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Time delay estimation for UWB non
coherent receiver in indoor environment,
from theory to practice
Abdellah Chehri1,4* , Paul Fortier2 and Pierre-Martin Tardif3

Abstract

Extracting parameter estimates from noisy observations of an underlying signal is a common problem in many
fields. Time delay estimation (TDE) is essential for many areas, such as localization, array processing, and radar.
The performance of any estimator is often evaluated via the mean square error (MSE) that can then be compared
to analytical MSE lower bounds. In this paper, we first analyze a maximum likelihood (ML) estimator based on the
knowledge of noisy second order statistics of the channel. We investigate lower bounds for the time delay estimation
error for ultra-wideband ranging systems operating in realistic multipath environments. Based on the Cramer-Rao lower
bound (CRLB), we derive analytically a lower bound of the time delay estimation calculated using the Karhunen–Loève
decomposition of the estimated channel autocorrelation matrix. Also, we investigate the practical implementation
(based on energy detection) of the time delay estimator. In the second part of the paper, we have analyzed the time
delay estimation performances with the energy maximization receiver. Simulations are evaluated using a simulated
UWB underground mine channel. This can be considered as the first step for a global positioning system for use
mining industry.

Keywords: Time delay estimation, Ultra-wideband, Non coherent receiver, Cramer-Rao lower bound, Maximum likelihood

1 Introduction
Ultra-wideband (UWB) is a promising technique in
the application of short-range high-speed wireless
communication, radar, and precise location. UWB sig-
nal is capable to provide an accurate ranging, owing to
its inherent high delay resolution and ability to pene-
trate obstacles. Therefore, it is the technology of
choice for localization systems, particularly in densely
cluttered environments.
Time delay estimation using UWB transmission is cur-

rently the most popular technique for accurate ranging
and tracking. In the literature, several methods for UWB
signal time delay estimation can be found in [1–3].
Examples of low complexity estimators include a max-
imum peak detection method and a threshold detection
method. In the paper, a threshold is chosen a priori, and

the time delay estimation is defined as the instant when
the received amplitude goes above this threshold [4]. In
spite of its simplicity, this method works quite well for
UWB signals, especially in high signal-to-noise ratio
(SNR) environments.
Other time delay estimation techniques are studied for

use in multipath channels not necessary with a high SNR,
including the maximum-likelihood technique. Indeed, the
time delay estimation in a multipath environment is
closely related to channel estimation, where channel am-
plitudes and time of arrivals are jointly estimated using,
for example, a maximum likelihood (ML) approach [5].
However, what is the meaning of the lower bound of the
time delay estimation (TDE) estimation when the received
signal is completely or partially unknown?
In fact, the problem of detecting an unknown signal

through a channel containing additive Gaussian noise
has received attention for several years. Although this
topic is old, there continues to be progress and several
problems are investigated recently particularly in the
areas of networks synchronization [2], ranging [3] and
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localization applications [6]. The maximum likelihood
(ML) estimator is a widely used method for estimation
problems. The Cramer-Rao lower bound is a general
lower bound on the minimum estimation of a random
parameter [7]. It has been widely used to lower bound
the MSE of symbol timing estimators [2, 5, 8]. However,
the valid application of this bound requires that the esti-
mator be unbiased. The measure in which we are inter-
ested in is the mean-square error of the estimate.
Let us assume access to an observation Z that has

probability density function (pdf) p(Z; x), meaning that
the pdf depends on a parameter vector x to be esti-
mated. Let us assume the existence of an unbiased
estimator x̂ðZÞ; meaning that we have:

E x̂ Zð Þf g ¼ x

in which E denotes expectation parameterized by x.
Then, under fairly broad regularity conditions, the
Cramer-Rao lower bound (CRLB) is

E x̂ Zð Þ½ � x̂ Zð Þ½ �T
n o

≥ J−1

Where

J ¼ E ∇ x log p Z; xð Þð Þ½ � ∇ x log p Z; xð Þð Þ½ �T
n o

The remainder of this paper is organized as follows.
Section 2 defines the mathematical model of the ML
estimator. We define the Cramer-Rao lower bound of
the estimator in Section 3. Section 4 describes a practical
version of the ML estimator by using an energy detec-
tion receiver. Section 5 is devoted to results and discus-
sion. A conclusion is given in Section 6.

2 Maximum likelihood estimator of time delay
The transmitted signal s(t) is given by

s tð Þ ¼
ffiffiffiffiffiffi
Etx

p
p tð Þ

Here, Etx is the transmission energy and p(t) has unit
energy and finite duration Tp. The signal is transmitted
through the multipath channel h(t), with propagation
time δ, so the received signal is described by:

r tð Þ ¼
ffiffiffiffiffiffiffi
Erx

p
h t−δð Þ þ n tð Þ ð1Þ

where Erx is the received signal energy incorporating the
transmission energy and the total channel power gain.
We assume δ ∈ [0, Tf], and assume Tf is known a priori.
n(t) is an additive white Gaussian noise (AWGN), mod-
eled as a zero-mean complex circularly symmetric
Gaussian process with power spectral density N0/2. h(t)
is the overall channel response (assumed to be statisti-
cally independent of n(t)) and is given by:

h tð Þ ¼
XL−1
l¼0

αlδ t−τlð Þ

The attenuation values (αl) and the delays (τl) vary
with time in a way that depends on the physical environ-
ment. In fact, it is usually difficult, if not impossible, to
estimate these parameters perfectly. However, the vari-
ation of the attenuation and delay fluctuations are suffi-
ciently independent statistically, hence the Central Limit
Theorem can be applied. Therefore, the received signal
of (1) can be described as a sample function from an
approximately Gaussian process with a mean and auto-
correlation function.
Without loss of generality, when UWB single pulse is

transmitted into a multipath channel, the received signal
can be represented as follows (see Fig. 1):

r tð Þ ¼ s t; δð Þ þ n tð Þ ð2Þ

where δ is the time delay to be estimated. δ can be mod-
eled in two different ways. In the first, we assume that δ
is a nonrandom parameter and we use maximum likeli-
hood estimation procedures. In the second, we assume
that δ is the value of a random variable with a known
probability density p(δ). For random parameters, we can
use Bayes estimates with various cost functions. We shall
confine our discussion to maximum a posteriori estima-
tor (MAP) estimates.
Now the problem is how to estimate the unknown

parameter δ for any given r(t), where δ ∈ [0; Tf ].
The particular estimates we shall be concerned with

here are the maximum-likelihood estimates. We now turn

Fig. 1 System model with represented delay
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to a derivation of the pertinent maximum-likelihood esti-
mates and a discussion of their physical meaning.
In order to find the maximum likelihood (ML)

estimate of δ, we can represent the received signal into
two components (Fig. 2), one to present the signal in a
short window, the second represents the remainder of
the signal.
We begin by holding the unknown parameters fixed

and making a Karhunen–Loève [7] expansion of the re-
ceived signal r(t), 0 ≤ t ≤ Tf in terms of the eigenfunctions
of its two components autocorrelation function.

Rr t; u : δð Þ ¼
Rs t; u : δð Þ þ N0

2
δ t; uð Þ →r1 tð Þ

N0

2
δ t; uð Þ →r2 tð Þ

8><
>:

We note that the signal {r1(t)} is the part of received
signal projected in the basis φk(t) in the interval [δ; δ +
Td]. The first component {r1(t)} is calculated with:

r1 tð Þ ¼
Xm
k¼0

r1;k φk tð Þ

where

r1;k ¼
Z δþTd

δ
r tð Þ φk tð Þ dt ð3Þ

we define

Z δþTd

δ
Rs t;u : δð Þ þ N0

2
δ t;uð Þ

� �
φi tð Þ dt

¼ λi þ N0

2
δ t; uð Þ

� �
φi tð Þ

andZ δþTd

δ
φi tð Þφk tð Þdt ¼ δik

which means that all functions are orthogonal. The {r1, k,
φk(t)} are all functions of the unknown parameters δ. For
easy writing, this dependence is not indicated. Under the
hypotheses of the problem, the {r1, k} are Gaussian ran-
dom variables satisfying:

E r1;k
� � ¼ 0

E r1;k
� �

r1;i
� �� � ¼ λik þ N0

2

� �
The joint probability density for the first m terms of

(r1, k) can now be written down explicitly. For the case
“signal + noise” we have:

Ps r1;1; r1;2⋯; r1;m=δ
� � ¼ Ym

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π λi þ N0

2

� �s : exp

−
1
2

Xm
i¼1

r21;i

λi þ N0

2

� �
0
BB@

1
CCA

ð4Þ
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Fig. 2 Example of received signal represented by two components (signal + noise and only noise)
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The second component (r2, k) is define in the interval
D, where D = [0, δ] ∪ [δ + Td,Tf ]. It was projected into
another orthogonal basis {μi; φi(t)}Z

t;uð Þ∈D
Rb t;uð Þφk uð Þ du ¼ μkφk tð ÞZ
t∈D

φk tð Þφi tð Þdt ¼ δik

and

r2 tð Þ ¼
Xm
k¼0

r2;k φk tð Þ

The joint probability density for the first m terms of
(r2, k), the case “noise only”, is given by:

Pn r1;1; r1;2⋯; r1;m=δ
� � ¼ Ym

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

N0

2

� �s : exp

−
1
2

Xm
i¼1

r22;i
N0

2

� �
0
BB@

1
CCA

ð5Þ
with

r1 tð Þ ¼
Z δþTd

δ
r tð Þ φi tð Þ dt

r2 tð Þ ¼
Z δ

0
r tð Þ φi t; δð Þ dt þ

Z T f

δþTd

r tð Þ φi t; δð Þ dt

and

r1;i ¼ si þ n1;i
r2;i ¼ n2;i

The joint probability of the two components of the re-
ceived signal {r(t)} is:

Λ rð Þ ¼ P r1;i
� �

; r2;i
� �� � ¼ P r1;i

� �� �� P r2;i
� �� �

The likelihood ratio can be written as follows:

Λ rð Þ
R

¼ P r1;i
� �� �� P r2;i

� �� �
R

where

R ¼ 1

2π
N0

2

� � Ym
i¼1

: exp −
1
2

Xm
i¼1

r21;i þ r22;i
N0

2

� �
0
BB@

1
CCA

We suppose that R is independent of the estimate par-
ameter δ. After simplification, we obtain:

L ¼ Λ rð Þ
R

¼
Ym
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0

2

λi þ N0

2

� �
vuuuuut : exp −

1
2

Xm
i¼1

λi r21;i
N0

2
: λi þ N0

2

� �
0
BB@

1
CCA
ð6Þ

The quantity L given in (6) is a function of the re-
ceived signal on 0 ≤ t ≤ Tf and the assumed value of δ.

The estimated value δ̂ is defined to be the value of δ that
maximizes the likelihood ratio L. Then the logarithm l =
log(L) is written as follows:

l ¼ 1
N0

Xm

i¼1

λi
λi þ N0

2

� � r21;i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

−
1
2

Xm

i¼1
log 1þ λi

N0
.
2

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

ð7Þ

We shall now proceed to interpret the maximization
of (7) in physical terms. The first term A appearing in
(7) can be written directly in terms of r(t) by making use
of (3)

Xm
i¼1

λi

λi þ N0

2

� � r21;i ¼ ∬
δþTd

δ
r tð Þr uð Þ

Xm
i¼1

λi

λi þ N0

2

� �
0
BB@

1
CCA

2
664

3
775φk tð Þφk uð Þdt du

¼ ∬ δþTd
δ r tð Þh t; uð Þr uð Þdt du

ð8Þ

where h(t; u) satisfies the integral equationZ δþTd

δ
Rr t;uð Þh t0; uð Þ dt0 ¼ Rs t

0; uð Þ ð9Þ

or in terms of eigenfunctions and eigenvalues

h t; uð Þ ¼
Xm
i¼1

λi

λi þ N0

2

� �φi tð Þφi uð Þ ð10Þ

The integral of (9) is analyzed on the theory of least
mean square filtering. It is a trivial matter to verify
that h(t; u) is the impulse response of the linear
time-varying filter (channel) that provides the best (in
the sense of minimum mean square error) estimate of
s(t) given by:
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r tð Þ ¼ s tð Þ þ n tð Þ 0≤ t≤T f

In symbols, h(t; u) minimizes

E s tð Þ−
Z T f

0
h t; uð Þr uð Þ


 �2
The physical interpretation of the term A is given as

Xm
i¼1

λi

λi þ N0

2

� � r21;i ¼ −
1
N0

Z T f

0
h t; uð Þ

Z T f

0
h t;uð Þr uð Þdu


 �
dt

ð11Þ
Equation (11) represents the correlation between the re-

ceived signal r(t) and its best estimate in the sense of linear
least mean square. Equality (9) can be solved using some
numerical methods (such as Fredholm integral). We shall
note that the solution of (11) can also be reduced to the so-
lution of a certain Wiener-Hopf type of integral Eq. (7).
The second term of (7) (i.e., B) makes the ML estima-

tor biased. The convergence follows easily

Xm
i¼1

log 1þ λi
N0

.
2

0
B@

1
CA≤

Xm
i¼1

2λi
N0

¼ 2
N0

Z T f

0
Rs t; tð Þdt

ð12Þ

The integral is just the excepted value of the energy in
the process, which was assumed to be finite.
We now rewrite the maximum likelihood function by

using (7) and (8) to obtain

l ¼ 1
N0

∬ r tð Þh t;uð Þr uð Þdt du− 1
2

Xm
i¼1

log 1þ 2λi
N0

� �
ð13Þ

The realization of the maximum likelihood time delay
estimator is shown in Fig. 3. The estimated value corre-
sponds to the maximum value of ML. Even though the
procedure is well defined, the actual implementation is
difficult. To illustrate this, we consider the case of the
maximum likelihood estimation of a parameter δ. We
assume that it lies in the interval [0;Tf ]. We divide the
parameter range into intervals of length Δ. The center
points of these intervals are:

δ1 ¼ Δ
2

δ2 ¼ δ1 þ Δ
2

and so forth, etc. Therefore, there are M intervals. We
then construct ML estimator, (i = 1;⋯;M) by using the
parallel processing shown in Fig. 3. However, some re-
marks are worthwhile; first, we have to solve a different
integral equation to find the filter in each path. Thus,
the estimation problem has the same degree of complex-
ity as an M-ary detection problem in the sense that we
must build M-parallel processors. Also, we have to

Fig. 3 Generation of maximum likelihood for TD estimation
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consider the effect of the grid size Δ which is taken as a
trade-off between accuracy and complexity.

3 Lower bound on the variance estimation
We shall begin by attempting to find the value of δ that
maximizes the likelihood ratio. This is equivalent to
finding the value of δ maximizing (13)

∂l
dδ

¼ χ1 þ χ2 ð14Þ

Differentiating the first term, we obtain:

χ1 ¼
1
N0

∬ r tð Þ ∂h t; uð Þ
dδ

r uð Þdtdu ð15Þ

We have seen that h(t; u) is the optimal filter. With
this filter, we can observe and make the mean square
error estimate of s(t; δ) as in the detection problem. We
use the inverse kernel Q(t; u), which can be written as
follows:

Q t;uð Þ ¼ 2
N0

δ t; uð Þ−h t;uð Þ½ � ð16Þ

Using (15) and (16) we can find

χ1 ¼
1
N0

∬ r tð Þ ∂h t; uð Þ
dδ

r uð Þdtdu

¼ −
1
2
∬ r tð Þ ∂Q t; uð Þ

dδ
r uð Þdtdu

ð17Þ

For differentiating the second term, we must represent
the series as a continued function

1
2

Xm
i¼1

log 1þ 2λi
N0

� �
¼ −

1
N0

Z
ξ tð Þdt ð18Þ

ξ(t) is the mean square filtering error developed in [7].
Thus, we can calculate the differentiating of the second
term of (14) by using (18). We obtain:

χ2 ¼ −
1
N0

Z
ξ tð Þdt 1

2
∬Rr tð Þ ∂Q t; uð Þ

dδ
dtdu ð19Þ

Putting (17) and (19) into (14)

∂l
dx

¼ −
1
2
∬ r tð Þ ∂Q t; uð Þ

dδ
r uð Þdtdu

þ 1
2
∬Rr tð Þ ∂Q t;uð Þ

dδ
dtdu

ð20Þ

To find the lower bound on the variance of δ estima-
tion, we must calculate the second derivate of (14)

Var δ̂−δ
h i

≥− E
∂2l
dδ2


 �� 
−1

ð21Þ

Using (20)

Var δ̂−δ
h i

≥− −
1
2
∬
Rr t;uð Þ
dδ

∂h t;uð Þ
dδ

dtdu

� 
−1

þ ρ ð22Þ

where ρ is a terms whose expectation is zero. We note

J ¼ −
1
2
∬
Rr t; uð Þ
dδ

∂h t; uð Þ
dδ

dtdu ð23Þ

Using (10), we can write J in terms of eigenfunctions
and eigenvalues. Differentiating Rr(t, u), h(t, u), we obtain:

J δð Þ ¼ 1
2

Xm
i¼1

∂λi
.
dδ

h i
λi þ N0

2

0
@

1
A

2

þ 2
N0

Xm
i¼1

λ2I

λi þ N0

2

bi δð Þ

0
B@

1
CA

−
2
N0

Xm
i¼1

Xm
j¼1

λiλ j

λi þ N0

2

aij δð Þ

0
B@

1
CA

ð24Þ

where

bi δð Þ ¼
Z

∂φi tð Þ
dδ

� �2

dt ð25Þ

aij δð Þ ¼
Z

∂φi tð Þ
dδ

� �
φ j tð Þdt ð26Þ

By developing (25) and (26)

bi δð Þ ¼
Z δþTd

δ

∂φi tð Þ
dδ

� �2

dt ¼
Z Td

0

∂φi t−δð Þ
dδ

=δ ¼ 0

� �2

dt

¼
Z Td

0

∂φi uð Þ
du

�
u¼t−δ

=δ ¼ 0

� �2

dt ¼
Z Td

0

∂φi uð Þ
du

� �2

dt

And

aij δð Þ ¼
Z δþTd

δ

∂φi t; δð Þ
dδ

� �
φ j t; δð Þdt

¼
Z Td

0
−
∂φi t−δð Þ

dδ

� �
φ j t−δð Þ=δ ¼ 0

� �
dt

¼
Z Td

0
−
∂φi uð Þ
du

� �
φ j uð Þ

�
u¼t−δ

=δ ¼ 0

� �
du

¼ −
Z Td

0

∂φi uð Þ
du

� �
φ j uð Þdu

In (24), we suppose that λi are not function of the
delay δ (without loss of generality and to avoid heavy no-
tations we take δ = 0), thus

Chehri et al. EURASIP Journal on Wireless Communications and Networking        (2018) 2018:284 Page 6 of 11



J δð Þ ¼ 2
N0

Xm
i¼1

λ2I

λi þ N0

2

bi δð Þ

0
B@

1
CA

−
2
N0

Xm
i¼1

Xm
j¼1

λiλ j

λi þ N0

2

aij δð Þ

0
B@

1
CA

ð27Þ

For simplicity, we shall consider only unbiased esti-
mates in which case the Cramer-Rao lower bound on

the variance of any estimate δ̂ of δ is written in the form

Var δ̂−δ
h i2

≥
1

J δð Þ ð28Þ

To evaluate the numerical value of J(δ) given in Eq.
(28), we assume the knowledge of the second order of
the channel Rr(t, u) characterized by a finite number
of eigen-modes (λi). In Fig. 4, we plot the obtained
lower bound on the root mean square error (RMSE)
for different delay spread durations Td. The pulse
duration is Tp = 1 ns, the observation period is of
length Tf = 100 ns. From the figure, we observe three
different regions:

� Region 1: the full ambiguity region corresponding to
a very small SNR; in this region, the receiver sees
the signal as noise and the error, in this case, is
uniformly distributed over the a priori interval.

� Region 2: the second region is similar to the
Cramer-Rao region. This region corresponds to a
high SNR. In this case, the receiver success to match

well the signal with very small uncertainty. We
observe also that with increasing of delay spread Td

the error variance is reduced.
� Region 3: The threshold or intermediate region is

located between the two previous regions. The
estimation error in these cases exceeds the CRLB by
a large factor and describes more precisely the limit
of the estimation error. This region is more realistic
bound, especially for UWB systems that are
supposed to operate in this range of SNR.

4 Method
The configuration of the maximum likelihood time delay
estimator presented in Fig. 3 is based on the optimum
unrealizable filter (noncausal) and requires the solution of
a Fredholm integral Eq. (9). Hence, the optimal estimator-
correlator, considered in Section (2) for many reasons, is
impractical. Other configurations that eliminate the
unrealizability problem are proposed by Van Trees [7]
(i.e., filter-correlator receiver, filter-squarer receiver). Due
to the lack of space, these analyses are not presented in
this paper. Moreover, in a multipath environment, the cor-
relation output needs to be maximized over a very large
dimensional space. Therefore, the complexity of the time
delay estimator in the optimal receiver is very difficult.
However, more practical time delay estimation algorithms
have recently been proposed, the most often used is based
on an energy detection receiver due to its low implemen-
tation complexity [9–20].
Compared with coherent receivers (optimal receiver), the

energy detection (ED) receiver is a suboptimal but practical
and widely used receiver. The energy detection receiver is a

Fig. 4 Lower bound for single and multi-frame estimators vs, SNR (Td = 15 ns, 20 ns)
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feasible solution for time delay estimation in ultra-wide-
band ranging. The task of ED estimation under UWB mul-
tipath channel is to determine the first path (FP). In the ED
receiver, threshold-crossing (TC) could be also used. For
example, Fig. 5 shows the block diagram of the discrete
time energy detection receiver (ED). The received signal is
first passed through a band-pass filter (BPF) to reduce the
noise power. After low noise amplification, the signal is
squared and then passed to a block of integrators that inte-
grate the received signal in different time slots. The output
of the integrator is then sampled at rate Δ. The produced
samples will act as the test statistics of the time delay esti-
mator. The advantage of this receiver scheme is that it is
relatively easy in implementation when compared with the
previous estimator scheme (Fig. 3).
For what follows, we assume that the receiver has

acquired the sequence of the desired users. We are inter-
ested in estimating the time delay, δ, of the direct path
with the corresponding user based on observations of
the received signal r(t). Also, we assume that the signal
always arrives within one frame duration (δ < Tf ), so no
inter-frame interference (IFI) are considered.
The observed signal forms the input to the ED, whose

output is sampled at every Δ seconds (i.e., step of energy
detection), thus k = ⌊(Tf − Tint)/Δ⌋ is the number of win-
dow (i.e., block) used for the time delay estimation. En-
ergy samples could be obtained by sampling the signal
after a square-law device and an integrator with a dur-
ation of Tint seconds by using the following equation

z k½ � ¼
Z kΔþTint

kΔ
r tð Þj j2dt; k ¼ 0; 1;⋯;K−1 ð29Þ

Based on the observation of z = [zo, z1,⋯, zK − 1 ], the
receiver estimates the value of δ which is given by:

δ̂ ¼ argmax z k½ �f g|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0≤ k ≤K−1

ð30Þ

In other words, the block with the largest signal en-
ergy is selected.

5 Results and discussion
To investigate the UWB ranging system for an ad hoc
network in an underground mine environment, a
custom-made simulation tool was developed. In order to
simulate the positioning scheme involving these nodes,
it is necessary to establish a UWB-based network from
scratch. Each of the nodes needs to be able to transmit
and receive UWB signals. In addition to transmitters
and receivers, a channel model will have to be simulated
in order to obtain results that are as realistic as possible.
In fact, the simulations based on realistic channel

modeling allow us to evaluate the performance of the
energy detection (ED) receiver without the need for
expensive hardware and real-time software implementa-
tion. A TD estimator scheme can then be implemented
to test the accuracy under satisfactory conditions.
The propagation aspects of the wireless channel were

modeled using the underground mine UWB-channel.
The channel realizations are sampled at 3 GHz; for each
channel realization, a time delay uniformly distributed
with (0,Tf ) is generated, where Tf = 100 ns. The data rate
is 2 Mbps and each bit consists of only one pulse.
The proposed channel model can be used for gener-

ating time series which can be used for successfully
designing robust industrial UWB-based wireless sen-
sor networks (WSNs), and for simulating the per-
formance of WSNs in harsh industrial environments.
The path loss exponent is equal to η = 1.47 for line

of sight (LOS) and 2.45 for NLOSS, respectively. The

)(tr

∫ dt

∫ dt

Energy
detection

LNA BPF

)(tr

)(tr

Fig. 5 Block diagram of energy detection receiver for time delay estimation
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mean standard deviation of shadow fading (in dB)
was assumed to be σs = 1.1 for LOS and _ σs = 2.94
for NLOS, respectively. Other details about the UWB
channel parameters in an underground mine are
given in [21].
The monocycle pulse, modeled as a second derivate

Gaussian waveform with width Tp = 2 ns, is considered
for all scenarios, and it is convolved with the realizations
of UWB channels to obtain the transmitted signal s(t).

An additive white Gaussian noise is added to the trans-
mitted signal to obtain the received signal r(t).
The simulation investigated the estimation of the time

delay for a signal between transmitter and receiver using
discrete time estimation by energy maximization. First,
the performance in terms of root mean squared error is
evaluated by simulations for different scenarios. The
sensitivity of the estimated time delay with respect to
the SNR is evaluated.

a

b

Fig. 7 RMSE of TD energy detection estimator vs. integration window length Tint, for various integrating step Δ, SNR = − 10 dB, a LOS case b
NLOS case

Fig. 6 RMSE of TD energy detection estimator vs. SNR, for various integrating step Δ
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In Fig. 6, we plot the obtained lower bound of the root
mean square error (RMSE) for a fixed integration
duration Tint (i.e., 30 ns for both LOS and NLOS) vs.
average transmitted SNR. We can see that as the SNR
increases, we can easily notice that the RMSE of time
delay is reduced. Accordingly, the proposed method has
a superior capability of UWB ranging even in condensed
and harsh industrial environments.
Given the last result, we now look at the impact of the

configuration between transmitter and receiver (i.e., LOS
and NLOS) on the choice of the integration window
length. Figure 7 illustrates the RMSE of energy
maximization estimator vs the integration window length
Tint, for various discretization step Δ, and SNR = − 10 dB.

We observe a trade-off behavior where the optimal time
integration depends on the configuration (LOS or NLOS).
Indeed, for Tint greater than the optimal window length,
the loss is due to the fact that the integrator collects no
more significant signal components. While in the contrary
case, the integrator misses significant signal components.
These analyses are also shown for varying both Tint and Δ
for LOS (Fig. 8) and NLOS (Fig. 9).

6 Conclusion
This paper is focused on time delay estimation for UWB
impulse radio. In the first part, we have derived a max-
imum likelihood (ML) estimator based on the knowledge
of noisy second order statistics of the received signal.

Fig. 9 RMSE of TD energy detection estimator vs. integration window length Tint and integrating step Δ, for NLOS scenario

Fig. 8 RMSE of TD energy detection estimator vs. integration window length Tint and integrating step Δ, for LOS scenario
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We have shown that the time delay can be estimated by
the projection of the received signal into two different
bases which can be explained physically as a sliding
window operation.
We have also investigated on lower bounds of time

delay estimation based on the Cramer-Rao lower bound.
We have derived analytically the lower bound by using a
Karhunen–Loève decomposition of the estimated chan-
nel autocorrelation matrix.
We have also seen that the proposed ML TD estimator

is impractical (i.e., the ML estimator configuration is
based on the optimum unrealizable or noncausal filter).
Hence, the choice of a sub-optimum receiver is neces-
sary. Therefore, more practical time delay estimation
receivers have recently been proposed. Among all non-
coherent UWB receivers, we have chosen the energy
detector due to its low complexity implementation.
Hence, in the second part of the paper, we have ana-

lyzed the time delay estimation performances with the
energy maximization receiver. Simulations results were
given using a simulated UWB underground mine chan-
nel. This can be considered as the first step for a global
positioning system for use mining industry.
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