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Abstract

Recently, HTTP-based video streaming traffic has continued to increase. Therefore, video service providers have
been using HTTP-based adaptive streaming (HAS) technology to reduce the traffic load of the HTTP server. Accordingly,
many adaptive bit rate (ABR) schemes have been proposed to provide a high quality of experience (QoE) to video service
clients. In this paper, we propose a new ABR scheme using an adaptive network-based fuzzy inference system (ANFIS),
which is one of the neuro-fuzzy structures. The proposed scheme learns optimal fuzzy parameters by using
(1) the learning ability of ANFIS and (2) the video streaming data providing high QoE to clients. Then, the bit
rate of the next segment is determined according to these trained parameters. In the simulation using NS-3,
we show that the proposed scheme selects the appropriate bit rate under various wireless network conditions and
provides better QoE to clients than the existing schemes.
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1 Introduction
In recent years, HTTP-based video streaming traffic has
consistently increased. It is expected to increase more
than ever due to the expansion of streaming audio and
video adoption and the emergence of state-of-the-art
video technologies such as 4K, high-dynamic-range
video, and virtual reality [1]. This traffic growth has led
to the adoption of HTTP-based adaptive streaming
(HAS) technology by video service providers to reduce
the traffic load of the HTTP server. HAS technology
encodes video at multiple bit rates and divides the video
at each bit rate into multiple segments with a fixed play-
back duration. Further, data such as media representa-
tion, segment duration, and segment URLs are stored as
a file in the HTTP server. The clients download the file
before the video starts and sequentially request a
segment at the appropriate bit rate by using the file to
download and play the segment. Thus, HAS technology
reduces the traffic load on the server and saves band-
width resources by sending only a single segment for
each client request rather than the entire video [2].
The dynamic streaming over HTTP (DASH) standard

[3, 4] developed by MPEG is one of the most popular

HAS technologies. DASH has been adopted by major
video service providers such as YouTube and Netflix. As
DASH is widely used, various methods have been
proposed to optimize its service. In [5], a quality of
experience (QoE)-aware wireless resource allocation
method considering DASH clients has been proposed.
The proposed method reduces rebuffering time by con-
sidering the buffer level of DASH clients. It, however,
does not consider non-DASH clients. Therefore, a new
method considering both DASH clients and non-DASH
clients has been proposed in [6]. This method reduces
the rebuffering time and guarantees fairness among non-
DASH clients. The authors in [7] introduce a new trans-
mission architecture for DASH video streaming over the
LTE system. They calculate the importance of each
packet and propose a packet scheduling strategy and
resource allocation method based on the calculated im-
portance of each packet. In addition, they also proposed
a rate adaption scheme based on the MAC queue, the
client buffer, and the estimated transmission rate.
Because DASH does not define how the client selects

the bit rate of the next segment, many adaptive bit rate
(ABR) algorithms have been proposed to select the next
bit rate [8–12]. These algorithms determine the next
bit rate based on parameters such as the TCP through-
put estimated by the application layer [8], current
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playback buffer level [9, 10], or both [11, 12]. The main
goal of these ABR algorithms is to provide the clients
with high QoE. In order to provide high QoE, ABR
algorithms must meet various conditions such as
prevention of rebuffering events, minimizing video start
delays, maximizing video quality, minimizing the num-
ber of video quality switching events, and smoothly
changing the video quality [13–16]. However, all of
these requirements cannot be met because they have
trade-offs with each other [17]. Therefore, the goal of
ABR algorithms is to provide clients with high QoE by
appropriately meeting each condition to the extent
possible.
One of the recently proposed ABR schemes, FDASH

[11] is a fuzzy logic-based bit rate determination tech-
nique. The fuzzy logic controller (FLC) of FDASH re-
ceives the current playback buffer level and the
differential of the client buffer level. Then, the FLC
performs fuzzification, fuzzy rule-based inference, and
de-fuzzification to create output f, which represents
the increase/decrease factor of the segment bit rate.
FDASH is better in terms of average video quality and
the number of video quality switching compared to
other existing ABR schemes. It, however, is not ex-
plained why the fuzzy parameters used for fuzzifica-
tion and de-fuzzification in the FLC are set. It is
therefore not clear whether these set fuzzy parameters
are optimal.
In this paper, we propose a new ABR scheme using

adaptive network-based fuzzy inference system (ANFIS)
[18], one of the neuro-fuzzy system structures. The
neuro-fuzzy system is a hybrid intelligence system that
combines a fuzzy system and an artificial intelligence
network. It can find optimal fuzzy membership func-
tions via neural network learning using a training data
set [19]. The proposed scheme uses the video streaming
data (training data) to provide high QoE to DASH cli-
ents. The training data are extracted from streaming
cases that provide high QoE to DASH clients and pro-
vides a basis for setting up the fuzzy parameters of

ANFIS. With the trained fuzzy parameters, the pro-
posed scheme can improve the performance of the
video streaming service by selecting the appropriate bit
rate of the next segment.
Finally, we show that the proposed scheme provides

higher QoE performance compared to the existing
schemes in the time-varying wireless network environ-
ment using NS-3 simulation. In this environment, the
proposed scheme shows that the number of video qual-
ity switching is similar to FDASH, that the average seg-
ment bit rate is about 25% higher than that in FDASH,
and that the QoE is increased by nearly 24% compared
to FDASH.
The rest of the paper is organized as follows: Section

2 describes ANFIS structure, and Section 3 presents a
new ABR scheme using ANFIS. In Section 4, we verify
the performance of the proposed method through
simulation, and we finally conclude the paper in
Section 5.

2 ANFIS structure
The neuro-fuzzy system is a combination of a fuzzy sys-
tem and a neural network. The nodes in the neuro-fuzzy
system operate as FLC. It also automatically learns the
appropriate fuzzy parameters according to the training
data provided [19].
ANFIS [18] is one of the structures of this neuro-

fuzzy system, which was designed to functionally re-
semble the Sugeno-type fuzzy model [20]. As shown
in Fig. 1, ANFIS consists of five layers. The ANFIS
shown in Fig. 1 contains the single output z with two
input values x, y, and the operation is as follows. First,
for the input values x and y, the first layer performs
fuzzification via a fuzzy membership function. In fuz-
zification, the output expression varies depending on
the fuzzy membership function selected. For example,
the output of the first layer for the ith node is
expressed by Eq. (1) if the fuzzy membership function
is selected by the Gaussian membership function and

Fig. 1 The ANFIS architecture
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by Eq. (2) if the fuzzy membership function is selected
by the bell membership function.

μi xð Þ ¼ exp −
x−cið Þ2
2σ2i

 !
; i ¼ 1; 2; 3; 4 ð1Þ

μi xð Þ ¼ 1

1þ x−ci
ai

��� ���2bi ; i ¼ 1; 2; 3; 4 ð2Þ

where {ci, σi} in Eq. (1) and {ai, bi, ci} in Eq. (2) are re-
ferred to as premise parameters and are learned using
training data. As the value of these parameters changes,
the outputs of the fuzzy membership functions vary
accordingly.
The nodes in the second layer correspond to fuzzy

rules. The output of the second layer is the product of
all the input signals connected to each node. For ex-
ample, in Fig. 1, the output of the first node is expressed
by Eq. (3):

w1 ¼ μ1 � μ3 ð3Þ

The third layer performs normalization of the output
of the second layer. The ith node of the third layer cal-
culates the ratio of the ith output value of the second
layer to the sum of all output values of the second layer.
It is expressed by Eq. (4):

wi ¼ wiPn
j¼1wj

; i ¼ 1; 2 ð4Þ

where n is the number of nodes in the second layer.

The fourth layer performs de-fuzzification via an out-
put fuzzy membership function. The output of the
fourth layer for the ith node is determined as

wl f i ¼ wl pixþ qiyþ rið Þ; i ¼ 1; 2 ð5Þ

where {pi, qi, ri} are referred to as consequent parameters
and are learned using training data. The Sugeno-type
fuzzy model uses a linear function or a constant function
as an output fuzzy membership function. The output
membership function of Eq. (5) is a linear function, but
when pi and qi are zero, it becomes a constant function.
Finally, the node in the fifth layer adds all the output

values of the fourth layer to generate the final output z,
as shown in Eq. (6):

z ¼
X
i

wi f i ¼
P

i wi f iP
i wi

ð6Þ

The hybrid learning process [18], which combines the
least square method and the gradient descent method, is
used to train the premise parameters and the conse-
quent parameters. The learning process of the hybrid
learning process is summarized in Table 1.
In the forward path, the hybrid learning process

fixes the premise parameters and trains the conse-
quent parameters by using the least square method.
Conversely, in the backward path, the process fixes
the consequent parameters and trains the premise pa-
rameters by using the gradient descent method. The
process iterates the least square and gradient descent
methods and is terminated when the error between
the output value of the training data and the output

Table 1 Hybrid learning process

– Forward path Backward path

Premise parameters Fixed Gradient descent

Consequent parameters Least square method Fixed

Reference signals Node outputs Error rates

Fig. 2 The ANFIS structure of the proposed ABR scheme
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value of the ANFIS meets the specified value or when
the process reaches the specified iteration number.

3 Methods
In this section, we propose a new ABR scheme that
provides high QoE to clients in DASH environment
using the ANFIS structure described in Section 2. In
the FDASH scheme mentioned in Section 1, the
current playback buffer level and the differential of
the client buffer level are used as the inputs of the
FLC. However, the proposed method determines the
next bit rate based on the current playback buffer
level and the estimated download time, which is
advantageous because the input values of the FLC of
FDASH do not consider network throughput. A de-
tailed explanation is as follows.

3.1 Proposed ABR scheme
The ANFIS structure of the proposed ABR scheme is
shown in Fig. 2, and its corresponding properties are
summarized in Table 2. The proposed structure contains
two inputs, x1 and x2, and output y. The first input par-
ameter x1 is the current playback buffer level, and the

second input parameter x2 is the estimated download
time. The estimated download time Tnext is calculated
using the size of the next segment Snext and the network
throughput R as expressed in Eq. (7):

Tnext ¼ Snext
R

ð7Þ

R ¼ Slast
T last

ð8Þ

where Slast and Tlast represent the size of the last seg-
ment and the actual download time for the last segment,
respectively.
Because the network throughput fluctuates signifi-

cantly over time, calculating the network throughput
with only the size of the last segment and the down-
load time can lead to substantial errors. Therefore,
ABR schemes using the network throughput usually
use average network throughput for a period [8]. How-
ever, this causes a major error in the calculated
throughput when non-stationary throughput changes
(e.g., level shift) occur. Therefore, the previous
throughput is ignored in this case [21]. Similarly, the

Table 2 The ANFIS properties of the proposed scheme

Number of input values 2

Number of output values 1

Number of membership functions per input 3

Number of fuzzy rules 9

Type of input membership function Gaussian membership function

Type of output membership function Constant function

Fig. 3 Training data extraction environment. a Long-term changes in point-to-point link network. b Periodic short-term changes in point-to-point
link network
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proposed scheme uses average download time as the
second input parameter as expressed in Eq. (9):

x2 : Ti ¼ Tnext
Ti−1þTnext

2 ;

�
Tnext−Ti−1j j >D
otherwise

ð9Þ

Ti is the predicted download time for the ith seg-
ment and is calculated as the average of the last pre-
dicted download time Ti − 1 and Tnext. However, if the
difference between Ti − 1 and Tnext is greater than a
segment playback duration D, it indicates a
non-stationary throughput change, meaning the calcu-
lation with Ti − 1 can cause a significant error. There-
fore, in this situation, Ti − 1 is ignored and only Tnext is
used in the calculation.
The two inputs are passed to the first layer and are

computed using a Gaussian membership function as
shown in Table 2 and Fig. 2. In this regard, since the
range of the training data may be smaller than the
range of the actual input values, the trained member-
ship function may not provide the correct value for
all the input values in the form of a normal Gaussian
membership function. Therefore, the Gaussian mem-
bership function corresponding to A1, B1, A3, and B3

is transformed as follows:

μi xð Þ ¼
exp −

x−cið Þ2
2σ2

i

� �
; x≥ c

1; x<c ; i ¼ 1;

8<
: ð10Þ

Fig. 4 The trained input fuzzy membership functions. a Current
buffer level. b Predicted download time

Fig. 5 Comparison of training data and trained data. a Comparison under long-term change point-to-point link network. b Comparison under
short-term change point-to-point link network
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μi xð Þ ¼
exp −

x−cið Þ2
2σ2

i

� �
; x≤ c

1; x>c ; i ¼ 3;

8<
: ð11Þ

The final output y is obtained after the calculation in
each layer of the proposed structure. The output y rep-
resents the increase/decrease factor of the segment bit
rate. Therefore, the next bit rate is the bit rate closest to
Qlast + y, where Qlast represents the bit rate of last
segment.
When the client requests the first segment, the client

cannot calculate R, because it does not know Slast and
Tlast. Moreover, a prolonged download time of the first
segment leads to a longer start time for the client watch-
ing the video, which has a negative effect on the client’s
QoE [15]. Therefore, the proposed scheme requests the
lowest bit rate segment as the first segment, allowing the
client to begin watching the video as quickly as possible.

3.2 Training data
The proposed scheme requires training data for training.
The data that provide high satisfaction to clients in ac-
tual streaming services can be used as training data.
However, if this data cannot be obtained, arbitrary train-
ing data should be created. To create the training data,
we have set arbitrary situations using NS-3. First, we
have set up two types of point-to-point link network en-
vironments, as shown in Fig. 3. Then, a client that
knows the actual link capacity of the network requests a
segment of the bit rate suitable for the actual link cap-
acity. In this process, the data corresponding to x1, x2,
and y of the proposed structure are obtained.
In the simulation, the data are collected from a variety

of link networks with different link capacity variations,
different change times of the link capacity, and different
initial link capacities in order to obtain different types of
data corresponding to all the fuzzy rules of the proposed
structure. After collecting the training data, the training

Fig. 6 Simulation results in first Wi-Fi environment. a The segment bit rate requested by client over time. b The client’s playback buffer level

Fig. 7 Simulation results in second Wi-Fi environment. a The segment bit rate requested by client over time. b The client’s playback buffer level
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process is iterated until the error between the output
value of the training data and the output value of the
proposed structure converges to the specified value.

4 Results and discussion
In this section, we evaluate the proposed scheme by ana-
lyzing the NS-3 simulation results compared to those of
FDASH [11] and segment aware rate adaptation algo-
rithm (SARA) [10]. In the simulations, we used the Big
Buck Bunny [22] with a segment playback duration D of
4 s and available bit rates of 45, 89, 129, 177, 218, 256,
323, 378, 509, 578, 783, 1000, 1200, 1500, 2100, 2400,
2900, 3300, 3600, and 3900 kbps. In addition, the client’s
maximum buffer size was 100 s. The target buffer level
of FDASH was set to 35 s, and in the SARA, I was set to
8 s, Bα was set to 30 s, and Bβ was set to 30 s.
To evaluate the performance of each scheme, the fol-

lowing QoE matrix [12], which is a weighted combination

of video quality, quality variations, rebuffering time, and
startup delay, was used:

QoE ¼
XK

k¼1
q Rkð Þ−λ

XK−1

k¼1
q Rkþ1ð Þ−q Rkð Þj j−μ

XK

k¼1
T reb−μsTs

ð12Þ

The first term in Eq. (12) represents the total video
quality. K is the number of downloaded segments, and
Rk is the bit rate of the kth downloaded segment. q(·) is a
function which maps Rk to the video bit rate perceived
by the client. The second term represents the total mag-
nitude of the changes in video quality. Treb in the third
term is the rebuffering time. Ts in the final term is the
startup delay. λ, μ, and μs are non-negative weighting
parameters corresponding to video quality variations,
rebuffering time, and startup delay, respectively. The
value of each parameter determines how much each
term affects QoE.

Fig. 8 Simulation results in first LTE environment. a The segment bit rate requested by client over time. b The client’s playback buffer level

Fig. 9 Simulation results in second LTE environment. a The segment bit rate requested by client over time. b The client’s playback buffer level
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In this simulation, we assume q(Rk) = Rk, and use the
weights λ = 1, μ = μs = 3000 [12]. The simulation was per-
formed in two Wi-Fi environments and two LTE envi-
ronments. In each environment, all DASH clients
started watching videos using FDASH, SARA, or the
proposed scheme as ABR scheme at the same time. Each
simulation was performed 10 times for 300 s. Since the
number of segments downloaded by each scheme over
the period of 300 s was different, we set K as 75, which
was the result of 300 s divided by D.

4.1 Training results
The training results of the proposed scheme are shown
prior to the simulation results, as illustrated in Figs. 4
and 5. To fit the QoE matrix, we created the training
data under the following two conditions: (1) selection of
the highest bit rate without any expected rebuffering
event and (2) reducing the amount of quality variations.

Figure 4 represents the fuzzy membership function
based on the trained premise parameters. Figure 5 repre-
sents a comparison of the streaming results applying
trained ANFIS to a few parts of the training data. In
Fig. 5, the orange line indicates the link capacity set in
the point-to-point link network, the green line indicates
the bit rate training data, and the red line indicates the
bit rate determined using the trained ANFIS. Although
the red and green lines are not perfectly matched, they
exhibit similar shapes and request similar bit rate values.

4.2 Simulation results
The simulation results in the two Wi-Fi environments
are shown in Figs. 6 and 7 in order. The first Wi-Fi en-
vironment contains a DASH server, a single DASH cli-
ent, and five background TCP traffic. The second Wi-Fi
environment contains a DASH server and six DASH cli-
ents, two for each ABR scheme. In the figures, (a) shows

Fig. 10 Performance of each element of QoE in the first Wi-Fi environment

Fig. 11 Performance of each element of QoE in the second Wi-Fi environment

Son et al. EURASIP Journal on Wireless Communications and Networking        (2018) 2018:261 Page 8 of 12



the segment bit rate requested by each algorithm over
time and (b) shows the client’s playback buffer level.
In those simulation results, FDASH requests many

segments at a low bit rate until the target buffer level is
reached. After reaching the target buffer level, the bit
rate of the next segment gradually increases. In Fig. 6,
the FDASH client requests the segment of 1500 kbps at
73 s for the first time, which is the 34th request, while
the proposed scheme requests a segment of 1500 kbps
at 18 s for the first time, which is the 7th request. In
other words, the FDASH client has to wait 136 s (34 ×
D) to view the video at 1500 kbps. The SARA increases
the client buffer level quickly by requesting many low
bit rate segments and requests a high bit rate segment
when there is a sufficient buffer level. However, because
it requests an excessively high bit rate segment, the

download time for the segment is too long and the cli-
ent buffer is quickly consumed. This causes an abrupt
decrease in the segment bit rate. Moreover, since the
SARA method increases the bit rate step by step from
the low bit rate following an abrupt reduction in the bit
rate, the bit rate changes frequently. In addition,
although FDASH and SARA show small variations
when the bit rate increases, they generally show large
variations when the bit rate decreases. On the other
hand, the proposed scheme shows a small variation in
both the increases and decreases in bit rate, according
to the characteristics of the training data.
LTE environments contain a single base station and 50

physical resource blocks (PRBs) (10 MHz bandwidth)
used as radio resources. The base station uses a propor-
tional fair resource allocation scheme as the resource

Fig. 12 Performance of each element of QoE in the first LTE environment

Fig. 13 Performance of each element of QoE in the second LTE environment
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allocation scheme. In addition, the extended typical
urban (ETU) fading model and log-distance propagation
loss model are used.
The first LTE environment contains ten background

TCP traffic and three DASH clients, one for each ABR
scheme. All DASH clients are fixed at the same location
and all TCP traffic move randomly at a speed of 3 m/s.
The second LTE environment contains a single DASH
client and 20 background TCP traffic. Both a DASH cli-
ent and all TCP traffic randomly move at a speed of
3 m/s. The simulation results under each LTE environ-
ment are shown in Figs. 8 and 9 in order.
In the figures, FDASH shows a slow increase in bit

rate and stably maintains the appropriate bit rate after
reaching it. On the other hand, SARA does not maintain
an appropriate bit rate even though it reaches a high bit
rate quickly. The proposed scheme quickly reaches a
high bit rate and maintains this bit rate.
To sum up the results, FDASH maintains the appro-

priate bit rate and shows a low number of bit rate
changes. However, it requests a low bit rate segment
until the client buffer reaches the target buffer level, so
clients have to wait a long time to watch high-quality
video. SARA reaches a high bit rate faster than other
methods. However, it consumes client buffers quickly by
requiring segments with an excessively high bit rate. The
proposed scheme reaches a high bit rate faster than
FDASH, and it maintains the bit rate longer than SARA
after reaching the bit rate. In addition, it usually shows a
small quality variation.

4.3 QoE evaluation
We compared the performances of each element in Eq.
(12). As all the schemes in our simulation request the

lowest bit rate segment as the first segment, we did not
compare the startup delays. The average results for the el-
ements under each environment are shown in Figs. 10, 11,
12, and 13, in order.
In Figs. 10 and 11, which are the results in the two

Wi-Fi environments, FDASH shows the lowest average
bit rate, although its number of bit rate changes is smal-
lest. SARA shows a higher average bit rate than that of
FDASH. However, it shows the largest number of bit
rate changes, and its variation in bit rate is also the lar-
gest. The proposed scheme shows a similar number of
changes as FDASH. In addition, the proposed scheme
shows the smallest variation and the highest average bit
rate of all the schemes evaluated. Thus, it is clearly
shown that the proposed method appropriately meets
each element of a given QoE matrix.
Figures 12 and 13 represent the results in LTE envi-

ronments. In these figures, SARA shows the highest
average bit rate. However, it also shows the highest num-
ber of bit rate changes. FDASH shows the lowest aver-
age bit rate, although it shows the lowest number of
changes and the lowest average variation because of the
reduced occurrence of bit rate reduction. In other
words, FDASH and SARA show some advantages, but
they also show clear drawbacks. In contrast to those two
schemes, the proposed method shows an average bit rate
similar to SARA and a number of changes similar to
FDASH. Therefore, in LTE environments, the proposed
method appropriately meets each element, as in the
simulation of the Wi-Fi environment.
Finally, we calculated the QoE for all the simulations

and normalized the QoE for the proposed scheme as
shown in Fig. 14. Compared with SARA and FDASH
in each environment, the proposed scheme provides
approximately 22% and 24% better QoE to clients,
respectively.
Our simulation results show that the proposed scheme

leads to better performance than the existing ABR scheme
by learning through the training data appropriate to the

Fig. 14 Comparison of QoE in each simulation

Table 3 Operation time of ABR schemes

ABR scheme SARA FDASH Proposed scheme

Operation time 92.1420 μs 95.3444 μs 110.3276 μs
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QoE matrix. In addition, the application of the proposed
scheme to actual service is expected to improve the per-
formance of the scheme by directly collecting and using
the real video playback data that the client has satisfactor-
ily watched.

4.4 Computational complexity
In order to compare the computational complexity of
each ABR scheme, we measured the operating time of
each ABR scheme. The operating time is the time to
calculate the next bit rate to request a segment. Table 3
represents measured operating time. In Table 3, SARA
takes the least amount of time and FDASH takes time
similar to SARA. The proposed scheme operates simi-
larly with FDASH, but it takes more time than FDASH
since the input membership functions of the proposed
scheme perform more complex calculations than the
functions of FDASH. However, the proposed scheme
can provide better QoE to DASH clients by using the
more complex membership functions.

5 Conclusion
In this paper, we proposed a new ABR scheme using
ANFIS, which is one of the neuro-fuzzy system struc-
tures. While the fuzzy membership functions of the
FDASH scheme lack the basis for the function setting,
the proposed scheme learns the fuzzy membership
functions via the training data and provides the basis.
In our simulation, we trained the fuzzy membership
functions of the proposed scheme with training data
optimized for the given QoE matrix and demonstrated
that the proposed scheme using the trained fuzzy mem-
bership functions provided better QoE than the existing
schemes. In addition, it is expected that the proposed
scheme will perform better by using the data that has
already satisfied the client when implemented in an ac-
tual video streaming service.
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