 8. e Time performances
when iteration is 10. f RMSE performances when iteration is 10. g Time performances when iteration is 12. h RMSE performances when iteration is 12

requirements. The OMP procedures can be described as
given the matrix A, the vector b and the error threshold
&0, approximate the solution of

min ||x||, s.tAx=>5b (15)
x

The specific steps summarised are as follows:

1. Initialisation
We initialise k = 0 and set the initial solution xg =0,
the initial residual ro = b — Axy = b and the initial
solution support Sy = supp {xo} =

2. Iteration
Compute the errors

e(j) = min lajz-riall; (16)
for all j using the optimal choice
2 = ajri/||ajll; (17)

Find a minimizer jj of (), Vj ¢ S _ 1 and &(jo) < &()).

Update Sx = Sx_1 U {jo}-

Compute x;, find a minimizer of |[Ax-b||; subject to
suppix} = Sg.

Compute ry=b - Ax.

The iteration stops when [lrill; < g9. Otherwise, do an-
other iteration.

4 Results and discussion

In this section, we assess the performance of the proposed
sparse representation algorithm in AIS via numerical sim-
ulations. Figure 4 shows that in AIS, the data part of the
default transmission packet is 168 bits; considering this as
an example, we produce 64 data signals with dimension of
168 to train the dictionary. Since the AIS is a real-time
system, the signal processing time must satisfy the AIS re-
quirements. Figure 4 shows that one frame in AIS is 60 s
and divided into 2250 slots; thus, one slot is 26.7 ms. The
time of the sparse representation of the AIS signal must
be shorter than a slot, that is 26.7 ms [14]. We explore the
effects of three parameters on the final results: the num-
ber of coefficients in each linear combination, number of
iterations and size of the dictionary. The choice of these
three parameters has a decisive influence on the time. The
sparse representation accuracy is also calculated, and we
use the root mean square error (RMSE) as representative

of the accuracy. Considering the impact of noise, the SNR
is set to 10 dB [22]. Figure 5 is the sparse AIS signal ob-
tained. The hardware specifications used in this study are
Intel Core i7-6700 CPU at 3.40 GHz with 16-GB memory.

All the three parameters have an effect on the time for
sparse representation. The computation time must be in-
creased with the number of iteration. Thus, we tentatively
set the number of coefficients in each linear combination
to 5 and the size of dictionary to 30 to find a proper num-
ber of iteration (the number of iteration is preset).
Figure 6a shows that as the number of iterations increases,
the processing time essentially displays a rapid linear in-
crease. However, in Fig. 6b, the reduction rate of the
RMSE does not obviously sufficiently drop from 0.345 to
0.334 which indicate that increasing the number of itera-
tions in the algorithm does not significantly improve the
accuracy. Instead, the amount of data that needs to be cal-
culated greatly increases, resulting in a substantial increase
in computation time. In Fig. 6a, the orange dashed line
represents 26.7 ms, to satisfy the AIS requirements, and
the number of iteration should not be more than 13.

Use L to represent the number of elements in each lin-
ear combination and K to represent the size of the dic-
tionary. To study the effects of these two parameters on
the time and accuracy of the sparse representation, use
L equals 5 as the median, taking the values from 2 to 8,
and K equals 30 as the median, taking the values from 5
to 50. Figure 7 shows the effect of different values of K
and L on the time and accuracy when the number of it-
eration equals 6, 8, 10 and 12.

As shown in Fig. 7a, ¢, e, g, as the value of L increases,
the processing time shows a significant increase. With the
increase of K, the time curves basically have a process of
rising then descending and then tending to be flat. The
larger L is, the more obvious the process is. When K
reaches a certain value, the effect of K on time tends to be
flat. However, considering the requirements of AIS
real-time signal processing, the value of L should not be
too large. Figure 7b, d, f, g shows that as K increases, the
RMSE essentially shows a significant linear decline. For
example, in Fig. 7b, when L equals 2, the RMSE decreases
from approximately 0.53 to around 0.25. It means the lar-
ger the size of the dictionary, the more precise the sparse
representation is. When the value of K is small, the differ-
ences in RMSE of different L are also small. The differ-
ences gradually increase as K increases.

Subsequently, demodulation of the sparse signals is car-
ried out, and we compare the results with the original AIS
binary messages to calculate the error rate. In Table 1, the
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Table 1 Error rate of the different parameters

K L
2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%)

5 36.2 356 356 352 35.1 35.1 349
10 311 30.3 293 290 288 285 284
15 27.1 25.7 252 246 243 238 236
20 252 220 214 211 20.2 20.1 19.8
25 283 19.9 18.2 179 17.5 169 16.1
30 326 173 14.7 144 14.0 135 13.2
35 36.6 194 12.2 11.8 11.6 1.1 109
40 424 256 10.7 94 9.0 8.8 84
45 432 374 17.3 9.1 84 7. 6.5
50 493 46.5 336 19.5 7.0 55 48

number of iterations is 6; we can see that as L increases,
the error rate declines, but it is not remarkable. The error
rate decreases tremendously as K increases at first. How-
ever, when K reaches a certain value (depending on differ-
ent values of L), the error rate rapidly increases. Taking L
equals 3 as an example, when K equals to 50, the error
rate is more than two times the value when K is 30. This
is because of multiple repeated matching processes that
occur on the same feature of the signal, which leads to the
increase in the signal sparse representation accuracy.
However, it also results in erroneous feature responses
that increase the error rate. In the AIS, the frame check
sequence uses the cyclic redundancy check, and an error
rate of approximately 10% is acceptable [23]. According to
the experimental results, considering the time of sparse
representation, the accuracy of sparse representation and
the demodulation error rate, a suitable combination is the
size of the dictionary is set to 45 and the number of coeffi-
cients in each linear combination is set to 5.

Figure 8 is a binary signal demodulated from the
sparse signal when the iteration is 6, K is 45 and L is 5.

Page 9 of 10

The blue solid line represents the original AIS binary
message, and the red dashed line represents the demo-
dulated sparse signal. We can see that only five code dif-
ferences exist between the two different lines; for most
of the time, the two lines are coincident, which means
that the error rate is quite small.

5 Conclusions

In this paper, a novel signal sparse representation algo-
rithm has been proposed and applied on AIS signals.
The time and accuracy performances of the sparse rep-
resentation are studied with different values of iterations,
number of elements in each linear combination and size
of the dictionary to test whether the proposed algorithm
meets the requirements of AIS real-time signal process-
ing. For the accuracy of the AIS signal sparse representa-
tion, the number of iterations did not show much
influence. However, both the number of elements in
each linear combination and size of the dictionary dis-
played a significant effect. The adaptive redundant dic-
tionary construction algorithm guaranteed accuracy.
With regard to the signal processing time, each of the
three parameters has an effect on it. The accuracy of the
sparse representation increased as the size of the dic-
tionary increases. However, a larger size cannot always
guarantee a better performance by considering the error
rate of the demodulated sparse signal. According to the
experimental results, by considering 64 AIS signals with
a dimension of 168 as an example, the best match dic-
tionary matrix had a size of 168 x 45, the number of iter-
ations was set to 6 and each signal was created by a
linear combination of only 5 different dictionary atoms.
Both the error rate and processing time satisfied the AIS
real-time signal processing requirements, which implied
that the proposed sparse representation algorithm can
be well used in AIS.
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Fig. 8 The demodulated sparse signal: binary signal demodulated from the sparse signal
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The current work is an important part of realising the
autonomous positioning function of the AIS. For further
work such as the AIS signal holographic correlation de-
tection, the proposed algorithm is applied to obtain the
data of AIS signals within a certain time interval, which
can significantly reduce the amount of data storage as
well as the computation time. In other fields, such as the
remote sensing, the detection and tracking of real-time
signals with different frequencies are also necessary. The
theory proposed in this paper provides a reference for
real-time signal processing system.
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