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Abstract

In this paper, we provide secrecy metrics applicable to physical-layer coding techniques with finite blocklengths over
Gaussian and fading wiretap channel models and analyze their secrecy performance over several cases of concatenated
code designs. Our metrics go beyond some of the known practical secrecy measures, such as bit error rate and
security gap, so as to make lower bound probabilistic guarantees on error rates over short blocklengths both
preceding and following a secrecy decoder. Our techniques are especially useful in cases where application of
traditional information-theoretic security measures is either impractical or simply not yet understood. The metrics can
aid both practical system analysis, including cryptanalysis, and practical system design when concatenated codes are
used for physical-layer security. Furthermore, these new measures fill a void in the current landscape of practical
security measures for physical-layer security coding and may assist in the wide-scale adoption of physical-layer
techniques for security in real-world systems. We also show how the new metrics provide techniques for reducing
realistic channel models to simpler discrete memoryless wiretap channel equivalents over which existing secrecy
code designs may achieve information-theoretic security.

Keywords: Physical-layer security, Security measures, Wiretap channel

1 Introduction
Physical-layer security has attractedmuch attention of late
as a means to provide a keyless layer of security using
error-control coding and other physical-layer techniques
such as intentional jamming [1, 2]. While traditional
information-theoretic secrecy measures have been the
preferred vehicles for proving the worth of physical-layer
security coding schemes, some channel models remain
elusive to this type of analysis [3]. In this paper, we provide
two new security metrics that apply when blocklengths
are finite (and especially when they are short) and when
channel models are more representative of real-world
environments.
Coding techniques exist that can achieve strong secrecy

and even semantic secrecy over the binary erasure wire-
tap channel [4], but in the face of fading, jamming, and
otherwise Gaussian noise, there remains a dearth of use-
ful secrecy metrics beyond simple bit error rates (BER).
The one exception is the security gap [5], which provides
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a measure on the required signal-to-noise ratio (SNR)
advantage over an eavesdropper to operate at acceptable
error rates for friendly parties with an acceptable amount
of security over illegitimate receivers.
In this paper, we present metrics for secrecy and relia-

bility within a general framework of concatenated coding.
These metrics were originally presented in [6], but with
reference to only one specific coding scheme. In this work,
we introduce a general framework of concatenated codes
for which our metrics apply. This enables the application
of our metrics to general coding schemes, of which the
scheme presented in [6] is one specific use-case. Other
examples are given throughout this paper to show the
broader applicability of the new metrics. Furthermore,
in this paper, we discuss the landscape of security met-
rics for physical-layer security and justify the existence
of the new practical measures by highlighting their pros
and cons with reference to existing metrics. Our met-
rics go beyond security gap, so as to identify operable
regions of SNR for which bit error rates, even over a short
number of bits, are guaranteed to be near 0.5. The basic
premise of our techniques is to evaluate the distribution
of error rates over a small number of bits, such as might
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be transmitted over a single packet, or within a single
coded word, and to make guarantees not only on the
mean of the distribution, but rather on, e.g., the 10th
percentile or even the 1st percentile of the distribution.
For very large blocklength codes, laws of large numbers
guarantee performance near the mean, but for shorter
blocklengths, we need to consider the entire distribution
to make security guarantees. A proper tool that allows
us to make these claims is the well-known cumulative
distribution function (CDF) of the error rate over short
blocklengths. As one considers percentiles closer to zero,
the guarantees of our secrecy metrics are such that every
small block of transmitted data either fails to be decoded
(for the first metric) or achieves decoder output bit error
rates greater than 0.5 − δ for some δ in the range of
[ 0, 0.5] (for the second metric). These metrics fill a void
in the current landscape of security measures for secrecy
codes and find immediate application in real-world
environments.
Consider the wiretap setup as depicted in Fig. 1, where

the receiver chains for both a legitimate receiver Bob and
an eavesdropper Eve are pictured.We consider here a pos-
sibly concatenated coding system, where the outer code
is for security (and may consist of any number of cod-
ing operations as indicated) and the inner code is for
reliability. Based on early work over the wiretap chan-
nel [7, 8], we know that there exists a supremum of
achievable rates such that both security and reliability
can be attained. This rate is called the secrecy capac-
ity Cs. The first explicit code constructions to achieve
information-theoretic security can be found in [9], and
several variants soon followed, such as [10–12]. Many
of these early works achieve security but only at cod-
ing rates below Cs and often in isolation from achieving
any reliability constraint for friendly parties. In fact, many
techniques require the legitimate receiver’s channel to be
noiseless. Other techniques specify that the eavesdrop-
per’s channel be physically or stochastically degraded [13]
with respect to the main legitimate receiver’s channel, and

all known information-theoretically secure coding tech-
niques achieve security guarantees only for cases where all
channels are discrete memoryless channels [1, 4].
One possible framework for extending these results is

to employ a concatenated coding scheme as we illus-
trate in Fig. 1. It should be noted that the inner code in
this figure is marked as optional, and if it is removed,
then the model reduces to the traditional wiretap chan-
nel model [7]. Thus, although we are considering our
new metrics in cases where concatenated codes are used,
they remain applicable to the general wiretap case. We
note the transmitter Alice encodes a message through all
stages of the encoder to produce a length-n codeword
Xn, which is transmitted over the wiretap channel. Bob
and Eve observe their respective signals Yn and Zn, and
both attempt to decode the message, perhaps producing
respective message estimates M̂ and M̃.

1.1 An example
As a simple example, consider the case where the outer
code is just a scrambler, implemented by multiplying the
binary length-k message M by a k × k binary matrix that
is invertible in GF(2) at the encoder and its inverse at the
decoder (note that scrambling for physical-layer security
was first studied in [14, 15], and many other works on
the subject exist). Let us assume that the inner code is a
t-error correcting code, such as a BCH code. If the channel
is a Gaussian or a fading channel, then an information-
theoretic security analysis may prove difficult. The alter-
native is to simulate the concatenated coding scheme at
the decoder so as to obtain some guarantee on BER.When
this is done, simulations are typically averaged over thou-
sands of runs to obtain an average BER, and although the
analysis is simulation driven, the results still only hold
asymptotically as blocklengths become very large, just as
in an information-theoretic analysis (if it is even possible).
We wish to provide probabilistic guarantees of decoder

failure and guarantees of low statistical dependence
between the message M and an eavesdropper’s decoder

Fig. 1Wiretap channel model assuming a concatenated coding scheme, where the outer code is for secrecy and the inner code is for reliability.
Note that the inner code is marked as optional, and if it is removed, then this model reduces to the traditional wiretap channel model. The new
metrics presented in this work are BE-CDFbc (where bc indicates before code) and BER-CDFac (where ac indicates after code)
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output message M̃. Despite the fact that BER has several
shortcomings as a securitymetric, it can still be used effec-
tively to estimate decoder outputs when the eavesdrop-
per’s attack strategy is known. Ourmetrics strengthen this
approach by considering the entire distribution of possi-
ble error rates. In Fig. 2, we show the BER both before
and after the scrambler in a receiver, and as expected, the
descrambling operation propagates errors into the mes-
sage estimate. However, if we would like to guarantee
error rates close to 0.5 in all k-bit message estimates at
the eavesdropper, it is necessary to consider the entire dis-
tribution of error rates over a blocklength of data. We
see curves for Pr(P̂b > 0.5 − δ) in the figure, where P̂b
can be used to model the proportion of bits in error over
one block of k bits either at the input or at the output
of the outer decoder and is a point estimator of the true
bit error rate Pb. To be more specific, let B be a random
variable that represents the number of bits in error over k
bits either at the input or the output of the outer decoder.
Then,

P̂b = B
k
, (1)

and is coincidentally the maximum likelihood estimator
for the bit error rate Pb given k independent observations
[16]. While the errors in k received bits comprising a sin-
gle transmitted codeword are likely not independent at
the output of a decoder, we will address this concern later
in Section 3.2. Notice in Fig. 2 that if we want Pr(P̂b >

0.5 − δ) after the decoder to get close to one, then we
need to allow δ > 0.15 for this scheme and somehow
ensure that Eve’s Eb/N0 is no better than 3 dB. These two
facts together indicate that the scheme under investiga-
tion may not be appropriate for secure communications.
Restricting Eve’s Eb/N0 may be possible for controlled

physical environments, but δ > 0.15 may not be accept-
able, as it indicates that some blocks of data will exist at
the output of the decoder with only 35% bit error rate,
even as Eve’s channel continues to degrade in quality. We
use this simple example to showcase the general applica-
bility of the new metrics, as comparing distributions of
error rates before and after the outer decoder for fixed
blocklength schemes gives one method for quantifying
the security contribution of a code. Furthermore, we see
that the metrics allow system designers to identify ranges
of values that are achievable for δ and Pb, which then
imply bounds on worst-case error rates in any single block
of data.

1.2 Outline
Throughout this paper, we will let SNR designate the
signal-to-noise ratio as measured by the channel, mean-
ing the energy per transmitted bit over the noise power
spectral density N0. Eb/N0 will be the energy per infor-
mation bit divided by N0. The two are related by the
overall rate R of the concatenated coding scheme so that
SNR = REb/N0 for binary phase shift keying (BPSK)
transmission.
The rest of the paper is organized as follows. First, we

survey the landscape of secrecy metrics for physical-layer
security coding schemes in Section 2. We then point out
some shortcomings and motivate the need for additional
practical metrics, and finally highlight the cases for which
our metrics are superior to both information-theoretic
and BER-based existing metrics, while also pointing out
their limitations. Section 3 discusses the methodology
behind our new metrics BE-CDFbc and BER-CDFac, with
definitions and clarifying examples. We show a use case of
these metrics in a more complicated concatenated coding
scheme in Section 4 and indicate how the scheme may
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be used directly for secrecy or used to provide a discrete
memoryless wiretap channel equivalent over which addi-
tional secrecy codes may be used to achieve information-
theoretic security. The scheme in this section uses a
friendly jammer and illustrates the broad utility of the new
metrics. We also compare and contrast our new metrics
with traditional cryptographic strength and perform basic
cryptanalysis both before and after the outer decoder for
the nested coding framework. We offer some comments
by way of conclusion in Section 5.

2 Discussion
2.1 Secrecy metrics
The secrecy metric space has progressively become more
dense, particularly over the last few decades. The initial
secrecy coding metric posed by Shannon in the late 1940s
was that of perfect secrecy [17]. A code is said to achieve
perfect secrecy if

I(M;Xn) = 0, (2)

or, alternatively, if the equivocation H(M|Xn) is equal to
the entropy of the message H(M). Perfect secrecy indi-
cates that the coded message tells you nothing about the
message itself. Shannon introduced the notion through
the coding scheme of the one-time pad and promptly
proved that it was impossible to achieve perfect secrecy in
a scheme where the entropy of a secret key is not at least
as much as the entropy of the message itself. Thus, it is
known that perfect secrecy is completely impractical.
In the mid-1970s, Wyner [7] introduced an additional

metric for secrecy that is known today as weak secrecy. A
scheme is said to achieve weak secrecy if

lim
n→∞

1
n
I(M;Zn) = 0. (3)

This metric introduced the idea of coding for secrecy
in earnest because the results indicated that it was actu-
ally possible to achieve weak secrecy in a practical system.
After all, this criterion does not require that the coded
message Xn leaks no information about M, but rather
that the eavesdropper’s observation Zn must leak a suf-
ficiently small amount of information about M such that
the 1/n factor can still drive the quantity to zero. With
this new notion of secrecy came the idea of secrecy capac-
ity Cs which was originally defined as the supremum of
coding rates that can achieve weak secrecy against a pas-
sive eavesdropper as a function of the wiretap channel
parameters, while maintaining arbitrarily low probability
of decoding error at the legitimate receiver. As long as
the legitimate parties are able to leverage an advantage
over the eavesdropper so that the effective main chan-
nel is less noisy [8] than the eavesdropper’s channel, then
Cs > 0, which indicates that private communications are
theoretically possible.

Weak secrecy was shown to be insufficient in many
cases [13], and Maurer later defined a stronger metric
known as strong secrecy [18], where a scheme is said to
achieve strong secrecy if

lim
n→∞ I(M;Zn) = 0. (4)

It was recently noted in [19] that even strong secrecy
may not be sufficient for some applications because the
assumption is often made that message symbols are ran-
dom and uniformly distributed over themessage alphabet.
Of course, in cryptographic scenarios, the messages are
never perfectly random and uniform, and it is known
that in practice there really is no universal compression
algorithm that can provide such messages at the input of
secrecy encoders. Thus, we have an even stronger notion
of secrecy called mutual information security which is
achieved if

lim
n→∞max

pM
{I(M;Zn)} = 0. (5)

Here, we maximize I(M;Zn) over all possible message
distributions pM. It is also shown in [19] that this notion
of secrecy is equivalent to distinguishing security and
semantic security.
Although it took over 30 years after Wyner introduced

weak secrecy for an explicit code design to emerge that
could achieve it [9], it has already been shown that codes
exist that can achieve both strong and semantic secrecy,
albeit over simple wiretap channel models [4, 19]. Sur-
prisingly, the secrecy capacity defined using strong or
semantic security is provably the same as that defined by
the weak secrecy metric [20].
Although this list of information-theoretic measures

is impressive and useful, there remain several wiretap
channel models that have proved elusive to explicit code
designs where information-theoretic security can be guar-
anteed. Thus, over channels that are more representative
of real-world communications, such as the Gaussian wire-
tap channel or fading channel scenarios, there have been
additional security metrics developed. For example, the
authors in [5, 15] used bit error rate (BER) at the out-
put of a decoder as a more practical security measure.
This metric can be simulated in a straightforward manner,
just as is done for traditional error-correcting codes. The
authors in [5] developed a new secrecy metric by identi-
fying a target BER for the legitimate receiver, as well as a
target BER for an eavesdropper, and found the SNRs that
would achieve each of these targets. The security gap was
then defined as the difference between these two SNR val-
ues in decibels (or a ratio of the two linear values). The
security gap tells a designer what the required advantage
is for obtaining the desired security and reliability perfor-
mance, and threshold operating points for achieving both.
The metric has been well studied [5, 15, 21].
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Authors in [22] studied coding mechanisms that pro-
vided degrees of freedom in an eavesdropper’s decoder
output, where no information about certain bits could
be obtained, forcing an attacker to guess the bits asso-
ciated with the degrees of freedom in the decoder. This
notion was similar to an information-theoretic security
approach in the sense that the information could not
be attained through any degree of processing but was
also very much unlike an information-theoretic security
approach because it restricted an attacker to a specific
attack strategy.

2.2 Shortcomings of current security metrics
The metrics of the previous section give many tech-
niques for analyzing the security achieved by specific
coding schemes. Developing wiretap codes that are able to
reach the envisioned secrecy capacity for more practical
channel models remains a formidable challenge, and per-
forming the information-theoretic analysis is oftentimes
deemed intractable. The information-theoretic measures
are still the most desirable where possible to apply, but
they also have another weakness in the sense that they
lead to codes that are designed to meet a secrecy criterion
in an asymptotic blocklength regime only, thus limiting
their applicability in real systems that require short block-
length codes. Some work has been done recently in an
attempt to expand information-theoretic security mea-
sures to finite blocklengths, but thus far, these attempts
are either directed only at discrete memoryless channel
models [23] or provide only bounds on the informa-
tion leakage that are very loose for short blocklength
codes [24, 25].
One should be careful when performing security anal-

ysis that relies only on BER-based measures, because
high error rates do not necessarily indicate that some
information has not been leaked. On the other hand,
modern cryptography is based on computational security
that does leak the information about the message. These
systems work not because of an information-theoretic
guarantee, but rather due to there being no known com-
putationally efficient algorithm that can find the solu-
tion in any reasonable amount of time with any realistic
amount of computing power unless the key is known.
Thus, we see that despite not achieving an information-
theoretic security measure, cryptosystems remain useful
because they attain security in a more practical/applied
sense. In a similar way, BER security analysis assumes
the best known decoder/attack and makes calculations
assuming an eavesdropper uses that attack. While BER
may provide some useful information about the quality
of the received data or the decoder output at the eaves-
dropper, BER calculations are still made by averaging
large amounts of data and are therefore only reliable as
blocklengths get large.

The metrics we introduce over the next two sections of
this paper take a BER approach but rather than calculating
simple averages, make use of our knowledge of the CDF of
bit error rates over small blocks of data to provide lower
bounds on error rates through the receiver decoder chain,
where the highest BER considered is 0.5. Making this fun-
damental change in how BER is used to analyze security
in a system allows us to make stronger guarantees about
the performance of secrecy codes in the short blocklength
regime without the need for laws of large numbers. This
is something that none of the metrics in Section 2.1 can
provide due to the way the analysis is completed either
as blocklength goes to infinity or as simulations are aver-
aged over thousands of independent runs. Using the new
metrics, we also maintain the ease of simulation-based
characterization of security (which is particularly helpful
when realistic channel models are considered, where it is
not known how to provide an information-theoretic anal-
ysis). Table 1 outlines the utility of each currently known
physical-layer security metric [1, 4] and indicates the con-
tribution of our new metrics lies in ease of computation
and providing the strongest guarantee yet for analyzing
finite blocklength code designs.

3 Methods
3.1 The bit error cumulative distribution function
Let us consider an additive white Gaussian noise (AWGN)
channel with BPSK modulation, for which the BER
(depicted in Fig. 3) is given by [26]

Pb = 1
2
erfc

(√
SNR

)
. (6)

A t-error correcting code of length 127 that is able to
correct up to 10 errors can recover from a BER of 10

127 ≈
0.079 assuming uniform error distribution, but errors over
short blocks of data are not guaranteed to occur so uni-
formly. Let E be the number of bit errors in a block of n
bits. For a transmitted word of size nwith independent bit
errors, the probability of having fewer than or equal to t
errors Pr(E ≤ t) can be straightforwardly obtained from
(6) as

Pr(E ≤ t) =
t∑

i=0

(
n
i

)
Pbi(1 − Pb)n−i. (7)

Let us now consider two operating points of Fig. 3:
(a) SNR = 0 dB that leads to a BER close to the 0.079 that
the code supports and (b) SNR = − 3 dB, that leads to a
BER ≈ 0.16. Looking at Pr(E ≤ 10) in the same figure,
for SNR = 0 dB, we have Pr(E ≤ 10) ≈ 0.58, mean-
ing that the code would still succeed more than half of the
time. For SNR = − 3 dB, we get Pr(E ≤ 10) ≈ 0.006,
which indicates that the decoder will fail over 99% of the
time, yet with a BER far from 0.5. Also note that the curve
for Pr(E ≤ 10) approaches zero for low SNR values, with
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Table 1 Summary of current physical-layer security metrics, highlighting some of their pros and cons

Class Metric Directly applicable
to short codes

Easily computable in
general

Information-theoretic
secrecy guarantees

Strongest in
class

Known how to
achieve in practice

Impractical Perfect secrecy Yes No Yes Yes No

Info-theoretic Weak secrecy No No Yes No Yes (only for DMCs)

Info-theoretic Strong secrecy No No Yes No Yes (only for DMCs)

Info-theoretic Semantic secrecy No No Yes Yes Yes (only for DMCs)

Error rate BER No Yes No No Yes (BER ≈ 0.5)

Error rate Security gap No Yes No No Yes (security gap
< 0 dB)

Error rate BE-CDFbc Yes Yes No No Yes (decoder failure
w. p. ≈ 1)

Error rate BER-CDFac Yes Yes No Yes Yes (high error rates
w. p. ≈ 1)

Here we see that although our new metrics cannot provide information-theoretic security, they are best in class among the error-rate secrecy metrics. Note: w.p. means with
probability

the BER still far from the idealized 0.5 value. With this in
mind, the question arises of how close to BER = 0.5 is
close enough for security purposes.
To address this issue, we look to the distribution of

errors of transmitted data and propose the first of two new
secrecy metrics.

Definition 1 (Bit error cumulative distribution func-
tion) The bit error cumulative distribution function, BE-
CDFbc(t, SNR, Sm, Ci), gives us the probability of having t
or less errors, Pr(E ≤ t), as a function of the SNR for a
message of size Sm, encoded with a code Ci (refers to the
optional inner code).

From this metric, we can deduce the probability of
having more than t errors in a block of data, giving us the
power to predict the likelihood of decoder failure when

the code is a t-error correcting code such as a Bose-
Chaudhuri-Hocquenghem (BCH) code. This information
is useful for identifying acceptable SNR operating points
for both friendly parties and eavesdroppers [6]. Notice
from Fig. 1 that we measure this metric before the outer
code (hence the superscript bc) in a concatenated coding
scheme, i.e., prior to the secrecy code. Because of this, we
choose to use SNR, rather than Eb/N0 to show the results,
although the conversion can be made if desired.

3.1.1 Analysis
This metric can also be used to fine-tune the security
and reliability levels of a coding scheme that relies on
t-error correcting codes. For example, if we assume no
inner code and set the outer code to a BCH(127, 64) code
that corrects up to 10 errors, and if we want a reliability
level of Pr(E ≤ 10) > 0.99, Bob would have to operate at
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an SNR above 1.95 dB as indicated in Fig. 3. For a confi-
dentiality level of 0.99, i.e., Pr(E ≤ 10) < 0.01, Eve would
need to operate at SNR below − 2.78 dB.
While relevant reliability and confidentiality levels with

a reasonable SNR gap between Bob and Evemay seem illu-
sive with simple coding schemes such as the mentioned
BCH code, this metric enables the selection of t-error
correcting codes that can be used in more evolved con-
catenated coding schemes combined with the generation
of interference [6] to provide desired levels of reliability
and confidentiality, as will be described in Section 4.1.

3.2 The bit error rate cumulative distribution function
The BE-CDFbc allows us to guarantee failed decoding
with high probability over certain SNR regions for t-error
correcting codes. However, a failed decoder does not nec-
essarily imply that the eavesdropper cannot obtain most
of the message bits at the output. Hence, in this section,
we introduce a metric that can guarantee decoder fail-
ure with BER close to 0.5 in the estimated message bits
to strengthen the security guarantee. For this section, let
P̂b be the measured proportion of bit errors at the output
of an error-correcting decoder measured over Sb decoded
message bits. For the case where the code being used is
a block (n, k) code, it makes sense to let Sb be an integer
multiple of k. The metric we propose in this section allows
a user to specify a required error rate at the output of the
eavesdropper’s error-control decoder over Sb bits using
the probability that P̂b > 0.5 − δ for any δ desired.

Definition 2 (Bit error rate cumulative distribution
function) The bit error rate cumulative distribution func-
tion, BER-CDFac(δ, Eb/N0, Sb, C) is the quantity

Pr
(
P̂b > 0.5 − δ

)
(8)

calculated over Sb estimated message bits for a code C as a
function of Eb/N0, where C may be the concatenation of an
(optional) inner code Ci and an outer code Co.

Wenote that the ac exponent indicates that the metric is
measured after the code. Since the inner code is shown to
be optional in Fig. 1, this is referring to the outer (secrecy)
code. Also, because we are calculating this metric after the
decoder, it makes sense to use Eb/N0, rather than SNR.
Finally, we should note that this metric is actually the com-
plement to the CDF, but we choose to use a consistent
nomenclature to that of the BE-CDFbc. These two metrics
packaged in a pair provide valuable design information so
as to achieve both reliability and secrecy.

3.2.1 Analysis
The BER-CDFac allows us to guarantee decoder failure
with high probability in addition to high BER (near 0.5)
over short blocks of Sb bits at the output of the decoder.

Although the metric is not information-theoretic, it
comes much closer to the information-theoretic defini-
tions of secrecy than the BE-CDFbc by limiting the amount
of useful information to an eavesdropper (as tends to hap-
pen with high BER). That is, for a scheme that guarantees
high BER using the BER-CDFac metric, it is unlikely that
the decoder will fail and yet provide small BER at the out-
put. Notice that this metric is also much more robust than
simply considering the average BER, and examples are
shown in the following section of the paper. Similarly as
with our BE-CDFbc metric, we now ensure that the entire
distribution of BER values for a specific length of text Sb
is within an acceptable security region.
Recall that P̂b is the estimator of the error rate Pb at

the output of the final decoder over a short blocklength
of Sb bits. If we assume that each bit at the output of
the decoder is in error independently with probability Pb,
then the random variable Pn = SbP̂b models the number
of errors in a block of Sb bits and is distributed accord-
ing to the binomial distribution with parameters μ = Pb
and σ 2 = SbPb(1 − Pb). This means we can calculate the
metric exactly as
Pr(P̂b > 0.5 − δ) = Pr[Pn > Sb(0.5 − δ)]

= 1 −
�Sb(0.5−δ)�∑

x=0

(Sb
x

)
Pxb(1 − Pb)Sb−x.

(9)

Although the exact expression can be derived in this
case, the assumption of i.i.d. errors is not likely to hold
in practice, Pb may be unknown, and the calculation itself
would be time intensive or require approximation using
the Gaussian distribution [16]. Thus, in practice, it makes
more sense to calculate the metric using straightforward
Monte Carlo simulations.
By way of example, consider Pr

(
P̂b > 0.5 − δ

)
as plot-

ted for a BCH(127, 92) code as the outer code with several
varying sets of parameters as portrayed in Fig. 4. Each case
presented uses Sb = 92 × 2 = 184 so as to allow an
L = 4 order modulation scheme without zero padding.
The modulation scheme was chosen arbitrarily to be dif-
ferential phase shift keying (DPSK) and is either binary
or quaternary as indicated in the legend. Beyond this,
we consider different δ values as shown. Although there
exist Eb/N0 values for which the decoder fails with prob-
ability close to one, unless the resultant BER is greater
than (0.5 − δ) with high probability, the metric will not
approach one in the limit as Eb/N0 → −∞.
Notice that the value the BER-CDFac approaches as

Eb/N0 → −∞ is strongly linked to δ, which makes per-
fect sense. As δ grows, it is more possible to fit the entire
distribution of BER above the (0.5 − δ) threshold. This
observation indicates that for any particular coding sce-
nario, there may in fact exist a minimum δ for which the
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(
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)
for the BCH(127, 92) code for Sb = 2 × 92 = 184 using L-order DPSK modulation.

Notice that for some δ values, the BER-CDFac approaches one, where other curves appear to be bounded away from one

BER-CDFac can be made to go to one as Eb/N0 → −∞.
Also notice in Fig. 4 that increasing the order of the
digital modulation scheme can bring about an effective
shift towards better security. When Pr

(
P̂b > 0.5 − δ

)
is

bounded away from one, we are viewing the random cor-
rective capabilities of the code even when the signal is
completely overwhelmed by noise. Certainly, we can do
better by increasing Sb or the dimensions of the code
as well, but the utility of this metric is that we can get
a clear picture for what happens when Sb is small, thus
providing small blocklength security analysis in practical
physical-layer security system designs.
Exploring the metric in the limit as channel quality

deteriorates is accomplished in the following lemma.

Lemma 1 The limiting value of the BER-CDFac
(δ, Eb/N0, Sb, C) as Eb/N0 → −∞ is

lim
Eb/N0→−∞

Pr(P̂b > 0.5 − δ) = Q
(
−2δ

√
Sb

)
. (10)

Proof Clearly this quantity is a function of δ and Sb and
can be calculated by recognizing that P̂b is a sample mean
of Bernoulli random variables Xi where

Xi =
{
1 if bit i is in error,
0 otherwise. (11)

Since we are evaluating the BER-CDFac as Eb/N0→ −∞,
we can assume that all of the Xi random variables are
effectively independent. In essence, the independence
of the relatively high-power noise masks any potential
dependence of the underlying data as channel quality
deteriorates. Let Pr(Xi = 1) = Pb as before. Then
specifically,

P̂b = 1
Sb

Sb∑
i=1

Xi, (12)

and by the central limit theorem P̂b ∼ N
(
Pb, Pb(1−Pb)

Sb

)
.

Clearly, this is true in the limit as Sb gets large, but even
for small and moderate blocklength sizes, the central limit
theorem still provides a good approximate distribution.
In the limit as Eb/N0 → −∞, we also have Pb → 0.5
and P̂b ∼ N

(
0.5, 0.25Sb

)
. Using the classic Gaussian stan-

dardization technique [16], we find that the lemma is
proved.

This limiting value of the BER-CDFac is shown in Fig. 5
over a range of δ and Sb values. These results can aid
system designers in choosing Sb (or k) in outer codes
appropriately so as to supply a desired BER-CDFac. Once
Sb is chosen, we also have a best possible value for the
metric over which any coding scheme can be compared.
One characteristic of good secrecy codes is that they will
transition from zero to the limiting value in this metric
over a very short range of Eb/N0.
Finally, we end this section with a word of caution

regarding these new metrics. As implied in Section 2.2,
any BER-based security analysis is, by its very nature,
incomplete. Information-theoretic security guarantees
will always be preferred, as they consider information
(including correlation of errors in decoded data) that can-
not be quantified using error rates. Since explicit coding
schemes that deliver information-theoretic security over
the Gaussian wiretap channel are still unknown, we must
address practical security questions when choosing to use
BER-based measures. In Section 4, we consider the utility
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Fig. 5 Limiting value of the BER-CDFac metric as Eb/N0 goes to −∞ as a function of δ and Sb

of log-likelihood ratios (LLRs) in determining error loca-
tions at the output of an iterative decoder and perform
simple cryptanalysis to accompany the use of our metrics
in a more complex coding scheme.

4 Results
4.1 Application
In this section, we show how the concatenated coding sys-
tem from [6] measures up using the two new metrics and
discuss the utility of the system as a result of its BE-CDFbc
and its BER-CDFac curves. It should also be noted that
[6] goes through a design process based on the BE-CDFbc
for this coding scheme. Although we do briefly outline the
scheme and one possible design process here, the inter-
ested reader is directed to the original work for further
details. It is of note that the scheme highlighted in this
section requires a friendly jammer, and the scheme is cho-
sen for presentation partly for this reason. Although the
simpler examples shown in the previous sections of the
paper apply to the general wiretap channel (Fig. 1), our
framework, and our metrics, are broad enough to con-
sider more complicated cases as shown with this use case.
For an additional concatenated coding example without
the use of a friendly jammer, the reader is directed to [27].
Finally, we indicate how our new metrics may be com-
bined with this coding scheme to provide effective discrete
memoryless wiretap channel equivalents over which other
secrecy coding schemes may be implemented to achieve
information-theoretic security.

4.1.1 System setup
The system analyzed in this section follows the general
concatenated coding framework outlined in Fig. 1. The
outer code can actually be considered as two encodings,
where the message is interleaved according to a secret key
K (drawn at random from the space of possible permuta-
tions on Sm input message bits), and the key is encoded

separately from the message using a BCH(127, 64) code
that is capable of correcting 10 errors. The interleaved
message and the encoded key are then appended together,
and this constitutes the outer code. An LDPC(1056, 880)
code is then used as the inner code, which is applied to
the appended message and key to form a codeword suit-
able for transmission over a noisy channel. Recall from
Fig. 1 that the general concatenated framework is such
that the outer code is intended to achieve the secrecy
requirements of the system, while the inner code is used
to achieve reliability for Bob.
In this system, however, there is more at play than just

the coding schemes.When the encoded data that are asso-
ciated with the key K are transmitted over the channel,
they are intentionally jammed by some friendly network
user with jamming power equal to a fraction α of Alice’s
transmit power. The idea is to give Bob an advantage
because of his location or knowledge of the jamming sig-
nal so that the jamming affects him only minimally, while
an eavesdropper has no information about the jamming
signal and/or is positioned in a geographic location that
does not afford her the same advantage as Bob [6, 28, 29].
Since the jamming is only applied to the encoded bits
associated with the interleaving key, reliability in the sys-
tem also stems from Bob being able to recover the key for
deinterleaving, while security in the system depends on
Eve being unable to recover the interleaving key. Data are
transmitted over a Gaussian wiretap channel using BPSK
modulation.
The receiving decoders at Bob and Eve apply a soft-

decoding algorithm for the low-density parity-check
(LDPC) code, and the BCH decoder can then correct no
more than 10 errors in the key bits. The goal is to reli-
ably keep the errors at the output of the LDPC decoder
at no more than 10 for Bob and above 10 for Eve for
each transmitted key block, as the key bits must be used
to deinterleave the message bits at the final step of the
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decoder. The mapping of keys to interleavers is such that
any errors in the estimated key result in high error rates
in the deinterleaved message, even when the interleaved
message bits are recovered exactly [6].

4.1.2 Direct results
Our two new metrics paint a complete picture of how this
system will respond for both Bob and Eve, thus provid-
ing security analysis and system design constraints. The
BE-CDFbc will show us the operating point for Bob to
attain any desired level of reliability and will also show
us how Eve’s decoding capability breaks down. The BER-
CDFac will then further enlighten us as to where we truly
wish Eve to operate so as to guarantee (with probabil-
ity essentially one) high BER near 0.5 at the output of
her decoder. Coincidentally, this analysis also allows us
to identify the jamming power advantage required dur-
ing key transmission for the system to be successfully
deployed [6].
Let us assume that the effective jamming to Bob isαB= 0.2,

while the effective jamming to Eve is αE = 0.7 (we also
include α = 1 in the figures for instructional purposes).
The BE-CDFbc results apply to the BCH-encoded key bits
and are given in Fig. 6, where we see that if Bob wishes
to attain an overall BER around 10−3, the system must be
designed to guarantee a BE-CDFbc value no lower than
0.9975. The interpretation of this value is that less than
one fourth of 1% of the transmitted key blocks should
be decoded in error for Bob. Also according to Fig. 6,
Bob achieves this performance if the SNR over his Gaus-
sian channel is 6.5 dB or greater. We also note that the
BE-CDFbc for Eve at an SNR of 4 dB is equal to 0.0048,
meaning less than one half of 1% of the time Eve will
receive a key block for which she can correct all the errors
if this BE-CDFbc value can be maintained.

To get the true feel for how Eve is affected by this
scheme, however, we need to track the distribution of
error proportion in Eve’s guess of the message bits as a
function of Eb/N0 using the BER-CDFac as depicted in
Fig. 7. Here we see that for δ = 0.05, we can attain
Pr

(
P̂b > 0.5 − δ

)
= 0.995 at roughly Eb/N0 = 4.7 dB,

which corresponds to an SNR value of approximately 4 dB.
The limiting values of the BER-CDFac are also shown in
the figure, as given by (10). These results indicate that for
this scheme, insuring that Eve cannot correct all errors
in the key is in fact sufficient for insuring a high propor-
tion of errors in Eve’s estimate of each short blocklength of
message bits at the output of her decoder, which is exactly
what we’d like to see in a practical physical-layer security
scheme. For the sake of referring back to Fig. 5 for the lim-
iting value of the BER-CDFac metric Sb for this scheme
is the dimension of the LDPC code (880 bits) minus the
blocklength of the BCH code (127 bits), because the BCH
code only encodes the key bits, and the remainder of the
bits in the dimension of the LDPC code are dedicated to
the message. This yields Sb = 753 bits.

4.1.3 Creating a discretememoryless channel
Explicit secrecy code constructions exist that can provide
information-theoretic security, however, only for discrete
memoryless wiretap channels [1, 4]. As mentioned pre-
viously, some of these currently known designs require
either a noiseless main channel for legitimate communica-
tion or a degraded wiretap channel for the eavesdropper.
Thus, we have two possible research directions for mak-
ing information-theoretically secure coding designs more
practical to real end users. First, effort can be placed
to design secrecy codes that operate over more realistic
channels [3], and second, coding and/or signaling tech-
niques may be leveraged to produce an effective wiretap
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channel [30] over which we already know how to code for
information-theoretic security. In this section, we outline
how our new metrics and the coding scheme explained in
Section 4.1.1 can be used to produce an effective discrete
memoryless wiretap channel.
Consider again the results shown in Fig. 7 that indicate

an eavesdropper experiencing jamming power αE = 0.7
and Eb/N0 = 4.7 dB over a Gaussian channel can expect
error rates over 753-bit messages to have BER greater than
0.45 with probability very close to one. Since the analysis
was conducted over short blocklengths, we offer not just
an average BER, but rather a low estimate of the BER over
the channel. We now consider applying one more code on
the outside of the entire scheme described in Section 4.1.1,
as depicted in Fig. 8, and modeling the remaining blocks
as an effective binary symmetric channel (BSC). The addi-
tional code added is one that can leverage this effective
channel to bring about an information-theoretic security
result (e.g., [31]).
In order to claim that the interior blocks in Fig. 8 can

truly be modeled as a BSC, we need to verify three main
properties of the BSC in our system: (1) each bit should
be flipped independently from all other bits, (2) the prob-
ability p of flipping each bit over the channel should be
identical and we need to identify its value, and (3) we need
to ensure that soft information about the bit is either not
available or impossible to use at the secrecy decoder.
To ensure that bits within message blocks retain their

independence of being in error, as required by the BSC
model, we need to apply an inter-block interleaver as the
first subcode in the outer coder block in Fig. 8 to spread
information around as in [22, 30] and many other works.

Although there may exist some correlations between
flipped bits over the same transmitted packet, since all bits
from every secrecy codeword are transmitted in different
packets over the channel, we effectively deliver indepen-
dence between the bits at the secrecy codeword level,
which is where we need independence for the secrecy
code to work properly.
In terms of identifying the probability p that corre-

sponds to the flipping of each bit over the channel, we
will use the lower bound given by BER-CDFac as indicated
above. By so doing, we provide an even stronger guarantee
than identifying an average probability, since even short
blocklengths maintain this probability of bit error with
probability close to one. Bit error locations within secrecy
codewords are kept uniformly random as a byproduct
of the inter-codeword interleaving at the output of the
secrecy encoder.
Finally, we need to address this issue of soft information

at the input of the secrecy decoder. Although soft informa-
tion is technically available here, we must deduce whether
or not the information is actually worth anything. In other
words, what do LLRs look like when the overall bit error
rates at the output of an LDPC decoder are close to 0.5?
LLRs can be approximated by Gaussian distributions with
means centered at positive values if the bits should have
a value of 0 and at negative values if the bits should
have a value of 1. The Gaussian approximation rule-of-
thumb stems from the central limit theorem for likelihood
ratios, where sums of random variables are calculated to
give the ratio’s next iteration [26, 32]. The distribution of
LLRs corresponding to bits in error is always symmetric
and centered at zero since the decision threshold at the
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Fig. 8 A concatenated coding scheme may be utilized to provide an effective discrete memoryless wiretap channel, over which known explicit
secrecy codes may operate for information-theoretic security

end of the soft iterative decoding algorithm is positioned
directly between the distributions of LLRs correspond-
ing to differing bit values. When the SNR is small enough
that the code does not correct all the errors, distribu-
tions corresponding to bits in error and correct bits start
to look very similar. In fact, when the noise completely
overwhelms the coding scheme, each of these distribu-
tions tends to an approximate Gaussian distribution with
mean zero and identical variances. It is this property that
supplies an effective decoding threshold for iteratively
decodable codes [26]. Finally, as the BER approaches 0.5,
the statistical difference between the distributions of LLRs
for correct bits and bits in error becomes negligible. To
demonstrate this, we show through simulation that the
Kullback-Leibler (K-L) divergence [33] between the two
distributions approaches 0 as the BER approaches 0.5,
where the K-L divergence is given as

D(p||q) =
∫

x

p(x) log2
p(x)
q(x)

dx, (13)

and p(x) represents the distribution of LLRs for correct
bits while q(x) represents the distribution of LLRs for
bits in error at the output of a soft-information LDPC
decoder. These results are given in Fig. 9, where we
observe D(p||q) going to zero with increasing BER. Rec-
ognize that D(p||q) = 0 implies that there is no statistical
difference between p(x) and q(x) or that the distance
between the two distributions is zero. It can be argued
then, that as long as D(p||q) is small enough, soft infor-
mation at the output of an iterative decoder is unusable
as it does not accurately depict any type of relationship
between a bit’s likelihood of being correct or in error.
The end result is that our new metrics mixed with the

scheme from [6] can provide the effective channel model

necessary for these information-theoretic designs to suc-
ceed. We see in [1] that one type of secrecy code that
may be able to offer secrecy over this channel is that
given in [31], where known advantageous (good for Bob
and bad for Eve) polarizations of synthesized bit chan-
nels in polar codes are used to transmit secret information
over a symmetric eavesdropper’s channel. This coding
scheme is known to achieve strong secrecy at information
rates approaching the secrecy capacity when the legiti-
mate channel can be modeled as noiseless. For our case
(where we have assumed that αE = 0.7, αB = 0.2, Bob’s
SNR ≥ 6.5 dB and Eve’s SNR ≤ 4 dB), supplying a prob-
ability of a flipped bit p ≥ 0.45 over an effective BSC to
an eavesdropper while maintaining an effectively noise-
less main channel results in secrecy capacity Cs = Cm −
Cw = p bits per channel use, where Cm and Cw signify
the channel capacities of the main and wiretap channel,
respectively [7, 8, 33].
The approach outlined here, where we manufacture a

wiretap channel over which additional secrecy codes can
be utilized, can be extended to produce other effective dis-
crete memoryless wiretap channels as well that may form
ideal backdrops for other code designs to operate in more
realistic environments.

4.2 Cryptographic strength of newmetrics
In this section, we consider implications of our new secu-
rity metrics in light of current acceptable levels of com-
putational security for modern cryptography. According
to the US National Institute of Standards and Technology
(NIST), “approved security strengths for federal applica-
tions are 112, 128, 192, and 256 bits [34].” As may be
expected, the required strength of an applied security
algorithm is set according to the importance of the data
to be encrypted. For example, low-impact information
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that is communicated over wireless links may only be
required to be encrypted using algorithms deemed to
achieve cryptographic strength at the 112-bit level, while
high-impact information would require the 192-bit level
[34]. The cryptographic strength of an algorithm can be
measured in many ways, including the length of any secret
keys used during encryption/decryption and the com-
plexity/running time of the best known attack against
the algorithm [34, 35]. Algorithms that achieve N bits of
security are those where all known attacks require effort
equivalent to a brute-force attack for guessing a key of
length N bits.
When considering the new security metrics presented

in this paper in light of cryptographic strength, we
note that the metrics cannot adequately classify algo-
rithms without additional cryptanalysis; however, we also
note that physical-layer security has been shown to
improve cryptographic strength when the two techniques
(physical-layer security and cryptography) are used in
tandem [36–38]. In cases like these, the role of physical-
layer security is to introduce confusion regarding the true
values of bits of ciphertext, thus requiring attackers to
consider a noisy ciphertext model when formulating an
attack [38].
If we assume that a nested coding technique as illus-

trated in Fig. 1 is used without cryptography at the appli-
cation layer of the communication protocol stack, then
parameters for both new metrics should be chosen to
deliver the desired amount of security. In other words,
cryptanalysis at the input to the outer decoder (see Fig. 1)
would require us to calculate BE-CDFbc(t∗, SNR,Sm, Ci),
where t∗ is no longer the threshold of correct decoding
for code Ci, but rather the threshold that guarantees com-
putational complexity in the attack to be at least at the

level of N bits. If N bits of security are not possible at
an acceptable value of SNR for the eavesdropper, then the
message size Sm and code Ci would need to be changed to
allow the desired level of security.
Cryptanalysis at the output of the outer decoder could

be achieved by considering BER-CDFac(δ,Eb/N0,Sb, C)

for δ small enough to render attacks at this stage ineffec-
tive. An upper bound on the strength of the outer code can
be calculated by considering (0.5 − δ) as the proportion
of bits in error of Sb total bits at the eavesdropper’s oper-
ating Eb/N0 point. If we assume the eavesdropper knows
the number of errors

Ne ≈ (0.5 − δ)Sb, (14)

then the eavesdropper would still have to cycle through(Sb
Ne

)
possible combinations of error locations to guess the

plaintext, assuming there is no additional statistical infor-
mation about the message the eavesdropper can leverage.
Thus, in the absence of a smarter attack at the decoder’s
output, to achieve N-bit security at this stage for every
block of data, a sufficient condition is that

log2
(Sb
Ne

)
≥ N . (15)

For the example scheme given in Section 4.1.1, Sb =
753. If Eve operates in the flat area of the BER-
CDFac curve so that all blocks of data have at least an
error proportion of (0.5 − δ), then the scheme yields
log2

( 753
(0.5−δ)×753

)
bits of cryptographic strength when ana-

lyzed after the final decoder. Even for fairly large δ values,
the strength at this point in the scheme is considerable.
From this analysis, it also becomes clear that the weak spot
for the eavesdropper to try to attack the system is before
the final decoder, rather than after the final decoder.
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5 Conclusions
In this paper, we have discussed the landscape of physical-
layer security codingmetrics.We note thatmostmeasures
in use today rely on information-theoretic analysis as
blocklengths tend to infinity or use mean BER, both of
which give asymptotic results that have limited mean-
ing for short blocklength codes. We have proposed two
new metrics that effectively employ CDFs to provide a
lower bound on the security levels based on BER. Such
an approach provides a stronger guarantee of secrecy
over realistic channel models than simply using mean
BER to estimate performance, and yet, our metrics retain
their simplicity of calculation making them directly adapt-
able to real-world communication systems. The metrics
apply generally to cases where concatenated codes are
used to provide confidentiality, which includes as a spe-
cial case the generic wiretap channel model. We have also
shown how these new metrics may be used to reduce
realistic channel model environments to simpler models
over which known secrecy codes may be implemented
to achieve information-theoretic security and have used
them in performing basic cryptanalysis to aid system
design.
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