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Abstract

Cognitive radio networks (CRNs) have been introduced as a promising solution to optimize the use of available
radio-frequency spectrum. The key idea in CRNs is the proper selection of available sensed channels. In this paper, an
intelligent distributed channel selection strategy is proposed for cognitive radio ad-hoc networks aiming to assist
them in selecting the best channel for transmission. The proposed strategy classifies the available channels based on
the primary users’(PUs) utilization, the number of cognitive radio neighbors using the channels, and the capacity of
available channels. The Fuzzy Logic technique is used to determine a channel’s weight value by combining these
parameters. The channels with the highest weight value are selected for transmission. The proposed strategy takes
into account false alarm (FA) and miss detection (MD) metrics to classify the sensed channels into four categories (FA,
MD, ON and OFF) based on K-means learner. This classification helps the strategy to avoid accessing occupied
channels. Simulation results based on NS2 simulation approved that the proposed strategy is effective compared to
other strategies concerning selecting the best channel and achieving higher channel utilization.
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1 Introduction
Conventionally, the radio frequency (RF) spectrum is reg-
ulated by assigning fixed portions of spectrum to individ-
ual users in the form of renewable licenses. However, the
fixed spectrum assignment policy ensures interference-
free communications between radio terminals that cause
poor spectrum utilization. Recent studies of the Federal
Communications Commission (FCC) showed that spec-
trum utilization of licensed RF bands varies from 15 to
85% based on the location and the time. The rapid growth
of wireless device applications increases the demand of
the electromagnetic radio spectrum. Consequently, waste
of spectrum resources has become a serious problem. To
address this problem, cognitive radio networks (CRNs)
have appeared as a promising solution [1]. In these net-
works, the unlicensed cognitive radio users (CRs) are
allowed to opportunistically access the licensed spectrum
without interfering with licensed primary users (PUs).
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CRs are characterized by cognitive radio (CR) capabil-
ities, which enable them to sense the spectrum environ-
ment, to detect available channels in wireless spectrum,
and to change their transmission and reception param-
eters accordingly. CRs can use the licensed spectrum as
long as the PU is absent while vacate it if primary user
comes back into operation. This optimizes the use of avail-
able RF spectrum while minimizing interference with the
primary users [2].
Achieving efficient spectrum utilization in CRNs

requires four successive management procedures: spec-
trum sensing, spectrum decision, spectrum sharing, and
spectrum mobility [3, 4]. First, CRs have to continually
monitor the radio spectrum in order to find the spectrum
holes that are unemployed by the primary users through
spectrum sensing operation. Reliable spectrum sensing is
perceived as a vital part of the CR networks [5].The accu-
racy of spectrum sensing is evaluated by means of the two
probabilities, the miss detection probability and the false
alarm probability. A false alarm incident occurs when CR
user claims that the channel is busy whereas its actual state
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is idle. However, a miss detection incident happens when
CR user fails to detect the presence of PUs [6, 7].
Different sensing techniques like matched filter, energy,

and feature detection were used [8]. However, many
factors such as channel fading, shadowing effects, and
receiver uncertainty cause the inaccurate detection of
PUs’ activities leading to miss detection problems [9].
Cooperative spectrum sensing approach improves PUs’
detection by utilizing spectrum sensing information from
other CRs. CR users share their sensing information to
make more precise decision. The channel is identified as
idle if all CRs decide this. Though miss detection proba-
bility is decreased, the false alarm probability is increased,
which in turn drops the spectrum utilization [10, 11].
The spectrum bands that are detected through sensing

have to be investigated to define their characteristics. Each
CR user should select the most appropriate band that sat-
isfies its transmission requirements and simultaneously
avoid interference with primary users. Then, the trans-
mission parameters are reconfigured in order to support
communication within the selected band. Spectrum char-
acterization, spectrum selection, and CR reconfiguration
functions are the three main functions of spectrum deci-
sion process [12]. In CRNs, spectrum decision is a key
function that ensures the maximum spectrum utilization
and the best transmission performance [13, 14].
This paper proposes a new spectrum selection frame-

work for the cognitive radio wireless ad hoc network
(CRAHN) called an intelligent learning fuzzy-based chan-
nel selection (ILFCS) framework. The proposed ILFCS
aims at overcoming the problem of sensing errors that
reduces the performance of CRNs and introducing a new
channel selection scheme to help CR users select the best
channel in an intelligent way. Actually, the ILFCS frame-
work enhances the network performance by decreasing
false alarm and miss detection effects and enabling CRs
to select the best channel, which improves their trans-
mission performance and maximizes the throughput and
the spectrum utilization. This enhancement is based on
two contributions, namely, the use of K-means unsuper-
vised learning technique to minimize the sensing errors,
and the application of the fuzzy inference system (FIS)
as a channel selection strategy to select the best channel
in an intelligent process. ILFCS is evaluated by the NS2
simulator. The simulation results show that this approach
ensures selecting best channel with less PUs’ interference
compared to related strategies.
The remainder of this paper is organized as follows:

Section 2 surveys related work. The motivations and con-
tributions are listed in Section 3. Section 4 describes the
system model. Section 5 explains the proposed ILFCS
framework and illustrates the K-means learner and fuzzy-
based channel selector modules. Section 6 introduces the
simulation results and the performance comparison of the

proposed framework to other strategies, and finally, this
work is concluded in Section 7.

2 Related work
Convenient selection of channel is the most vital task in
cognitive radio. Recently, a lot of work is done on chan-
nel selection in cognitive radio ad hoc network (CRAHN).
Various channel selector strategies have been used in the
current research works. Q-Learning has been applied to
channel selection in order to enhance CRs’ performance
and at the same time to minimize interference to PUs.
Tang et al. [15] select the channel with low PUs’ activ-

ities aiming to minimize the channel switching delay of
each CR node. In another paper by Li [16], each CR
user learns how to select channel according to its expe-
rience by applying multi-agent reinforcement learning
(MARL). He et al. [17] proposed a joint channel selection
and power control spectrum decision algorithm based on
distributed Q learning where CRs select optimal chan-
nel which guarantee maximum energy and spectrum
efficiency.
Game theory is also introduced for channel allocation

in CRNs where each single agent acts as an indepen-
dent decision maker. The CRs are the players which select
the transmission channel and the related transmission
parameters. Gállego et al. presented channel allocation
and power control strategies in CRNs using game theory
aiming to maximize network utility in which the problem
has been analyzed under the physical interference model
in which a link can only be established if the received SINR
is higher than a predefined threshold [18]. Salim et al. pro-
posed an energy-efficient game-theory-based spectrum
decision (EGSD) scheme for CR networks to increase the
network lifetime [19]. Graph Coloring based Dynamic
Channel Allocation (GC-DCA) algorithm is proposed that
minimizes interference with PUs and increases channel
utilization [20].
There are other different scenarios introduced for

channel selection in CR network. Ding et al. proposed
a distributed algorithm for joint opportunistic routing
and dynamic spectrum access in multi hop CRNs [21].
Pareek et al. proposed a cluster-based channel assignment
scheme for CRNs [22]. Weiwei and Xiaohui suggested a
robust resource allocation (RA) algorithm for cognitive
relay networks with multiple PUs. The proposed algo-
rithm solved the resource allocation through robust relay
selection and power allocation distinctly bearing in mind
both channel and interference uncertainty. Results veri-
fied the robustness of the suggested robust relay selection
scheme [23].
Veeramakali et al. recommended an intelligent fuzzy-

based dynamic spectrum allocation (IDSA) with band-
width flexibility for CR. The suggested strategy achieved
an appreciable performance enhancement taking into
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consideration three measures: service rate, average packet
loss, and average delay [24]. López et al. solve the prob-
lem of spectrum allocation regarding the criteria of equity
by enabling all the cognitive radio nodes to access the
available network resources in a reasonable way with-
out monopolizing the current capacity. The CR nodes
are classified based on the network usage historical met-
rics. Nodes with better ranking have higher priority in the
spectrum allocation. Two techniques (ANFIS and FAHP)
are used for categorizing. Results of each technique are
compared to each other and to a channel assignment algo-
rithm that does not perform any classification regarding
a new measure of quantifiable fairness to measure sys-
tem performance [25]. EElhachmi et al. applied a dynamic
genetic algorithm (GA) for channel allocation in cogni-
tive radio. Their suggested algorithm, which is based on
the new sophisticated crossover and mutation operators,
provides an efficient way for the available spectrum allo-
cation for both primary and secondary users [26]. Suzan
et al. introduced the best fit channel selection (BFC)
for distributed channel selection. BFC strategy takes into
account both the primary channel traffic activity and the
CR traffic activity in channel selection. CR nodes can
estimate PUs’ traffic activities, can determine the chan-
nel state and can predict the time the channel stays in
the idle state. Consequently, it selects the channels with
longer idle time than the time required for completing its
transmission [27]. In the longest idle time channel selec-
tion (LITC), a CR user simply selects the channel that has
the longest expected idle time ignoring its transmission
needs. It is a selfish approach that can passively affect the
entire network [28, 29].
Tarek et al. proposed an intelligent channel selection

scheme for cognitive radio ad hoc networks (ICSSSS)
using a self-organized map followed by a simple segrega-
tion. The channels are classified into four clusters by using
SOM learner that helps CR to select the available chan-
nels by minimizing the sensing error. Thus, the best one is
selected for secondary users out of these channels through
using a simple segregated channel selector in a reasonable
time [30].
For the best of our knowledge, all the mentioned meth-

ods ignored the impact of sensing errors (e.g., false alarm
and miss detection) in the channel selection process. As
a result, the hopping rate of a CR to move from a chan-
nel to another increased. In addition, CRs frequently
disturb PUs. Finally, this ends up with poor through-
put and channel utilization. To solve this problem, the
new efficient channel decision framework (ILFCS) that
takes into account the sensing error probabilities is pro-
posed for CRAHNs. The new ILFCS is based on a well-
known unsupervised learning technique, K-means, which
enables CR nodes to avoid selecting a wrong channel.
In addition, fuzzy inference system procedure permits

an improved tuning of the accurate predictions. Also,
it allows all CR nodes to utilize all available channels
correctly.

3 Motivation and contributions
In this paper, we focus on channel selection in CRAHNs,
where CRs have to compete with the PUs for the resid-
ual resources on channels in order to use them oppor-
tunistically. Due to the nature of the CRAHN, chan-
nel selection decision increases basic challenges regard-
ing the implementation of effective distributed schemes.
In CRAHN, chosen reliability channel is difficult to be
achieved because of many factors as follows:

• In addition to the already known issues of wireless
environments, the channel availability, which is
determined by the present behavior of PUs, adds a
noticeable load on CRAHN.

• The switching to other available channels once the
PU appears on the occupied channel makes the CR
user loses its connection. Consequently, the mobility
of users involved in an on-going communication
drives the CR user to sustain the quality of service
(QoS) or to minimize the quality degradation during
the spectrum switching through interacting with
each layering protocol. Thus, the process of switching
from a channel to another needs to be minimized by
the accurate prediction of the PU traffic.

• The inaccurate detection of PU activities, which is
caused by spectrum sensing errors (sum of MD and
FA), increases collision possibilities with PUs. So
avoiding FA and MD is a major challenge in CRNs.

• Selecting the most proper channel that achieves the
least interference between CRs’ flow and each other
creates another issue in CRNs.

The proposed ILFCS takes into account all abovemen-
tioned issues. The general objectives of ILFCS can be
summarized as follows:

• Improving the accuracy in selecting the best channel
over a CRAHN to help CRs to satisfy its QoS
requirements.

• Minimizing sensing errors resulted from the
spectrum sensing techniques and average end-to-end
delay over the whole CRNs.

• Avoiding channel conflict among CR users.
• Improving spectrum channel utilization and reducing

the interference ratio between CRs and Pus.
• Comparing the proposed ILFCS framework and

other related strategies. The simulation results
demonstrated that the proposed framework
outperforms other strategies in selecting best channel
with less PUs’ interference and achieving high
spectrum utilization.
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4 Systemmodel
In this section, the considered systemmodel and the basic
related assumptions to the proposed selection framework
are presented.

4.1 Network model
The network consists of a group of both primary radio
nodes and cognitive radio nodes. Primary radio nodes are
the licensed users who have the highest priority to access
the channels and who should not be interrupted by the
CR node transmissions. This paper will take into account
a distributed primary network that uses the time slot-
ted access method. The PUs are supposed to follow the
ON/OFF activity model.
We consider a cognitive radio ad hoc network where

no centralized network entity is available. Network oper-
ations (e.g., spectrum sensing, channel selection decision)
are performed by the CR nodes themselves [31]. We fur-
ther assume that CR nodes have the same capability of PU
nodes. The main difference between them is that PU has
an owner band which can be used anywhere, while the CR
can only access the idle frequency band. If a signal from
a PU is detected, the CR user must vacate the allocated
spectrum. CRs are supposed to be provided with a sin-
gle transceiver where the CR either sense or communicate
on one channel at a time. This reduces the computational
cost of the CRs and avoids the likely interference when
using multi-transceiver [32, 33].
As CRAHNs do not depend on any predefined infras-

tructure backbone, CR users communicate with each
other in ad hoc manner. One common control channel
(CCC) is supposed to be available for secondary cognitive
users to exchange all messages required for coordina-
tion and sharing of their sensing results. Thus, each CR
user has complete knowledge of vacant channels avail-
able found in the PU band after synchronization. It is
worth saying that CRAHN is considered a more suitable
option due to the advantages of having a lower cost of
implementation, lower system complexity, and faster align
positioning compared to the infrastructure-based CRN
[34, 35].
CRNs are supposed to work in a standalone fashion

and make decisions based on locally inferred information.
Therefore, each CR node has to perform spectrum sens-
ing to detect the existence of the PU signal. The spectrum
sensing is periodically performed by every CR node. In the
proposed ILFCS, the spectrum sensing block is suggested
to be responsible for the detection of the PU signal. The
proposed ILFCS will work on the list of available channels
resulting from the spectrum sensing. The currently used
spectrum sensing techniques involves sensing errors that
affect the performance of the channel selection methods.
The proposed ILFCS framework handles these errors by
using K-means learning algorithm.

4.2 Primary user activity model
The performance of CRNs depends on the primary user
activity over the channels. CR users can utilize the spec-
trum opportunistically only when the spectrum is not
used by PUs. While CRs use an idle channel, primary
user can arrive at any time; consequently, CRs have to
end their communications and leave the current chan-
nel. Modeling the PUs’ activity helps CR users to learn
the history of primary user’s spectrum utilization, and
thus, they can predict their future state. In such a way,
CR users can select the best available spectrum bands for
their transmission. Therefore, the estimation of primary
radio activity has a vital role in channel selection deci-
sion. We used the PU activity based on Poisson modeling
with exponentially distributed inter-arrivals because it has
been widely used in the literature.
The PU traffic is modeled as a two-state ON-OFF pro-

cess. In this approach, each user arrival is independent,
and it is assumed that the PU transmission follows the
Poisson arrival process. Therefore, the length of ON and
OFF periods are exponentially distributed. The period
used by PUs is represented by an ON state while an OFF
state represents the vacant periods. Such an ON/OFF PU
activity model captures the time period in which the chan-
nel can be used by CRs without bringing out any harmful
interference to PU nodes [12, 36].

5 The proposed ILFCS framework
As illustrated in Fig. 1, the proposed channel selection
framework consists of four modules: (1) channel sensing
module, (2) spectrum characterization module, (3) spec-
trum selection module, and (4) CR reconfiguration mod-
ule. In the first module, each CR node senses the available
channels using the spectrum sensing technique that is
implemented in the physical layer. After that, the available
channels pass to the second module that is implemented
in MAC layer.
In the second module, the available spectrum chan-

nels are classified into four classes, (correct OFF, correct
ON, FA, and MD) based on the K-means unsupervised
learning technique. This classification helps the CR to
select true idle channels in an intelligent way and to avoid
the channels with sensing errors (MD and ON). This in
turn leads to minimizing the spectrum sensing errors in
the upper layer and subsequently enhances the spectrum
usage level and reduces collision with PUs. The available
channels (correct OFF and MD) pass to the spectrum
selection module. In the third module, the channel with
higher weight value is selected. This channel is associated
with three parameters, PU utilization, channel capacity,
and number of CRs on each channel, based on fuzzy-
based system. Consequently, the proposed framework has
a cross layer scheme. Each layer has distinct role. After
the best channel is selected, the QoS parameters will
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Fig. 1 ILFCS channel selection framework. The proposed channel selection framework modules is illustrated

be optimized in the fourth module. At the end, the CR
makes a transmission using the selected channel and QoS
parameters.
The selection of the appropriate channels for transmis-

sion in the proposed ILFCS is based on the channels that
have low primary radio node utilization, less congestion
with CR users and higher capacity. Channel parame-
ters are fed into the fuzzy inference system in order to
compute the channel weight value. Finally, the channel
with the highest weight value is selected for transmit-
ting the packet and the remainder channels are stored
in a descending order to be kept as a backup for the
selected channels. In the following subsections, the oper-
ation of K-means learner and the fuzzy channel selec-
tor are introduced in details. The contributions in this
work focus on spectrum characterization and spectrum
selection modules. In spectrum characterization module,
K-means learning algorithm is proposed to handle the
problem of sensing errors from the spectrum sensing
technique. While in spectrum selection module, FIS is
proposed to select the best channel.

5.1 K-means unsupervised learning technique
K-means is a type of neural network that belongs to the set
of unsupervised learning techniques. One type of unsu-
pervised learning problems is clustering (group similar
data together). The K-means algorithm is a numerical

clusteringmethodwhereK is a positive number initialized
before the beginning of the algorithm in order to define
the number of required groups. The K-means algorithm
works in an iterative fashion. It starts by defining an initial
set of clusters and the clusters are repeatedly updated until
no more improvement is possible (or the number of iter-
ations exceeds a specified limit)[37]. Figure 2 shows the
steps of K-means clustering algorithm.
This paper utilizes the K-means algorithm to cluster

the spectrum channels according to their states into four
groups (correct OFF, correct ON, FA, and MD).This divi-
sion is done based on the state of the channel. According
to the sensing results collected by each CR, three features
determine each channel state. These features are the state
of sensing, the state of the corresponding interference due
to the presence of the PU inside its sensing range (inter-
nal PU), and the state of the presence of the PU located
outside (external PU). The proposed K-means composed
of three inputs features and four outputs. These inputs
are the three mentioned features of each channel, while
the outputs cluster the spectrum channels according to
their states into four groups (correct OFF, correct ON, FA,
and MD). Each channel state is expressed by one vector
as shown in Table 1 [30]. The correct OFF cluster cov-
ers the samples that show the OFF sensing without any
interference from internal or external PU expressed by the
vector (000). However, the FA cluster contains the samples
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Fig. 2 K-means clustering algorithm. The steps of K-means clustering
algorithm are outlined

that indicate the erroneous sensing report caused when
CR user discovers the channel ON at time (t), but one
CR neighbor discovers the channel OFF at time (t) and
completed a transmission on channel during (t − �t, t) .
The FA state is expressed by the vector (101). The cor-
rect ON cluster comprises the samples that indicate the

ON sensing without any possibility for external PU and
is expressed by the vector [110]. The MD cluster cov-
ers the samples that indicate the off sensing while CR
neighbors discovers channel ON and is expressed by the
vector [010].
Iteratively, the K-means learner receives a sample for

each channel. The learning step is independently per-
formed for each channel. After sufficient iterations, the
K-means can predict the suitable cluster for next sam-
ples. For dynamic changes in real environment, the num-
ber of samples for channel (k) may increase in a certain
cluster resulting in changing the probability of channel
state. After this classifier works, the output from K-means
passes to the fuzzy inference model as depicted in Fig. 2,
where only FA and correct OFF groups will send to
the FIS.

5.2 Fuzzy channel selection module
The most important challenge to maximize the perfor-
mance of a CRN is to minimize interference caused to PUs
and among CRs. Thus, best channels with minimum PUs’
activities, less congested with CR users, and high capac-
ity should be selected. Output channels resulted from
K-means clustering are classified by assigning a weight
value to each channel. FIS system is used to calculate
each channel weight value considering three parameters:
primary user’s utilization, cognitive user’s number, and
channel capacity.

5.2.1 The fuzzy input parameters
5.2.2 A. Primary user’s utilization
Primary user channel utilization is the fraction of time
in which channel i is in on state, i.e., utilized by primary
nodes. Channel utilization u is calculated by Eq. 1 [36].
The most important requirement for CR networks is that
CRs should not interfere with licensed PUs transmission.
Therefore, the best channel is the one with low primary
user’s utilization rate.

Ui = E
[
Ti
ON

]

E
[
Ti
ON

] + E
[
Ti
OFF

] = λy
λx + λy

(1)

Where, E
[
Ti
ON

] = 1
λx
, E

[
Ti
OFF

] = 1
λy
, λx, λy

are rate parameters for exponential distribution, and
E[Ti

ON ] ,E[T
i
OFF ] are the mean exponential distribu-

tion.The values of λxandλy can be easily measured by CR
nodes by collecting the historical samples of channel state
transitions. Values of λxandλy recorded in [36] are used to
calculate channel utilization as shown in Table 2.

5.2.3 B. Cognitive user’s number
Good channel selection strategy chooses the channel
with lower number of CR neighbors using the channel.
Lower number of CR reduces interference among CRs,
which increases transmission rate, resource utilization,
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Table 1 Samples space for channel states

Sample rule Current
sensing

Interference with
internal PU

Interference with
external PU

Generated
sample

Channel state
description

Either CR user or one CR neighbor
discovers the channel OFF at time
(t) and completed a transmission
on channel during [t − �t, t]).

0 0 0 [ 0 0 0 ] OFF

CR user discovers the channel OFF
at time (t), but failed to transmit on
channel during (t − �t, t) or most
CR neighbors discovers the
channel ON at time (t − �t) and t.

1 1 0 [ 0 1 0 ] MD

CR user discovers the channel ON
at time (t), and most CR neighbors
discovers the channel ON at time
(t − �t) and t.

1 1 0 [ 1 1 0 ] ON

CR user discovers the channel ON
at time (t), but one CR neighbor
discovers the channel OFF at time
(t) and completed a transmission
on channel during (t − �t, t).

1 0 1 [ 1 0 0 ] FA

and throughput, and at the same time, it decreases packet
loss ratio and packet delay. In order to determine the num-
ber of CR users, each CR node discovers their neighbors
by using a common control channel (CCC) mechanism.

5.2.4 C. Channel capacity
Channel capacity indicates users data rate per each HZ
of the spectrum band used. The expected normalized
capacity of a user k in spectrum band i is calculated using
Eq. 2 [12].

CCR
i (k) = E[Ci(k)]= Toff

i

Toff
i + τ

.γi.ci(k) (2)

where Ci(k) represents spectrum capacity, ci(k) is the
normalized channel capacity of spectrum band i in
bits/sec/Hz, τ is the spectrum switching delay, γi is
the spectrum sensing efficiency, and Toff

i represents the
expected transmission time without switching in spec-
trum band.

5.2.5 Fuzzy logic inference system
The fuzzy inference system employs fuzzy logic concepts
to perform tasks such as decision making. The block dia-
gram of the fuzzy inference system is shown in Fig. 3.
There are four basic steps summarize the operation of the
fuzzy logic algorithms [38, 39]:

Table 2 Wireless channel parameters

Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Ch 7 Ch 8 Ch 9 Ch 10

λx 1.25 0.4 1 0.4 0.5 2 1 0.18 0.5 0.67

λy 0.67 2 1 0.33 1 0.29 0.25 2 1.33 0.5

ui 0.35 0.83 0.5 0.45 0.67 0.13 0.2 0.92 0.73 0.43

• Fuzzification system inputs (crisp numbers) are
changed into fuzzy sets by applying a fuzzification
function.

• Rule evaluation stores IF-THEN rules written by a
professional designer in the related field.

• Inference engine simulates the human reasoning
process by making fuzzy inference on the inputs and
IF-THEN rules.

• Defuzzification converts the fuzzy outputs obtained
by the inference engine into a crisp value.

5.2.6 Fuzzy logic algorithm description
In the proposed ILFTS , Mamdani’s method fuzzy infer-
ence technique [40] with three inputs and one output
is used. Fuzzy system used for our proposed model is
shown in Fig. 4. In fuzzy inference system, the input and
output variables should be represented as membership
function [41].
In fuzzifer, crisp (actual) values are converted intomem-

bership functions as shown in Fig. 5. There are different
forms of membership functions such as: triangular, trape-
zoidal, Gaussian, and singleton. In our case, triangular
membership functions are used. The following equation
describes triangular function defined by a lower limit a,
an upper limit b, and a value:

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x ≤ a
x−a
m−a a < x ≤ m
b−x
b−m m < x ≤ b
0 b ≥ x

m where a < m < b. Fuzzified values are processed by
if then statements according to a set of predefined rules
written by a professional designer in the related field. In
our case, we have used 27 IF-THEN-based rules (Table 3).
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Fig. 3 Fuzzy inference system. The block diagram of the fuzzy inference system are shown

The fuzzy operator used here is the AND operator. For
example, if utilization is low and CR users’ number is low
and channel capacity is high then the channel weight value
is high. This means that this channel is a most trusted one.
The outputs obtained for each rule are combined to obtain
a final result using the maximum operator. Finally, the
obtained fuzzy value is defuzzified to obtain a final crisp
value. Center of gravity defuzzification method is used.
It is worth mentioning that the proposed algorithm

consists of two parts, (1) K-means and (2) fuzzy-based
system. In time complexity analysis of K-means, the time
spent in the learning phase is ignored since it is carried
out “off-line”. The corresponding time cost of its working
phase isO(I.J)2 because theK-means network is fully con-
nected so that every input, i = 1, 2, . . . ., j is connected
to all output nodes, j = 1, 2, . . . , j (here, 3 inputs and 4
outputs are used). However, such time cost is not crucial
because the numbers of input and output K-means nodes
are always limited to the channel status (either ON or
OFF). On the other hand, depicts the time complexity of

segregated selection is O(FID), where, F is the time spent
in (Fuzzification) process, I is the time spent in (Fuzzy
Inference Engine), andD is the number of candidate chan-
nels and k is the heap lists. Consequently, the overall time
cost of the proposed algorithm will be O(I.J)2 + O(FID)

(Fig. 3).

6 Results and discussion
In this section, the performance of the proposed selection
framework (ILFCS) through extensive simulations will be
analyzed. In the following part, simulation results for the
proposed framework will be introduced by the network
simulator (NS2). The output of FIS, which is the channel
weight value, is applied to the NS2 simulation for evalua-
tion. The work flow between the NS2 and theMATLAB is
demonstrated in Fig. 6.

6.1 Implementation setup
On NS2 simulator, the CR node and the required layers
for network functionality were developed. Cognitive radio

Fig. 4 Fuzzy system for the proposed model. The inference techniques and the fuzzy system used for the proposed ILFCS strategy are demonstrated
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cognitive network (CRCN) patch of NS2 is used. The
CRCN patch has three building blocks that support cog-
nitive radio functionalities in NS2. These blocks are cog-
nitive radio physical layer, cognitive radio MAC layer, and
cognitive radio network layer [42]. The CR network layer
is accountable for keeping and maintaining the neighbor
list. It also decides on the channel selection. This decision
is passed to the MAC layer which then handles switching
to the selected channel. The CR physical layer is respon-
sible for sensing some information like all the available
spectrum bands, transmission power, propagation model,
and SINR/SNR physical model. This CRCN patch of NS-
2 does not model the activity of the PU nodes. Here, the
CRCN patch of NS-2 is modified to include the used PU
activity model. The PU activity block is responsible for
generating and keeping track of PU activities in each spec-
trum band (spectrum utilization), that is, the sequence of
ON and OFF periods by primary nodes over the simula-
tion time. These ON and OFF periods can be modeled
as continuous time, alternating ON/OFFMarkov Renewal
Process (MRP) [42]. The ON (busy) state indicates that
the primary node occupies the channel. While, the OFF
(idle) state means that the channel is unoccupied by the
primary node. The channels ON and OFF periods are
considered exponentially distributed. The rate parameters

of exponential distribution λx, λy listed in Table 2
which was measured in [36] are provided as inputs in
simulation.
A simple MAC protocol (Maccon.cc), which is avail-

able with the CRCN patch of ns-2, will be considered
in the study. This MAC protocol is a multiple-channel,
collision- and contention-based MAC protocol. In the
original state, the Maccon.cc MAC protocol randomly
selects a channel from the predefined set of channels,
and the channel selection decision occurs at the MAC
layer. In the proposed ILFCS, channel selection is done
at the network layer. Thus, we have modified this MAC
protocol to provide the ability for the network layer to
make the channel selection decision. Based on the chan-
nel selection strategy, the network layer takes the channel
selection decision. This decision is encapsulated in the
network layer packet header and passed to theMAC layer,
which then switches to the channel based on the chan-
nel selection decision that is provided by the network
layer [42].

6.2 Performance metrics
The efficiency of ILFCS compared to other strategies is
verified using NS2 simulator concerning the following
performance metrics:

Fig. 5 Fuzzy membership sets of the input and output variables: a CR users’ number. b PUs’ utilization. c Channel capacity. d Fuzzy set for output
weight value. The fuzzy membership sets of the input and output variables are shown
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Table 3 Fuzzy base rule set

PU utilization CR users umbers Channel capacity Output weight value

High High High Low

High High Medium Low

High High Low Very low

High Medium High Low

High Medium Medium Low

High Medium Low Very low

High Low High Low

High Low Medium Low

High Low Low Very low

Medium High High Medium

Medium High Medium Low

Medium High Low Very low

Medium Medium High Medium

Medium Medium Medium Medium

Medium Medium Low Low

Medium Low High High

Medium Low Medium Medium

Medium Low Low Low

Low High High Medium

Low High Medium Low

Low High Low Low

Low Low High Very high

Low Low Medium Very high

Low Low Low Very low

Low Medium Low Low

Low Medium Medium Low

Low Medium High High

• Spectrum opportunity utilization. It is the ratio of the
total time of successful CR users’ transmission to the
total PUs’ idle time.

• Average interference ratio. It is defined as the ratio of
the PU channel occupation time to total times the
channel selection decision times.

• Average throughput. It is defined as the average
number of packets successfully received by CR
destination nodes during the total simulation time.

• Packet delivery ratio. It is the average number of
received packets to the number of sent packets.

• End-to-end delay. It is the total time taken for a
packet to reach the destination

6.3 Simulation environment
Before presenting NS2 simulation results, we present
basic assumptions and the simulation parameters used.

6.3.1 Assumptions
We consider source destination pairs in single-hop con-
text. Therefore, in this communication scheme, no routing
is required; thus, neither routing tables nor end-to-end
paths are maintained. The time spent of K-means algo-
rithm in the learning phase is ignored since it is carried
out “off-line”. The corresponding time cost of its working
phase is small.
CR nodes use a CSMA/CA-based medium access pro-

tocol. Contentions among CRs are resolved using carrier
sensing and back-off mechanism. Both medium access
control and PU activity models are included in CR MAC
layer.
Each CR has a single radio transceiver that can be tuned

to various frequencies licensed to the primary network.
Sensing and transmission are performed sequentially due
to the single radio restriction.
The rate parameters of exponential distribution

λxandλy are listed in Table 2 which are adopted from [36].

Fig. 6 The work flow between MATLAB and NS2
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These values are provided as inputs in the simulation
experiments which evaluate the impact of varying CR
users density and varying the number of channels on the
performance of the selection strategies.

6.3.2 Simulation parameters
As illustrated in Table 5, CR nodes are randomly deployed
within a square area of A2 = 700 × 700 m2. Simulations
run for 600 s. Total 600 packets were sent. Each packet
is sent by a randomly selected node. The packet size is
set to 512 bytes. The transmission range of CR nodes is
set to 250 m. Simulation parameters used are listed in
Table 4.

6.4 Performance validation and discussion
A performance comparison for ILFCS, best-fit chan-
nel selection (BFC), GA-based selection (GA), Intelligent
Channel Selection Scheme a Self Organized Map Fol-
lowed by Simple Segregation (ICSSSS), and longest idle
time channel selection (LITC) has been evaluated con-
cerning different numbers of CR nodes, different number
of channels, and different PU activity patterns.

6.4.1 Impact of varying CR users density on the channel
selection strategies performance

The impact of the growth of CR users traffic demand on
each scheme is studied considering the mentioned per-
formance metrics. The number of available channels at
each CR users is set to 10 . The behavior of PUs activi-
ties are not identical for all the available channels. It varies
from channel to channel. The number of CR users in the
network varies from 10 to 250. Simulation results show
that the ILFCS achieves its minimum enhancement in the
average interference ratio compared with ICSSSS when

Table 4 The simulation parameters

Simulation object Parameter Value

Network node Transmission media Wireless channel

Propagation model Free space model, two-ray
ground model,
Fading/shadowing model

Network interface WirelessPhy

Number of interfaces Single transceiver

MAC 802.11

Antenna Omni Antenna

Interface queue type DropTail/Priqueue

Packet size 512 bytes

Transmission range 250 meters

CRAHN network Number of CR users 10–250

K-means K-means inputs 3

Cluster size 4

the number of CR nodes are 25 and 250. As it is shown in
Fig. 7, the ratio is decreased by around 5% compared with
ICSSSS. ILFCS achieves the maximum average interfer-
ence ratio compared with LITC when the number of CR
nodes are 150 and 175 as the ratio is decreased by 70% .
Moreover, it is noticed that ILFCS outperforms LITC, GA,
BFC, and ICSSSS where it reduces the average interfer-
ence ratio by 60%, 40%, 32%, and 7% compared to LITC,
GA, BFC, and ICSSSS respectively.
The experimental results depicted in Fig. 7 show that

when the number of CRs increased, the ratio of interfer-
ence is increased in all schemes. This is due to the increase
of CRs’ density of the network which increase the con-
tention and interference ration between CRs. In addition,
the inaccurate prediction of PUs traffic leads the CR user
to select the wrong channel. Accordingly, PU disconnect
the transmission of the CR. This increase the CR users
channel switching rate. The ILFCS outperforms all related
scheme because the prediction of PU is estimated in an
intelligent way with removing the sensing errors from the
list of available channel.
As shown in Fig. 8, concerning average throughput,

the ILFCS achieves its minimum enhancement compared
with ICSSSS when number of CR nodes is 225. As it is
shown, the ratio is increased by around 5.3% compared
with ICSSSS, while achives its maximum average through-
put compared with LITC when number of CR nodes is 75.
As it is shown, the ratio is increased by 48.8% compared
with LITC. It can be realized that ILFCS outperforms
LITC, GA, BFC, and ICSSSS where the results show that
average throughput is maximized at different numbers of
CR nodes by 47.9%, 29.8%, 18.3%, and 8.6% respectively.
The average throughput is more related to the ratio of the

Fig. 7 Average interference ratio undervariant network density. The
results of diverse simulation experiments to measure the average
interference ratio at different numbers of CR nodes for the BFC, LITC,
GA, ICSSSS, and the ILFCS are illustrated
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Fig. 8 Average throughput under different network densities. The
results of diverse simulation experiments to measure the average
throughput at different numbers of CR nodes for the BFC, LITC, GA,
ICSSSS, and the ILFCS are illustrated

total packets received in the network and the ratio of inter-
ference. When the number of CRs successfully completed
its transmission, this leads to the increase of the total
number of successfully received packets. Consequently,
the average throughput increases.
As depicted in Fig. 9, in all schemes, when the num-

ber of CRs increased, the packet delivery ratio decreased,
the main reason for that, with increasing in the density
of CRs in the networks, contention between them are
high and the ratio of interference increased, but different
from scheme to scheme. In addition, the ILFCS outper-
forms other scheme because the ratio of interference is

Fig. 9 Packet delivery ratio under different network density. The
results of diverse simulation experiments to measure the Packet
delivery ratio at different numbers of CR nodes for the BFC, LITC, GA,
ICSSSS, and the ILFCS are illustrated

small. This leads to the increase in the packet delivery
ratio which in turn increases the average throughput over
the network in specific time.
The figure shows the packet delivery ratio at different

numbers of CR nodes for the LITC, BFC, GA, ILFCS, and
ICSSSS. It can be realized that ILFCS outperforms ILTC,
BFC, GA, and ICSSSS by achieving maximum packet
delivery ratio at different network densities by 45%, 28.3%,
14.8%, and 7.5% respectively.
For all scheme, when the number of CRs increased, the

packet delivery ratio decreased. As with the increase in
number of the CRs in the network the competition for
the unoccupied channels becomesmore compelling. Con-
sequently, the average throughput per CR decreases in
all schemes. Moreover, selecting the best channel in an
intelligent process by using K-means and FIS techniques
leads to decrease the interference between CRs-CRs and
CRs-PUs. Hence, the packets sent over the network will
transmitted successfully without any interrupt with PUs
connections.
Figure 10 illustrates the results of measuring the spec-

trum opportunity utilization at different numbers of CR
nodes for the LITC, BFC, GA, ICSSSS, and ILFCS.
ILFCS achieves its minimum enhancement in the spec-
trum opportunity utilization compared with ICSSSS when
number of CR nodes is 150. As it is shown, the ratio is
increased by 3% compared with ICSSSS, while the max-
imum average interference ratio is achieved compared
with LITC when number of CR nodes is 75 where the
ratio is increased by 63% compared with LITC. It can
be realized that ILFCS always outperforms LITC, BFC,
GA, and ICSSSS. The opportunity utilization is maxi-
mized at different number of CR nodes by 57.8%, 41.4%,

Fig. 10 Spectrum opportunity utilization under different network
density. The results of diverse simulation experiments to spectrum
opportunity utilization at different numbers of CR nodes for the BFC,
LITC, GA, ICSSSS, and the ILFCS are illustrated
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26.7%, and 9.8% compared to LITC, GA, BFC, and ICSSSS
respectively.
Spectrum utilization is more related to packet delivery

and interference ratio. Therefore, the spectrum utiliza-
tion ratio increases when interference ratio decreased and
packets delivery ratio increases and vice versa. ILFCS
outperforms other schemes because the assistance of
the K-means and FIS in selecting the channel so that
guarantees that the channel not utilized by PU. There-
fore, the interference between users decreased that leads
to increasing in spectrum utilization in the proposed
framework.
Finally, Fig. 11 illustrates the results of measuring the

end-to-end delay at different numbers of CR nodes for
the LITC, BFC, GA, ICSSSS, and ILFCS. ILFCS achieved
its minimum enhancement in end-to-end delay compared
with ICSSSS at 150 CR nodes where the ratio is decreased
by around 0.8% compared with ICSSSS, while the maxi-
mum enhancement compared with LITC occurred at 250
CR nodes at which the ratio is decreased by 90.6% com-
pared with LITC. It is noticed that ILFCS outperforms
LITC, BFC and GA and ICSSSS. The result shows that the
end-to-end delay is decreased by 88.7%, 84.4%, 77.8%, and
28.3% compared to LITC, BFC, GA, and ICSSSS respec-
tively. Actually, ignored sensing error in selecting the best
channel leads to a critical decrease in the interference
ratio. Therefore, the hopping rate for CR from channel to
another channel is high. So the switching time for discov-
ering new available channel takes a lot time which leads to
increasing the average end-to-end delay over the network.
In ILFCS, sensing errors are handled by K-means algo-

rithm to remove ON state channels and MD channels.
This leads to select the best channel in an intelligent way.

Fig. 11 End-to end delay under different network density. The results
of diverse simulation experiments to measure the End-to end delay at
different numbers of CR nodes for the BFC, LITC, GA, ICSSSS and the
ILFCS are illustrated

Consequently, CRs are allowed to transmit their pack-
ets without any interference with PUs or switching from
channel to other which in turn reduces the average delay
over the entire network.

6.4.2 Impact of varying the number of channels on the
channel selection strategies performance

In this set of simulations, the effect of different num-
ber of channels on the performance of each scheme is
examined considering the mentioned performance met-
rics. The number of CR users is 50 nodes. The behavior
of PUs’ activities are not identical for all the avail-
able channels. It varies from channel to channel. The
number of available channels at each CR varies from
3 to 15.
Figure 12 shows the results of the average interference

ratio at different numbers of available channels for LITC,
GA, BFC, ICSSSS, and ILFCS. On average, it is seen that,
ILFCS minimizes the interference ratio by 56.8%, 29.9%,
24.9%, and 4.4% compared to LITC, GA, BFC, and ICSSSS
respectively.
Figure 13 demonstrates the results of the average

throughput at different numbers of available channels for
GA, BFC, LITC, ICSSSS, and ILFCS. On average, it is
noticed that the average throughput is increased by 49.6%,
29.3% 24.2%, and 12.7% compared to LITC, GA, BFC, and
ICSSSS respectively.
Figure 14 shows the result of the packet delivery ratio

at different numbers of available channels for the LITC,
BFC, GA, ICSSSS, and ILFCS. The results demonstrate
that ILFCS can enhance the packet delivery ratio by 46.8%,
29.3%, 13.7%, and 6.1% compared to LITC, BFC, GA, and
ICSSSS respectively.

Fig. 12 Average interference ratio under different number of
available channels. The results of different simulation experiments to
measure average interference ratio at different numbers of available
channels for the BFC, LITC, GA, ICSSSS, and the ILFCS are shown
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Fig. 13 Average throughput under different number of available
channels. The results of different simulation experiments to measure
average throughput at different numbers of available channels for
the BFC, LITC, GA, ICSSSS, and the ILFCS are shown

Figure 15 demonstrates the result of spectrum opportu-
nity utilization for ILFCS, LITC, BFC, GA, and ICSSSS at
different numbers of channels. It can be concluded that
ILFCS scheme always outperforms LITC, BFC, GA, and
ICSSSS. Spectrum opportunity utilization is increased by
83.2%, 31.7%, 27.7%, and 6.7% compared to LITC, GA,
BFC, and ICSSSS respectively.
The results of measuring the end-to-end delay at differ-

ent numbers of channels for the LITC, GA, BFC, ICSSSS,
and ILFCS are illustrated in Fig. 16. On the average,
the end-to-end delay of ILFCS is decreased by 75.6%,

Fig. 14 Packet delivery ratio under different number of available
channels. The results of different simulation experiments to Packet
delivery ratio at different numbers of available channels for the BFC,
LITC, GA, ICSSSS and the ILFCS are shown

Fig. 15 Spectrum opportunity utilization under different numbers of
available channels. The results of different simulation experiments to
measure spectrum opportunity utilization at different numbers of
available channels for the BFC, LITC, GA, ICSSSS and the ILFCS are
shown

71.3%, 60.8%, and 50.8% compared to LITC, BFC, GA, and
ICSSSS respectively.
It can be concluded that the network performance is

directly proportional to the number of channel. The low
number of channels decreases the opportunity for CR
users to find free channels for transmission. In addi-
tion, the ILFCS outperforms all other schemes because
the proposed framework guarantee that the best chan-
nel is selected in an intelligent way and ensure that not
include sensing errors. Hence, the average interference
ratio between CRs-PUs decreased which leads to more

Fig. 16 End-to-end delay under different number of available
channels. The results of different simulation experiments to measure
End-to-end delay at different numbers of available channels for the
BFC, LITC, GA, ICSSSS and the ILFCS are shown
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packet transmission successfully over the network; conse-
quently, the average throughput increased.

6.4.3 Impact of varying PU activity pattern on the channel
selection strategies

In this section, we study the different PU activity patterns’
impact on the proposed channel selection strategy ILFCS
and each of GA, LITC, BFC, and ICSSSS. We consider
then three different PU activity patterns [36], described as
follows:

• Long-term PR activity: In long-term PR activity, the
channel has long ON and long OFF periods.
Scenarios where primary radio nodes subscribed to
free call packages apply long-term PR activity pattern.

• High PR activity: In high PR activity, the channel has
long ON and short OFF periods. High PR activity
level can be found in highly congested rush hours,
where all the channels are mostly occupied.

• Low PR activity: In low PR activity, the channel has
short ON and long OFF periods. Low PR activity level
can be observed during less peak hours.

To achieve PUs activity for all channels, the rate param-
eter λx and λy of the exponential distributions are varied
as indicated in Table 5 [36].
We performed extensive NS-2 simulations to present

the performance analysis of the five channel selection
strategies under varying PU node activity considering the
most two vital performance metric: average interference
ratio and spectrum opportunity utilization. The number
of CR nodes is 100; the total channels for each CR are
varied from 5 to 10 channels. The examined PU activity
is applied to all the available channels similarly. Figure 17
shows the results of the average interference ratio for
LITC, BFC, GA, ICSSSS, and ILFCS in case of low PU
activity level. It is seen that, when number of channel is
5, ILFCS minimizes the interference ratio by 12%, 10%,
4%, and 2% compared to LITC, GA, BFC, and ICSSSS
respectively. Besides, when number of available channel
is 10, ILFCS minimizes the interference ratio by 11%, 9%,
4%, and 2% compared to LITC, GA, BFC, and ICSSSS
respectively.
Figure 18 shows the results of the average interference

ratio for LITC, BFC, GA, ICSSSS, and ILFCS in case of
long-term PU activity. It is seen that, when number of
channel is 5, ILFCS decreases the interference ratio by
47%, 37%, 30%, and 7% compared to LITC, GA, BFC, and

Table 5 PUs’ activity patterns

PU activity ON OFF λx λy

Long-term activity λx ≤ 1 λy ≤ 1 Long ON Long OFF

High activity λx ≤ 1 λy > 1 Long ON Short OFF

Low activity λx > 1 λy ≤ 1 Short ON Long OFF

Fig. 17 Average interference ratio for LITC, BFC, GA, ICSSSS, and ILFCS
in case of low PU activity. The results of different simulation
experiments to measure average interference ratio for LITC, BFC, GA,
ICSSSS, and ILFCS in case of low PU activity are shown

ICSSSS respectively. Moreover, when number of channel
is 10 ILFCS decreases the interference ratio by 42%, 34%,
28% and 5% compared to LITC, GA, BFC, and ICSSSS
respectively.
Figure 19 shows the results of the average interference

ratio for LITC, BFC, GA, ICSSSS, and ILFCS in case of
high PU activity level. It is seen that, when the number
of channels is 5, ILFCS decreases the interference ratio
by 28%, 23%, 21% and 3% compared to LITC, GA, BFC,
and ICSSSS respectively. Besides, when the number of
channels is 5, ILFCS decreases the interference ratio by
28%, 23%, 20% and 3% compared to LITC, GA, BFC, and
ICSSSS respectively.

Fig. 18 Spectrum opportunity utilization for LITC, BFC, GA, ICSSSS, and
ILFCS in case of long-term PU activity. Shows the results of different
simulation experiments to measure Spectrum opportunity utilization
for LITC, BFC, GA, ICSSSS, and ILFCS in case of long-term PU activity
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Fig. 19 Spectrum opportunity utilization for LITC, BFC, GA, ICSSSS,
and ILFCS in case of high PU activity level. The results of different
simulation experiments to measure spectrum opportunity utilization
for LITC, BFC, GA, ICSSSS, and ILFCS in case of high PU activity level are
shown

Figure 20 shows the results of spectrum opportunity
utilization ratio for LITC, BFC, GA, ICSSSS, and ILFCS
in case of low PU activity level. It is seen that, when
number of channel is 5, ILFCS increases the spectrum
opportunity utilization ratio by 12%, 10%, 4% and 2% com-
pared to LITC, GA, BFC, and ICSSSS respectively. While
as number of channel is 10, ILFCS increases the spec-
trum opportunity utilization ratio by 11%, 9%, 4%, and 2%
compared to LITC, GA, BFC, and ICSSSS respectively.
Figure 21 shows the results of the spectrum opportunity

utilization ratio for LITC, BFC, GA, ICSSSS, and ILFCS
in case of long-term PU activity. It is seen that ILFCS
increases the spectrum opportunity utilization ratio by
45%, 35%, 28%, and 5% compared to LITC, GA, BFC,

Fig. 20 Spectrum opportunity utilization for LITC, BFC, GA, ICSSSS, and
ILFCS in case of low PU activity level. The results of different simulation
experiments to measure Spectrum opportunity utilization for LITC,
BFC, GA, ICSSSS, and ILFCS in case of low PU activity level are shown

Fig. 21 Spectrum opportunity utilization for LITC, BFC, GA, ICSSSS,
and ILFCS in case of long-term PU activity. The results of different
simulation experiments to measure Spectrum opportunity utilization
for LITC, BFC, GA, ICSSSS, and ILFCS in case of long-term PU activity
are shown

and ICSSSS respectively. While as number of channel is
10, ILFCS increases the spectrum opportunity utilization
ratio by 42%, 34%, 28%, and 5% compared to LITC, GA,
BFC, and ICSSSS respectively.
Figure 22 shows the results of the spectrum opportunity

utilization ratio for LITC, BFC, GA, ICSSSS, and ILFCS
in case of high PU activity level. It is seen that ILFCS
increases the spectrum opportunity utilization ratio by
28%, 25%, 23%, and 3% compared to LITC, GA, BFC,
and ICSSSS respectively. While as number of channel is
10, ILFCS increases the spectrum opportunity utilization
ratio by 28%, 22%, 20%, and 3%compared to LITC, GA,
BFC, and ICSSSS respectively.

Fig. 22 Spectrum opportunity utilization for LITC, BFC, GA, ICSSSS, and
ILFCS in case of high PU activity. The results of different simulation
experiments to measure spectrum opportunity utilization for LITC,
BFC, GA, ICSSSS, and ILFCS in case of high PU activity are shown
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As illustrated in Figs. 17, 18, 19, 20, 21, and 22, the pro-
posed ILFCS outperforms LITC, BFC, GA, and ICSSSS
strategies concerning different scenarios for PUs’ activi-
ties. The minimum improvement for the ILFCS occurs in
low-term PU activity pattern, because the duration time
for OFF state is long. Therefore, the chance of interfer-
ence is low, and consequently, the spectrum utilization is
high. On the other hand, in case of long- and high-term
PU activity, the maximum improvement occurs because
the chance of interference is high due to the long duration
of ON state.

7 Conclusions
In this paper, we consider the requirements for enhanc-
ing CRAHNs performance by designing an intelligent
distributed channel selection strategy. An intelligent
learning fuzzy-based channel selection framework for
cognitive radio networks (ILFCS) is proposed. ILFCS aims
to select the best channel which satisfies CRs’ transmis-
sion requirements and resolves the problems of channel
sharing. The key contribution of ILFCS is to avoid erro-
neous sensed channels by eliminating both false alarm and
miss detection metrics. In ILFCS, sensing errors are han-
dled by K-means algorithm to remove ON state channels
and MD channels. This leads to select the best chan-
nel in an intelligent way. Consequently, CRs are allowed
to transmit their packets without any interference with
PUs or switching from channel to other which in turn
reduces the average delay over the entire network. Fur-
thermore, it can be concluded that ILFCS performance
is enhanced with the increase of the number of exist-
ing channels. The low number of channels decreases
the opportunity for CR users to find free channels for
transmission. The performance of the proposed ILFCS is
evaluated concerning the impact of changing CRs’ den-
sity, number of channels and PU activity patterns. NS2
simulation results show that ILFCS significantly outper-
forms LITC, BFC, GA, and ICSSSS in terms of the aver-
age interference ratio, average throughput, end-to-end
delay, packet delivery ratio, and spectrum opportunity
utilization.
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