
Li et al. EURASIP Journal onWireless Communications and
Networking (2018) 2018:256
https://doi.org/10.1186/s13638-018-1259-2

RESEARCH Open Access

Task scheduling algorithm based on
fireworks algorithm
Jingmei Li1, Qiao Tian1*, Guoyin Zhang1, Weifei Wu1, Di Xue1, Lanting Li1, Jiaxiang Wang1 and Lei Chen2

Abstract

To give full play to the high efficiency and parallelism of multi-processor systems, the fireworks algorithm (FWA) is
improved, and a multi-processor task scheduling algorithm based on improved FWA, named IMFWA, is proposed.
IMFWA maps continuous space to discrete space by designing the fireworks location coding method, improves the
Gaussian mutation process, and sets adaptive dimensions to accelerate the convergence speed of the algorithm. At
the same time, in order to reduce the time complexity of the algorithm and shorten the time finding the optimal task
scheduling sequence, the fitness-based tournament selection strategy is used instead of the rule based on Euclidean
distance. Finally, IMFWA is compared with the basic fireworks algorithm and the genetic algorithms on the Matlab
platform for performance analysis. The results show that the IMFWA has advantages in the convergence speed, and
the negative impact of the number of tasks is also lower than the fireworks algorithm and genetic algorithm.

Keywords: Task scheduling, Fireworks algorithm, Gaussian mutation, Adaptive

1 Introduction
The task scheduling problem belongs to the combinato-
rial optimization problem and cannot be solved within the
polynomial time complexity [1]. It has been proved to be
an NP-hard problem [2, 3]. It is easy for multiple inde-
pendent tasks to be scheduled on homogeneous multi-
processors, by only scheduling the task with the shortest
completion time to the processor. The representative task
scheduling scheme on heterogeneous multi-processors is
more complex. The performance parameters, such as exe-
cution efficiency and total time of completion, need to
be considered [4–7]. Research on task scheduling strate-
gies for heterogeneous multi-processors has drawn much
attention in recent years [8–10]. At present, the com-
bination optimization algorithm, which is widely used
in task scheduling problem, is genetic algorithm (GA)
[11–13]. Nevertheless, the parameters of genetic algo-
rithm are complicated to configure, and the effective-
ness of the crossover and mutation operations decreases
when the number of tasks increases, and the “premature”
phenomenon can be easily triggered by the population
initialization of the individuals [12, 14–18].

*Correspondence: tianqiao@hrbeu.edu.cn
1College of Computer Science and Technology, Harbin Engineering University,
Harbin, China
Full list of author information is available at the end of the article

The fireworks algorithm (FWA) is a swarm intelligence
optimization algorithm based on non-living population
proposed by Ying Tan in 2010 [1, 19, 20]. The fire-
works algorithm can provide the global optimal solution
for complex problems [1, 20, 21] and has low defini-
tion for solving the problem. Since proposed, it has been
widely applied to non-negative matrix factorization cal-
culation, directional characteristic matrix measure, group
robot multi-target search, fertilization problem, traveling
salesman, among others [20].
Based on the above literature and background, a het-

erogeneous multi-processor task scheduling algorithm,
IMFWA, is proposed, for making the fireworks algorithm
suitable for the discrete multi-processor task scheduling
problem and for efficiently and quickly obtaining the opti-
mal task scheduling sequence. Compared with the basic
fireworks and genetic algorithm on the Matlab simulation
platform, it is proved that IMFWA has noticeable advan-
tages in convergence speed, and the impact on the number
of tasks is also significantly lower than genetic algorithm.
The paper is organized as follows: Section 1 intro-

duces the research background for the problem. Section 2
describes the basic task scheduling problem. Section 3
presents the fireworks algorithm and its improve-
ment strategy. The proposed algorithm is presented in

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1259-2&domain=pdf
mailto: tianqiao@hrbeu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 2 of 8

Section 4. Section 5 provides the experiment results and
analysis, and Section 6 concludes this paper.

2 Description of task scheduling problem
Task scheduling is to obtain the optimal solution of the
task sequence according to an algorithm, and tasks are
assigned to the corresponding multi-processor according
to the optimal solution order, so that the task completion
time is the shortest [22–24]. For convenience, the sys-
tem contains n heterogeneous multi-processors, denoted
by P = {P1,P2, . . . ,Pn}. Divide any application into m
independent tasks, represented by T = {T1,T2, . . . ,Tm}.
n ≥ m means there are more processors than tasks to
be scheduled. The next task is scheduled to an idle pro-
cessor which has the shortest execution time according to
the first-come-first-service mechanism. When n ≺ m, the
number of processors is smaller than the number of tasks,
and the tasks need to be assigned following the schedul-
ing scheme. This paper only considers the case of n ≺ m.
exetij is the execution time of task Ti on processor Pj. The
execution time of all tasks under the scheduling scheme
is CP(s). min(CP(s)) indicates the time used to execute
all tasks under the optimal scheduling scheme f. The task
scheduling problem can be expressed as Eq. (1).

CP(f) = min(CP(s)) (1)

3 Fireworks algorithm and its improvement
3.1 The fireworks algorithm
The fireworks algorithm is a parallel explosive optimiza-
tion algorithm proposed by Tan Ying, inspired by the
natural fireworks exploding behavior [20]. In the fire-
works algorithm, the sparks generated by fireworks and
their explosions and mutations resemble feasible solu-
tions, and the explosion process simulates the process
of optimizing in the current feasible solution domain
[25, 26]. In nature, high-quality fireworks explosions pro-
duce more and more sparks, while the inferior fireworks
explosions produce much fewer sparks. The fireworks
algorithm follows the natural rules: the fitness value is
good, the fireworks quality is excellent, the explosion
range is small, and the sparks generated are in large quan-
tity. On the other hand, when the fitness value is not good,
the fireworks quality is inferior, the explosion range is
large, and the sparks generated are limited [1, 20, 21, 27].
The fireworks algorithm includes explosive sparks, muta-
tion sparks, mapping rules, selection strategies, and other
elements [20].
The explosion operator produces explosion sparks,

which play a key role in the fireworks algorithm, whose
metrics include explosion intensity, explosion amplitude,
and displacement operation [28, 29]. The explosion inten-
sity is the core of the explosion operator, indicating the
quantity of sparks generated during the explosion [30, 31].

The fireworks based on better fitness value can produce
more sparks and avoid them swinging around the optimal
value during optimization. The calculationmethod for the
number of sparks is shown in Eq. (2).

Si = S · Fmax − f (Xi) + ε

N∑

i=1

(
Fmax − f (Xi)

) + ε

(2)

Si indicates the number of subgeneration sparks in the ith
fireworks. S represents the maximum number of sparks
in the fireworks subgeneration. Fmax indicates the worst
fitness value of this generation. f (Xi) represents the fit-
ness value of the ith fireworks. ε is a minimal constant,
avoiding the divide-by-zero error.
In order to control the number of subgeneration sparks

of high quality fireworks and inferior fireworks, fireworks
i is limited, as shown in Eq. (3).

Si =
⎧
⎨

⎩

round(a · S) Si ≺ a · S
round(b · S) Si � b · S
round(S) else

(3)

a and b are given constants. round is the integral function,
following the principle of rounding.
The explosion amplitude is set to explore the optimum

value within a certain range around this generation of
fireworks [32, 33]. The fireworks with poor fitness value
can produce sparks in a wider range and avoid “prema-
ture” phenomenon [34, 35]. The calculation method of
explosion amplitude is shown in Eq. (4).

Ri = R · f (Xi) − Fmin + ε

N∑

i=1

(
f (Xi) − Fmin

) + ε

(4)

Ri indicates the range of the explosion amplitude of the
ith fireworks. R shows the maximum range of the fire-
works explosion. Fmin represents the best fitness value of
the current generation of fireworks.
The displacement operation is performed on each

dimension of the fireworks i according to the explosion
intensity and the explosion amplitude [36, 37], as shown
in Eq. (5).

�Xk
i = Xk

i + rand(0,Ri) (5)

Xk
i indicates the value of the location vector of fireworks

i in the kth dimension. �Xk
i represents the value of the

location vector of the sparks generated by fireworks i
explosion in the kth dimension. rand(0,Ri) indicates the
random number between 0 and Ri.
In the fireworks algorithm, the diversity of the popula-

tion is further improved by the mutation spark. The Gauss
distribution is used to preform Gauss mutation on any
dimensions of fireworks in the population [38–40]. The
calculation method is shown in Eq. (6).

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 3 of 8

∇Xk
i = Xk

i · n (6)

∇Xk
i indicates the value of the location vector of the sparks

produced by fireworks iGauss mutation in the kth dimen-
sion. n obeys the Gauss distribution of the mean value of
1 and the variance of 1, as shown in Eq. (7).

n ∼ N(1, 1) (7)

If fireworks i is near the boundary of the feasible
domain, it may produce sparks across the boundary.
Therefore, we use the rule of modular operation to map it
back to the feasible domain, as shown in Eq. (8).

Xk
i = Xk

min +
∣
∣
∣Xk

i

∣
∣
∣mod

(
Xk
max − Xk

min

)
(8)

Xk
max and Xk

min indicate the upper and lower bounds of
the location vector of fireworks i in the kth dimension,
respectively.
According to the explosion operator and Gauss muta-

tion operator, the current population contains this gen-
eration of fireworks, the explosion sparks, and the Gauss
mutation sparks. The individuals with the best fitness val-
ues are retained to the next generation with probability 1.
Then, the rest N − 1 individuals are selected according to
the Roulette rule with the probability in Eq. (9).

Pi =
∑

j∈K Dij
∑

i∈K
∑

j∈K Dij
(9)

Pi indicates the probability that fireworks i is selected. K
is a set of fireworks, explosion sparks, and Gauss muta-
tion sparks.Dij represents the Euclidean distance between
fireworks i and fireworks j, as shown in Eq. (10):

Dij =
K∑

j=1
||Xi − Xj|| (10)

3.2 The process of adaptive Gaussian mutation
The basic fireworks algorithm increases the diversity
of the population through Gauss mutation and uses
Gauss distribution to mutate any of the multiple dimen-
sions of the fireworks in the population [20]. The actual
effect of Gauss mutation can be easily influenced by the
selected Gauss mutation fireworks and mutation dimen-
sions. Therefore, for having a good fireworks population
diversity and short convergence time, the process of Gauss
mutation is redesigned.
With a poor fitness value of Gauss mutation, the contri-

bution of the poor fireworks to the mutant becomes too
large, thereby reducing the convergence speed of the algo-
rithm. According to Pareto’s rule, the most important part
of anything is only 20%, and the remaining 80% are sec-
ondary, although they are the majority [41]. Therefore, in
order to ensure that the algorithm has a fast convergence
speed, the improved fireworks algorithm randomly selects

one of the fireworks for Gauss mutation among the top
20% of the fitness value.
When the fireworks with better fitness value are

selected for Gauss mutation, if the mutation dimension
constantly remains large, despite the improved diversity
of the fireworks population, the contribution of fireworks
with better fitness value to the population is reduced,
thereby slowing down the convergence speed of the algo-
rithm. In contrast, if the mutation dimension constantly
remains small, although the information of the fireworks
with better fitness value is retained, the diversity of the
fireworks population is also reduced and consequently
makes the algorithm fall into the local optimum. There-
fore, to guarantee a fast convergence speed while not
falling into the local optimal, the adaptive Gauss muta-
tion dimension is presented. The value of the dimension
is shown in the Eq. (11).

z(t + 1) = �w(t) × z(t)	 (11)

w is a nonlinear function that decreases by the iterations t,
as shown in Eq. (12). Considering that the value of Gauss
mutation dimension should be a positive integer, the value
of z(t + 1) is rounded up to w(t) × z(t) .

w(t) = e−t (12)

At the beginning of iteration, w is relatively large, and
the corresponding mutation dimension z is also large,
which helps improve the diversity of fireworks popula-
tion and enhances the algorithm with global search. In the
later stage of the iteration, the value of w decreases gradu-
ally along with the iterations. The correspondingmutation
dimension z decreases, the Gauss mutation dimension
decreases gradually, and the information of the fireworks
with better fitness value is preserved, so that the algo-
rithm achieves optimization in the later stage of the iter-
ations. The improved fireworks algorithm fully plays the
role of Gauss mutation, avoiding the waste of resources
caused by improper selection of the mutation fireworks
and the improper determination of the mutation dimen-
sion. Meanwhile, the algorithm improves the ability of
global search and convergence speed.

4 IMFWA task scheduling algorithm
4.1 Coding strategy
Fireworks algorithm is an explosive optimization algo-
rithm for continuous space, and task scheduling is a
discrete problem. Therefore, according to the character-
istics of heterogeneous multi-processor task scheduling,
IMFWA encodes every generation of fireworks and maps
the continuous search space to the discrete search space,
so that fireworks algorithm can be applied to the task
scheduling problem.
The fireworks or spark in the population represents

a possible way of task scheduling. The processors and

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 4 of 8

tasks are numbered respectively: the processor numbers
are 1, 2, . . . , n, and the task numbers are 1, 2, . . . ,m. Let
the location vector of fireworks or sparks be an m-
dimensional vector Xi, as shown in Eq. (13).

Xi = [
x1, x2, . . . , xj, . . . , xm

]
, xj = rand(1, n) (13)

j = {1, 2, 3, . . . ,m}, and rand(1, n) indicates a random
value between 1 and n, then:

(1) The j th task is distributed to the xj processor.
(2) The requirements of task scheduling for

heterogeneous multi-processors are met.
(3) Each task can and can only be executed by one

processor.
(4) Each processor can execute multiple tasks.

In this coding scheme, the fireworks or spark location
vector is retained as a multi-dimensional vector, and only
the meaning and value represented by each dimension
are limited. In order to apply the coding scheme to the
heterogeneous multi-processor task scheduling problem,
the displacement operation formula Eq. (5) is updated to
Eq. (14).

Xj = Xj + rand(0,Ri) (14)

When applying Eq. (14) to the execution of displace-
ment operation, the value of xj may be beyond the range,
and the mapping rule Eq. (8) needs to be updated to
Eq. (15).

Xj = 1 + |Xj|mod(n − 1) (15)

The coding scheme has four features and, therefore, is
suitable for heterogeneous multi-processor task schedul-
ing:

(1) The encoded mode is simple and clear and easy to
understand and implement.

(2) The requirements of task scheduling for
heterogeneous multi-processors are met.

(3) Contains all possible task scheduling schemes.
(4) The unique mapping of location vector and task

scheduling sequence for fireworks or sparks.

4.2 Fitness value
In the fireworks algorithm, the quality of each generation
of fireworks and their offspring is evaluated by the fitness
value. IMFWA uses CP(s), the time used to execute all
tasks under the task scheduling sequence s, as the fitness
evaluation standard. A smaller value of CP(s) indicates
faster task execution, and a smaller fitness value presents
better quality of the fireworks or sparks. On the contrary, a
larger value ofCP(s) indicates slower task execution, and a
higher fitness value presents worse quality of the fireworks
or sparks. According to the coding scheme, CP(Xi) is the

completion time of the task scheduling sequence corre-
sponding to fireworks i or spark, and the fitness value
calculation method is as shown in Eq. (16).

f (Xi) = CP(Xi) (16)

CP(Xi) is calculated via Eq. (17).

CP(Xi) =
m∑

j=1
exetxj (17)

The fitness value calculation method is shown in
Eq. (18).

f (Xi) =
m∑

j=1
exetxj (18)

4.3 Tournament selection strategy
The basic fireworks algorithm uses the Roulette rules
based on Euclidean distance to select the next genera-
tion of fireworks; the higher the distance from the other
fireworks or sparks, the higher the probability of being
selected. Although this selection strategy allows the algo-
rithm to avoid the local optimal solution, the time over-
head increases greatly when the dimension of the location
vector Xi of the fireworks increases. This leads to long
execution time of the algorithm in actual applications [1].
Therefore, IMFWA improves the basic fireworks algo-
rithm and adopts the fitness-based tournament selection
strategy instead of the Roulette rule based on Euclidean
distance [1, 20, 21]. This reduces the time cost of the algo-
rithm on the basis of ensuring the population diversity.
Fitness-based tournament selection strategy first selects

a certain number of fireworks or sparks from the popula-
tion to form the next generation fireworks candidate set
in each iteration. Then, it chooses the best fireworks or
sparks in the candidate set to enter the next generation
according to the fitness value. The specific process is as
follows:

(1) To determine the percentage of fireworks or sparks
in the next generation of fireworks candidates out of
the total number of fireworks or sparks in the
contemporary population.

(2) In accordance with the percentage determined in (1),
the contemporary fireworks population is randomly
selected to form the next generation of fireworks
candidates set.

(3) According to fitness values, the best fireworks or
sparks are retained in the next generation within the
candidate set determined in (2).

Based on the above, the selection strategy of IMFWA
ensures that the individuals with the optimal fitness value
still remain in the next generation with the probability
of 1. Then the remaining N − 1 individuals are selected

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 5 of 8

according to the fitness-based tournament strategy. The
probability of each fireworks or spark being selected is
shown in Eq. (19).

Pi =
r
(
F ′
max − f (Xi)

)

∑
i∈Q

(
F ′
max − f (Xi)

) (19)

Q represents the next generation of fireworks candidates
selected according to a certain percentage of r. Fmax indi-
cates the maximum fitness value of an individual in set Q.
IMFWA adopts this fitness-based tournament selection
strategy to reduce the computational cost of selecting each
generation of fireworks and shorten the actual execution
time of the algorithm.

4.4 The process of IMFWA
The process of the IMFWA scheduling algorithm is as
follows:

(1) Initialize the number of fireworks N, the basic
explosion spark number S, the basic explosion
amplitude R, the number of tasks m, the
multi-processors number n, and the maximum
iteration number I.

(2) Initialize the fireworks location and convert the
fireworks location into a task scheduling sequence
according to the encoding scheme in Section 4.1.

(3) Calculate the fitness value, explosion intensity, and
explosion range of the fireworks.

(4) Start the explosion, generate ordinary sparks, and
calculate the fitness value.

(5) Calculate the Gaussian mutation dimension
according to Section 3.2, generate the Gaussian
mutation spark, and calculate its fitness value.

(6) Select the next generation of fireworks according to
the tournament selection strategy in Section 4.3.

(7) Determine if the maximum number of iterations has
been reached. If yes, the algorithm stops and outputs
the task scheduling sequence corresponding to the
fireworks or sparks with the smallest the fitness
value. Otherwise, the algorithm returns to step 3, and
the algorithm continues to execute.

The flow of algorithm is shown in Fig. 1.

5 Experiment results and analysis
5.1 Experimental methods
For evaluating the performance of IMFWA algorithm, this
research designed the comparative experiments with the
basic fireworks algorithm and genetic algorithm which
is widely used in task scheduling. The fireworks algo-
rithm is distributed and parallel. Compared with the
chromosome information sharing mechanism of genetic
algorithm, the fireworks algorithm adopts a distributed
information sharing mechanism. The population is not

Fig. 1 The process of IMFWA

uniformly to the optimal region, but the explosion and
sparks are determined according to the fitness value of the
fireworks distributed in different regions. Although the
selection strategy of fireworks algorithm and genetic algo-
rithm both introduce the idea of immune concentration,
the fireworks algorithm has more mechanisms to avoid
falling into the local optimal solution.
The experimental platform is Matlab R2014b and the

operating system is Windows 10. In order to objectively
analyze the performance of the algorithms, several com-
parative experiments are set up to test the performance
of the three algorithms under the conditions of eight
processors and 50, 100, 150, 200, and 250 tasks.
To eliminate the contingency of random data, the total

task completion time obtained is the average of 20 exper-
iments. The specific parameter settings of IMFWA, GA,
and FWA are shown in Table 1. ParameterN indicates the
initial quantity of fireworks per generation of the popula-
tion in IMFWA and FWA. In GA, it indicates the quantity

Table 1 Parameter settings of three algorithms

Algorithm Parameter Value

Number of fireworks N 100

Basic explosion spark number S 80

Basic explosive amplitude R 300

IMFWA, FWA Maximum number of iterations I 500

Constant a 0.80

Constant b 0.04

Individual number N 100

GA Cross probability 0.80

Mutation probability 0.04

Maximum number of iterations I 500

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 6 of 8

of initial individuals per generation with the value of 100.
The maximum number of iterations I is 500.

5.2 Results and discussion
Figure 2 shows the scenario when m = 200 and n = 8,
where the average performance curve of all task com-
pletion time-iteration times after 200 tasks are executed
on eight heterogeneous processors. In Fig. 2, among the
three algorithms, IMFWA has the least number of itera-
tions and the fastest convergence speed. As the number of
iterations increases, the task completion time of IMFWA
is consistently shorter than that of FWA and GA. It can
be seen that the accuracy of IMFWA and FWA is supe-
rior to that of the genetic algorithm. This is because the
crossover and mutation operations of genetic algorithm
increase the time complexity of the algorithm, and it tends
to miss the optimal solution.While the iterative process of
IMFWA is relatively simple, the search speed is faster and
the precision is higher.
Figure 3 shows the algorithm execution time-task num-

ber curve for different task numbers when there are eight
processors. In Fig. 3, with the increased number of tasks,
IMFWA still maintains lower task execution time when
compared with FWA and genetic algorithm. It can be seen
that IMFWA is less affected by the number of tasks than
FWA, and both algorithms are less affected by the num-
ber of tasks than genetic algorithm. This is because the
cross-mutation operation of genetic algorithm reduces its
effectiveness in large dimensions and is most affected by
the dimension. IMFWA reduces the time complexity of
the algorithm by improving the Gauss mutation and the
selection strategy.
The experimental results and analysis show that

IMFWA has the feasibility and efficiency in solving the
task scheduling problem. It retains the characteristics of

Fig. 2 Performance comparison results of the three algorithms

Fig. 3 Execution results of the three algorithms

the basic fireworks algorithm’s accuracy in finding the
optimal or suboptimal task scheduling sequence. Mean-
while, it shortens the overall completion time of tasks on
multi-processor, where its parallelism and heterogeneity
can be fully utilized.

6 Conclusions
To exploit the parallelism and efficiency of heterogeneous
multi-processor systems, a task scheduling algorithm
based on improved fireworks algorithm is proposed. By
setting the coding method of the fireworks location, the
solution space of the fireworks algorithm is converted
from continuous to discrete, so that it is suitable for task
scheduling problem. At the same time, IMFWA improves
the Gauss mutation process of the basic fireworks algo-
rithm, effectively accelerating the convergence speed of
the algorithm. The algorithm introduces a fitness-based
tournament selection strategy, which reduces the time
complexity of the algorithm. On the Matlab simulation
platform, compared with the basic fireworks algorithm
and genetic algorithm applied to the task scheduling prob-
lem, it is proved that IMFWA can find the optimal solu-
tion within fewer iteration times. The convergence speed
is faster, and the execution time of the algorithm is also
shorter. When the number of tasks increases, IMFWA
can still maintain a good optimization speed and solution
accuracy.

Abbreviations
FWA: Fireworks algorithm; GA: Genetic algorithm; IMFWA: Improved fireworks
algorithm; NP: Non-deterministic polynomial

Funding
This work was supported by the National Key Research and Development Plan
of China (No.2016YFB0801004).

Availability of data andmaterials
The authors declare that all the data and materials in this manuscript are
available.

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 7 of 8

Authors’ contributions
The contributions of all authors are equal in this manuscript, and all authors
read and approved the final manuscript.

Authors’ information
Jingmei Li received her M.S. degree and Ph.D. degree from Harbin Engineering
University, Harbin, China. She is currently a professor working in College of
Computer Science and Technology, Harbin Engineering University. Her
research focuses on Computer Architecture Performance Optimization, Big
Data and Cloud Computing, Network and Information Security and
Embedded Technology (E-mail:lijingmei@hrbeu.edu.cn).
Qiao Tian is currently a Ph.D. student at College of Computer Science and
Technology, Harbin Engineering University. Her main research includes
System Parallel Optimization and Computer Architecture
(E-mail:tianqiao@hrbeu.edu.cn).
Guoyin Zhang received his Ph.D. degree from Harbin Engineering University.
He is currently a professor and Ph.D. supervisor at College of Computer
Science and Technology, Harbin Engineering University. His current interests
include Embedded System, Network Technology and Information Security
(E-mail:zhangguoyin@hrbeu.edu.cn).
Weifei Wu received his M.S. degree at College of Computer Science and
Technology, Harbin Engineering University. He is currently studying for his
Ph.D. degree at the same institution (E-mail:wuweifei@hrbeu.edu.cn).
Di Xue is currently a Ph.D. student at College of Computer Science and
Technology, Harbin Engineering University (E-mail:dixue@hrbeu.edu.cn).
Lanting Li is currently a Master studying at College of Computer Science and
Technology, Harbin Engineering University.
Jiaxiang Wang is currently a professor at College of Computer Science and
Technology, Harbin Engineering University.
Lei Chen is currently a professor of Georgia Southern University, USA.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Computer Science and Technology, Harbin Engineering University,
Harbin, China. 2Georgia Southern University, Georgia, USA.

Received: 25 July 2018 Accepted: 28 September 2018

References
1. N. Bacanin, M. Tuba, in IEEE Congress on Evolutionary Computation, CEC

2015. Fireworks algorithm applied to constrained portfolio optimization
problem (IEEE, New York, 2015), pp. 1242–1249. https://doi.org/10.1109/
CEC.2015.7257031

2. J.D. Ullman, Np-complete scheduling problems. J. Comput. Syst. Sci.
10(3), 384–393 (1975). https://doi.org/10.1016/S0022-0000(75)80008-0

3. C.H. Papadimitriou, M. Yannakakis, Towards an architecture-independent
analysis of parallel algorithms. SIAM J. Comput. 19(2), 322–328 (1990).
https://doi.org/10.1137/0219021

4. d.e.O.liveira. L.L., F.reitas. A.A., T.inós. R., Multi-objective genetic algorithms
in the study of the genetic code’s adaptability. Inf. Sci. 425, 48–61 (2018).
https://doi.org/10.1016/j.ins.2017.10.022

5. A.S. Pillai, K. Singh, V. Saravanan, A. Anpalagan, I. Woungang, L. Barolli, A
genetic algorithm-based method for optimizing the energy consumption
and performance of multiprocessor systems. Soft Comput. 22(10),
3271–3285 (2018). https://doi.org/10.1007/s00500-017-2789-y

6. H. Topcuoglu, S. Hariri, M. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib.
Syst. 13(3), 260–274 (2002). https://doi.org/10.1109/71.993206

7. G. Park, B.A. Shirazi, J. Marquis, in Solving Irregularly Structured Problems in
Parallel, 4th International Symposium, IRREGULAR ’97. Comparative study of
static scheduling with task duplication for distributed systems (Springer,
Berlin, 1997), pp. 123–133. https://doi.org/10.1007/3-540-63138-0_12

8. Z. Zheng, N. Saxena, K.K. Mishra, A.K. Sangaiah, Guided dynamic particle
swarm optimization for optimizing digital image watermarking in

industry applications. Futur. Gener. Comput. Syst. (2018). https://doi.org/
10.1016/j.future.2018.05.027

9. X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, Q.S. Hua, Graph processing on
GPUs: a survey. ACM Comput. Surv. 50(6), 1–35 (2018)

10. M.A. Al-Mouhamed, Lower bound on the number of processors and time
for scheduling precedence graphs with communication costs. IEEE Trans.
Softw. Eng. 16(12), 1390–1401 (1990). https://doi.org/10.1109/32.62447

11. N. Zhang, X. Yang, M. Zhang, Y. Sun, K. Long, A genetic algorithm-based
task scheduling for cloud resource crowd-funding model. Int. J. Commun.
Syst. 31(1) (2018). https://doi.org/10.1002/dac.3394

12. F.A. Omara, M.M. Arafa, Genetic algorithms for task scheduling problem. J.
Parallel Distrib. Comput. 70(1), 13–22 (2010). https://doi.org/10.1016/j.
jpdc.2009.09.009

13. Z. Dou, C. Shi, Y. Lin, W. Li, Modeling of non-Gaussian colored noise and
application in CR multi-sensor networks. EURASIP J. Wirel. Comm. Netw.
2017, 192 (2017). https://doi.org/10.1186/s13638-017-0983-3

14. A.S.A. Beegom, M.S. Rajasree, in Distributed Computing and Internet
Technology - 11th International Conference, ICDCIT 2015. Genetic algorithm
framework for bi-objective task scheduling in cloud computing systems
(Springer-Verlag, Berlin, 2015), pp. 356–359. https://doi.org/10.1007/978-
3-319-14977-6_38

15. S.G. Ahmad, C.S. Liew, E.U. Munir, T.F. Ang, S.U. Khan, A hybrid genetic
algorithm for optimization of scheduling workflow applications in
heterogeneous computing systems. J. Parallel Distrib. Comput. 87, 80–90
(2016). https://doi.org/10.1016/j.jpdc.2015.10.001

16. Z. Li, in International Conference on Information Science and Engineering.
Optimization for the parallel test task scheduling based on GA (IEEE,
2010), pp. 5223–5226. https://doi.org/10.1109/ICISE.2010.5689193

17. B. Kruatrachue, T. Lewis, Grain size determination for parallel processing.
IEEE Softw. 5(1), 23–32 (1988). https://doi.org/10.1109/52.1991

18. I. Ahmad, Y. Kwok, On exploiting task duplication in parallel program
scheduling. IEEE Trans. Parallel Distrib. Syst. 9(9), 872–892 (1998). https://
doi.org/10.1109/71.722221

19. K. Ding, S. Zheng, Y. Tan, in Genetic and Evolutionary Computation
Conference, GECCO ’13, Amsterdam, The Netherlands, July 6-10, 2013. A
GPU-based parallel fireworks algorithm for optimization, (2013), pp. 9–16.
https://doi.org/10.1145/2463372.2463377

20. Y. Tan, Y. Zhu, in Advances in Swarm Intelligence, First International
Conference, ICSI 2010, June 12-15, 2010, Proceedings, Part I. Fireworks
algorithm for optimization (Springer, Beijing, 2010), pp. 355–364. https://
doi.org/10.1007/978-3-642-13495-1_44

21. S. Zheng, A. Janecek, Y. Tan, in Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2013, June 20-23. Enhanced fireworks
algorithm (IEEE, 2013), pp. 2069–2077. https://doi.org/10.1109/CEC.2013.
6557813

22. T. Yang, A. Gerasoulis, DSC: scheduling parallel tasks on an unbounded
number of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967
(1994). https://doi.org/10.1109/71.308533

23. B. Cirou, E. Jeannot, in 30th International Workshops on Parallel Processing
(ICPP 2001Workshops), 3-7 September 2001. Triplet: a clustering scheduling
algorithm for heterogeneous systems (IEEE, Valencia, 2001), pp. 231–236.
https://doi.org/10.1109/ICPPW.2001.951956

24. A. Gerasoulis, T. Yang, A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors. J. Parallel Distrib. Comput.
16, 276–291 (1992). Elsevier. https://doi.org/10.1016/0743-7315(92)
90012-C

25. S. Kim, J. Browne, in Proceedings of the International Conference on Parallel
Processing. General approach to mapping of parallel computations upon
multiprocessor architectures, vol. 3, (1988), pp. 1–8

26. A. Dogan, F. Özgüner, in 31st International Conference on Parallel Processing
(ICPP 2002), 20-23 August 2002. LDBS: a duplication based scheduling
algorithm for heterogeneous computing systems (IEEE, Vancouver, 2002),
pp. 352–359. https://doi.org/10.1109/ICPP.2002.1040891

27. B. Zhang, M. Zhang, Y. Zheng, in Advances in Swarm Intelligence - 5th
International Conference, ICSI 2014, October 17-20, 2014, Proceedings, Part I.
Improving enhanced fireworks algorithm with new Gaussian explosion
and population selection strategies (Springer, Cham, 2014), pp. 53–63.
https://doi.org/10.1007/978-3-319-11857-4_7

28. S. Chen, Y. Liu, L. Wei, B. Guan, PS-FW: A hybrid algorithm based on particle
swarm and fireworks for global optimization. Comp. Int. Neurosc. 2018,
6094685–1609468527 (2018). https://doi.org/10.1155/2018/6094685

https://doi.org/10.1109/CEC.2015.7257031
https://doi.org/10.1109/CEC.2015.7257031
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1137/0219021
https://doi.org/10.1016/j.ins.2017.10.022
https://doi.org/10.1007/s00500-017-2789-y
https://doi.org/10.1109/71.993206
https://doi.org/10.1007/3-540-63138-0_12
https://doi.org/10.1016/j.future.2018.05.027
https://doi.org/10.1016/j.future.2018.05.027
https://doi.org/10.1109/32.62447
https://doi.org/10.1002/dac.3394
https://doi.org/10.1016/j.jpdc.2009.09.009
https://doi.org/10.1016/j.jpdc.2009.09.009
https://doi.org/10.1186/s13638-017-0983-3
https://doi.org/10.1007/978-3-319-14977-6_38
https://doi.org/10.1007/978-3-319-14977-6_38
https://doi.org/10.1016/j.jpdc.2015.10.001
https://doi.org/10.1109/ICISE.2010.5689193
https://doi.org/10.1109/52.1991
https://doi.org/10.1109/71.722221
https://doi.org/10.1109/71.722221
https://doi.org/10.1145/2463372.2463377
https://doi.org/10.1007/978-3-642-13495-1_44
https://doi.org/10.1007/978-3-642-13495-1_44
https://doi.org/10.1109/CEC.2013.6557813
https://doi.org/10.1109/CEC.2013.6557813
https://doi.org/10.1109/71.308533
https://doi.org/10.1109/ICPPW.2001.951956
https://doi.org/10.1016/0743-7315(92)90012-C
https://doi.org/10.1016/0743-7315(92)90012-C
https://doi.org/10.1109/ICPP.2002.1040891
https://doi.org/10.1007/978-3-319-11857-4_7
https://doi.org/10.1155/2018/6094685

Li et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:256 Page 8 of 8

29. Z. Zheng, A.K. Sangaiah, T. Wang, Adaptive communication protocols in
flying ad hoc network. IEEE Commun. Mag. 56(1), 136–142 (2018). https://
doi.org/10.1109/MCOM.2017.1700323

30. Y. Tu, Y. Lin, J. Wang, Semi-supervised learning with generative adversarial
networks on digital signal modulation classification. CMC-Comput. Mater.
Continua. 55(2), 243–254 (2018)

31. J.T. Zhou, H. Zhao, X. Peng, M. Fang, Z. Qin, R.S.M. Goh, Transfer hashing:
from shallow to deep. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–11
(2018). https://doi.org/10.1109/TNNLS.2018.2827036

32. Y. Lin, X. Zhu, Z. Zheng, The individual identification method of wireless
device based on dimensionality reduction and machine learning. J.
Supercomput. 5, 1–18 (2017). https://doi.org/10.1007/s11227-017-2216-2

33. C. Shi, Z. Dou, Y. Lin, W. Li, Dynamic threshold-setting for RF-powered
cognitive radio networks in non-Gaussian noise. Phys. Commun. 27,
99–105 (2018). https://doi.org/10.1016/j.phycom.2018.02.001

34. J. Sun, W. Wang, L. Kou, Y. Lin, L. Zhang, Q. Da, L. Chen, A data
authentication scheme for uav ad hoc network communication. J.
Supercomput. 8, 1–16 (2017). https://doi.org/10.1007/s11227-017-2179-3

35. Y. Lin, C. Wang, J. Wang, Z. Dou, A novel dynamic spectrum access
framework based on reinforcement learning for cognitive radio sensor
networks. Sensors. 16(10), 1675 (2016). https://doi.org/10.3390/s16101675

36. Y. Lin, C. Wang, C. Ma, Z. Dou, X. Ma, A new combination method for
multisensor conflict information. J. Supercomput. 72(7), 2874–2890
(2016). https://doi.org/10.1007/s11227-016-1681-3

37. Q. Wu, Y. Li, Y. Lin, The application of nonlocal total variation in image
denoising for mobile transmission. Multimedia Tools Appl. 76(16),
17179–17191 (2017). https://doi.org/10.1007/s11042-016-3760-0

38. H. Wang, L.I. Jingchao, L. Guo, Z. Dou, Y. Lin, R. Zhou, Fractal
complexity-based feature extraction algorithm of communication signals.
Fractals-Compl. Geom. Patterns Scaling Nat. Soc. 25(5), 1740008 (2017).
https://doi.org/10.1142/S0218348X17400084

39. T. Liu, Y. Guan, Y. Lin, Research on modulation recognition with ensemble
learning. EURASIP J. Wirel. Comm. Networking. 2017, 179 (2017). https://
doi.org/10.1186/s13638-017-0949-5

40. M.A. Khan, Scheduling for heterogeneous systems using constrained
critical paths. Parallel Comput. 38(4-5), 175–193 (2012). https://doi.org/10.
1016/j.parco.2012.01.001

41. S.U. Jingnai, Pareto’s principle and the optimization distribution of
documentary information resources in colleges and universities. J. Fuqing
Branch Fujian Normal Univ., 110–112 (2006)

https://doi.org/10.1109/MCOM.2017.1700323
https://doi.org/10.1109/MCOM.2017.1700323
https://doi.org/10.1109/TNNLS.2018.2827036
https://doi.org/10.1007/s11227-017-2216-2
https://doi.org/10.1016/j.phycom.2018.02.001
https://doi.org/10.1007/s11227-017-2179-3
https://doi.org/10.3390/s16101675
https://doi.org/10.1007/s11227-016-1681-3
https://doi.org/10.1007/s11042-016-3760-0
https://doi.org/10.1142/S0218348X17400084
https://doi.org/10.1186/s13638-017-0949-5
https://doi.org/10.1186/s13638-017-0949-5
https://doi.org/10.1016/j.parco.2012.01.001
https://doi.org/10.1016/j.parco.2012.01.001

	Abstract
	Keywords

	Introduction
	Description of task scheduling problem
	Fireworks algorithm and its improvement
	The fireworks algorithm
	The process of adaptive Gaussian mutation

	IMFWA task scheduling algorithm
	Coding strategy
	Fitness value
	Tournament selection strategy
	The process of IMFWA

	Experiment results and analysis
	Experimental methods
	Results and discussion

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

