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layered iterative DFT with re-sampling in
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Abstract

Frequency deviation off the nominal one is incurred by sudden changes of frequency and could introduce
harmonics and inter-harmonics in the power system, which influences the accuracy of frequency estimation
with method of discrete Fourier transform (DFT). A two-layered iterative DFT (TLI-DFT) with re-sampling was
presented to measure the frequency in non-steady states. A simple frequency estimation method named
exponential sampling is amended to calculate the initial sampling frequency in the inner-layered process of
the DFT iteration. In reality, frequencies of two consecutive cycles are always interrelated with each other,
so an idea of frequency tracking by outer-layered DFT between cycles is adopted. TLI-DFT can track the
frequency in non-steady state in different scenarios, e.g., sudden and random frequency change, signal
modulated by a cosine signal, and contaminated by decaying direct current offsets. Mean squared error of
measured frequency, rate of change of frequency, and total vector error at different transient conditions
indicate that the proposed algorithm is valid and more accurate than the traditional one in the non-steady
states of a power system.

Keywords: Synchrophasor, Frequency measurement, Frequency tracking, Transient condition, Discrete Fourier
transform (DFT), Re-sampling

1 Introduction
Protecting and controlling of the smart grid require
accurate and timely estimation of frequency. Measurement
of frequency provides information of state estimation in the
power networks around the wide area measurement sys-
tem. The signal in a power system is easy to be distorted by
harmonics, inter-harmonics, decaying direct current (DC)
offset, and to be modulated in dynamic states. Therefore,
methods of frequency estimation and measurement should
have the ability of frequency-tracking under noisy, distorted,
and distributed circumstances.
In the past few decades, many researchers have put

emphasis on frequency measurement and analysis, and
kinds of frequency estimation strategies have been reported,
e. g., zero crossing [1, 2], least error squares [3], Newton

approach [4], Kalman filter [5–7], prony algorithm [8], arti-
ficial neural networks [9], discrete Fourier transform (DFT),
fast Fourier transform (FFT) [1, 10, 11] and demodulation
technique [1]. DFT algorithm is the most well-known
method for its capabilities of harmonics rejection and im-
plementation of recursion. It is preferable for its availability,
understandability, and simplicity when it is implemented by
advanced digital signal processing chips.
Full-cycle DFT is a kind of window-based method

requiring integral samples in each cycle. If the number
of samples in a window is not an integer, which is com-
mon because of some off-nominal components in reality,
DFT may provide certain errors [12]. DFT can approxi-
mate the instantaneous frequency, suppress the har-
monics and smooth the noise by least squares method
[13] in a steady state. However, the fundamental fre-
quency of a signal would change and this signal may
contain many off-nominal components as listed above,
in which the decaying DC offset cannot be eliminated by
simple DFT.

Correspondence: hitlihui1112@163.com
1College of Information Science and Technology, Hainan University, Haikou,
China
2Engineering Research Center of Marine Communication and Networks,
Hainan Province, Haikou, China

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Li EURASIP Journal on Wireless Communications and Networking
        (2019) 2019:28 
https://doi.org/10.1186/s13638-018-1320-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1320-1&domain=pdf
http://orcid.org/0000-0002-1846-7958
mailto:hitlihui1112@163.com
http://creativecommons.org/licenses/by/4.0/


The fixed sampling rates are adopted by most data
acquisition systems including the power system. It con-
tains some drawbacks in frequency estimation and
measurement. As a uniform sampling method, the sam-
pling period of traditional DFT is constant. A simple
frequency estimation method via exponential sampling
and dyadic rational was provided in [14]. Other kinds
of non-uniform sampling methods, e.g., log-time sam-
pling [15], extended staggered under-sampling [16],
logarithmic sampling [17], and near optimal sampling
[18] were introduced. These sampling methods indicate
that designing of phase-locked loop is important [19,
20]. Methods such as higher-order lags of the sample
auto-correlation [21] and high-order Yule-Walker esti-
mation [22] were utilized in calculating the sinusoidal
frequency, and a variable-window-based algorithm for
frequency tracking and phasor estimation was narrated
in [23].
In this paper, a new method for frequency estima-

tion and tracking was proposed, in which DFT algo-
rithm iterates with re-sampling to confront frequency
change in dynamic states of a power system. In each
cycle, precise frequency estimation is accomplished by
iterative DFT. In the following cycle, the initial sam-
pling frequency is given by this converged frequency,
and so on. The proposed iterative DFT by re-sampling
is a two-rounded process to provide precise frequency
estimation and frequency tracking ability dynamically
in a power system.
The algorithm of frequency estimation by DFT was

presented and the error caused by an off-nominal sig-
nal was analyzed in Section 2. Frequency tracking by
iterative DFT with re-sampling was discussed. Recom-
mended by IEEE Std. C37.118 [24, 25], analysis of
three types of step-changed signal was made in Sec-
tion 3. Performance of the new algorithm in different
scenarios was shown in Section 4. Additional discus-
sions about wavelet transform were made in Section 5.
Conclusions were given in Section 6. Some formula
derivations and auxiliary figures were provided in the
Appendix.

2 Method of frequency estimation by DFT
2.1 Algorithm of classic DFT
DFT can provide the amplitude and phase angle of
phasor and the frequency by way of differentiating the
phase angles. Suppose the nominal voltage or current
signal in a nominal power system is

x tð Þ ¼ A cos ωt þ φ0ð Þ −∞ < t < ∞ð Þ; ð1Þ

where ω and A are the angular frequency and ampli-
tude respectively. ω is supposed to be 2πf0, f0 is the
nominal frequency, and φ0 is the initial phase angle.

In order to precede the DFT calculation, signal is
always truncated and finite samples should be taken
by kinds of windows. The process of making a phasor
estimation will require sampling the waveform over
some interval of time which can lead to some confu-
sion if the number of samples is not an integer in a
window. The magnitude is compensated by dividing
the magnitude with a sine at the actual signals fre-
quency. The 2-cycle triangular window produces a
faster roll off than a standard 1s-cycle rectangular
window, but the frequency deviation is spread with
an additional factor of 1.625 to increase compensation
[25]. A simple rectangular window is adopted in this
study. By the way, the length of a rectangular window
could be selected easily and arbitrarily according to
the requirements of accuracy and computational bur-
den. DFT converts the equally spaced and uniform
samples into a finite combination of complex sinu-
soids, ordered by their frequency. According to DFT,
a phasor is calculated by

Xk ¼
XN−1

n¼0

xn � e− j2πN kn; ð2Þ

where N is number of samples, x(n) = A cos(2πn/N + φ0),
(n = 0,1, 2,…,N − 1) are the samples taken uniformly
within the length of a rectangular window; k is the order
of harmonic; especially if k = 1, it stands for the phasor
of the nominal component. The amplitudes and phase
angles of kth harmonics are

Xkj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk realð Þ2 þ Xk imag

� �2q
;

arg Xkð Þ ¼ atan Xk imag
� �

=Xk realÞ;
ð3Þ

where atan stands for the arctan function. Xk_real and
Xk_imag are real part and imaginary part of Xk. According
to Eq. 2 and Eq. 3, if k = 1, the phasor of the nominal
signal is calculated by

X1 ¼ 2
N

XN−1

n¼0

x nð Þe− j2πN �n;

X1 real ¼ 2
N

XN−1

n¼0

x nð Þ cos 2π
N

� n
� �

;

X1 imag ¼ −
2
N

XN−1

n¼0

x nð Þ sin 2π
N

� n
� �

;

ð4Þ

where X1_real is the real part of the phasor of nominal
component, and X1_imag is the imaginary part. In front of
the summation sign, a multiplier of 2/N is used to gener-
ate the normalized amplitude of DFT, i.e., 1 p.u.. The
phasor of nominal signal is expressed as
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X1 ¼ Aejφ0 : ð5Þ
Definition of synchronous phasor is shown in Fig. 1, in

which the peak of the sine/cosine signal coincides with
the time-tag, so the angular is 0°; if the signal crosses
zero at the time-tag, it produces − 90° according to the
IEEE Std. C37.118 [24–26].

2.2 Frequency estimation by classic DFT
The synchronous phasor (synchrophasor) is defined as a
complex number, representing the fundamental fre-
quency component of a voltage or current, with an ac-
companying time-tag defining the time instant for which
the phasor measurement is performed [27]. Serial syn-
chrophasors are calculated by shifting windows at each
sampling time tr = rTs, r = 0,1,2,…,+∞, where Ts is the
sampling interval, Ts = 1/fs. A synchrophasor at time tr is
represented as

Xr
1 ¼

2
N

XN−1

n¼0

x nð Þe− j2πN �n � e j2πN �r

¼ Aej φ0þ2πr=Nð Þ ¼ X1e
j2πr=N ; r ¼ 0; 1; 2;…;þ∞:

ð6Þ
Amplitudes of serial synchrophasor at steady state are

A, if the signal is a nominal one. The phase angles of
serial synchrophasor are {φ0, φ0 + 2π/N, φ0 + 4π/N,…, φ0

+ 2πr/N,…}. In the following, we use Xras the nominal
phasor instead of Xr

1 for simplicity. Frequency is defined

as the speed of rotation of a phasor and can be calcu-
lated by two consecutive measured phases

f r ¼ φrþ1−φr
� �

= 2πTsð Þ; ð7Þ

where φr is the phase angle calculated by DFT. If φr is
not the nominal one, f r would be inaccurate.

2.3 Frequency analysis for an off-nominal signal
It was reported that dynamic movement of rotors of
generators and motors following power system distur-
bances causes the electromechanical transients or
electromechanical non-steady states [24]. Generally,
the frequency of an off-nominal signal is always rep-
resented as f0 + Δf. If Δf is a fixed frequency devi-
ation. The representation of input signal is

x tð Þ ¼ A cos 2π f 0 þ 2πΔ fð Þt þ φ0½ � −∞ < t < ∞ð Þ:
ð8Þ

where x(n) are the samples taken in one window with
length of NTs, x(n) = A cos[2πf0nTs + 2πΔfnTs + φ0], (n
= 0,1, 2,…,N − 1). The nominal phasor is recorded as
Xr

nomi ¼ Aejφ
r
nomi , where φr

nomi ¼ φ0 þ 2πr=N at time tr.
The measured one isXr

meas ¼ Ar
mease

jφr
meas , and the mea-

sured phasor Xr
meas for the off-nominal signal x(t) ac-

cording to DFT is

Fig. 1 Definition of synchronous phasor and the angular convention
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Xr
meas ¼

2
N

XN−1

n¼0

x nþ rð Þ � e− j2π f 0nTs

¼ 1
N

XN−1

n¼0

½Aej 2π f 0 nþrð ÞTsþ2πΔ f nþrð ÞTsþφ0½ �

þAe− j 2π f 0 nþrð ÞTsþ2πΔ f nþrð ÞTsþφ0½ �� � e− j2π f 0nTs

¼ Aejφ0e j2π f 0þΔ fð ÞrTs � 1
N

XN−1

n¼0

e j2πΔfnTs

þAe− jφ0e− j2π f 0þΔ fð ÞrTs � 1
N

XN−1

n¼0

e− j 2π 2 f 0þΔ fð ÞnTs½ �

¼ Xr
nomie

j2πΔfrTs �Η Δ f ;N ;Tsð Þ

þXr �
nomie

− j2πΔfrTs �Η − 2 f 0 þ Δ fð Þ;N ;Tsð Þ

¼ Xr
nomie

j2πΔfrTs �Η Δ f ;N ;Tsð Þ

þXr �
nomie

− j2πΔfrTs �Η� 2 f 0 þ Δ f ;N ;Tsð Þ

¼ Xr
nomi �

sin NπΔfT sð Þ
N sin πΔfT sð Þ � e

jφr
1

þXr �
nomi �

sin NπΔfTsð Þ
N sin 2π f 0Ts þ πΔfTsð Þ � e

j 2π f 0Ts−φr
1ð Þ;

ð9Þ

where Η(Δf,N,Ts) is constant if the N, Δf, and Ts are all

constant (detail formula derivations are in Appendix);
and symbol “*” denotes the conjugation of a complex
number.
If Δf→0, lim

Δ f→0
j ΗðΔ f ;N ;TsÞ j →1 as shown in Fig. 18

in Appendix. The phase angle φr
1 at time tr in Eq. 9 is

φr
1 ¼ 2r þ N−1ð ÞπΔfT s: ð10Þ

If Δf→0, lim
Δ f→0

j Ηð2 f 0 þ Δ f ;N ;TsÞ j →0 is also shown

in Fig. 18 in Appendix. φr
2 is a very small phase angle as

shown in Fig. 2 and can be calculated as

φr
2 ≈ tanφr

2

¼

� sin NπΔfT sð Þ
N � sin 2π f 0Ts þ πΔfT sð Þ

�
sin 2φr

nomi þ 2φr
1−2π f 0Ts

� �
� sin NπΔfT sð Þ
N � sin πΔfTsð Þ

�þ � sin NπΔfT sð Þ
N � sin 2π f 0Ts þ πΔfT sð Þ

�
cos 2φr

nomi þ 2φr
1−2π f 0Ts

� �

≈

� sin NπΔfT sð Þ
N � sin 2π f 0Ts þ πΔfT sð Þ

�
sin 2φr

nomi þ 2φr
1−2π f 0Ts

� �
sin NπΔfTsð Þ

N � sin πΔfTsð Þ
� �

¼ sin πΔfTsð Þ
sin 2π f 0Ts þ πΔfT sð Þ sin 2φr

nomi þ 2φr
1−2π f 0Ts

� �

≈
πΔfT s

sin 2π f 0Tsð Þ sin 2φr
nomi þ 2φr

1−2π f 0Ts
� �

:

ð11ÞThe measured phase angle φr
meas is

φr
meas ¼ φr

nomi þ φr
1−φ

r
2

¼ φr
nomi þ φr

1−
πΔfT s

sin 2π f 0Tsð Þ sin 2φr
nomi þ 2φr

1−2π f 0Ts
� �

:

ð12Þ

According to Eq. 7, for the first two phase angles cal-
culated by DFT, we have

Fig. 2 Relationship of measured phasor and the nominal one
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f r¼0
meas ¼

φr¼1
meas−φ

r¼0
meas

2πTs
¼ φr¼1

nomi þ φr¼1
1 −φr¼1

2

� �
− φr¼0

nomi þ φr¼0
1 −φr¼0

2

� �
2πTs

¼ φ1
nomi−φ

0
nomi

2πTs
þ Δ f −

Δ f
2 sin 2π f 0Tsð Þ ½ sin 2φ1

nomi þ 2φ1
1−2π f 0Ts

� �

− sin 2φ0
nomi þ 2φ0

1−2π f 0Ts
� ��

¼ f 0 þ Δ f −
Δ f

sin 2π f 0Tsð Þ cos φ1
nomi þ φ1

1 þ φ0
nomi þ φ0

1−2π f 0Ts
� � �

sin φ1
nomi þ φ1

1−φ
0
meas−φ

0
1

� �

¼ f 0 þ Δ f −
Δ f

sin 2π f 0Tsð Þ cos 2φ0 þ 2N þ 1ð ÞπΔfT s½ � �

sin 2π 1þ Δ f = f 0ð Þ=N½ �:
ð13Þ

Without loss of generality, since N> > 4 and Δf < <f0,
and suppose φ0 = 0, such in-equation of 0 < cos[(2N +
1)πΔfTs] < 1 can be fulfilled. We have

f 0 < f meas≤ f 0 þ Δ f ; ifΔ f ≥0
f 0 þ Δ f ≤ f meas < f 0; ifΔ f < 0

�
ð14Þ

3 Frequency tracking by iterative DFT with
re-sampling
3.1 Inner-layered DFT iteration by re-sampling
From analysis above, the measured frequency fmeas

would approach f0 + Δf more and more closely if we
change the sampling frequency fs =Nfmeas consecutively.
Especially when the sampling frequency becomes closely
enough to the value of N(f0 +Δf ), DFT calculated itera-
tively would give a measured frequency fmeas as the input
and off-nominal frequency f0 +Δf exactly. It means that
there are integral samples in 1 cycle of the input
frequency again. The process of iterative DFT algo-
rithm within 1 cycle (i.e., inner-layered iteration) is
shown in Fig. 3.
In the first cycle of DFT calculation, the sampling fre-

quency fs is set to be Nf0 and two phasor are calculated
to get the frequency fmeas. Then in the following cycle,

new f
0
meas is gotten according to the sampling frequency

of f
0
s ¼ Nf meas , until difference of two successive fre-

quencies f
0
meas and fmeas is less than a threshold δ. In

Fig. 4, samples are taken by a rectangular overlapping
shifting window at time tr = rTs (r = 0 and 1 respectively)
as shown in Fig. 4. The first rectangle window contains
N samples s0,s1,…,sN − 1 but not the sample of SN; how-
ever, the length of this window is N*Ts, where Ts is the

Fig. 3 Process of iterative DFT in 1 cycle
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sampling period. In the second rectangle window, N
samples s1, s2,…,sN are taken with the same length N*Ts
and so on.

3.2 Outer-layered DFT iteration between cycles
3.2.1 Determination of initial frequency by amended
exponential sampling
In the dynamic states or under the circumstance of low
signal-to-noise ratio (SNR), the input frequency may
change in every cycle. It introduces lots of harmonics
and spectrum leakage, and also limits the application of
exponential sampling in such situation. Exponential
sampling is a kind of simple frequency estimation algo-
rithm, which can simplify the process of sampling by ex-
ponential sampling and need only few samples
distributed exponentially along the time [14]. Frequency
is estimate based on a modified exponential sampling
method, which is amended to be used in non-steady
states.
For traditional exponential sampling, the sample are

taken exponentially at

tp ¼ 2p−Q−1 sð Þ; p ¼ 1; 2;…; P; ð15Þ

where P defines the bit accuracy, and Q defines the max-
imal frequency fmax = 2Q. The samples are

x tp
� � ¼ A cos 2πftp þ φ0

� 	
; ð16Þ

where f is the instantaneous frequency at tp, and it is not
a constant anymore in the dynamic states. According to
[14], the signal is a kind of sinusoidal signal. If a cosine

signal is used in accordance with Eqs. 1, 8, and 16, we
have

s tp
� � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x tp

� �2q
; ð17Þ

where symbols of “+” and “−” are taken according to the
quadrants of phases of the signal. To guarantee the fre-
quency to be an accuracy of 2Q−P Hz, we get

f meas ¼ f max

XP
p¼1

bp2
−p; ð18Þ

where

bp ¼ 0; if s tp
� �

> 0
bp ¼ 1; if s tp

� �
< 0

�
ð19Þ

If s(tp) = 0 for some p = p0 ≤ P, and bp0 ¼ 1, the Eq. 18
is rewritten to be

f meas ¼ f max

Xp0
p¼1

bp2
−p; ð20Þ

where p0 is a terminator of exponential sampling. For
example, if a power system with a nominal frequency
of 60Hz and the dynamic frequency range is [− 5, + 5] Hz,
it indicates that off-nominal frequency may be 65 Hz >
64 = 26 Hz. Hence, we set Q = 7 and P = 7 for an accuracy
of 1Hz. We get x(tp) = {− 0.9809, 0.9239, 0.7071, 0, − 1, 1, 1},
and let us suppose φ0 = 0, s(tp) = {0.1951, − 0.3827, − 0.7071,
− 1, 0, 0, 0} and b = {0, 1, 1, 1, 1, 0, 0}, where p0 = 5
without regard of noise.

window (r=0, N samples)

Time-tag

n=0 1 2 m m+1
N-1 N

one cycle

x(n)

t

x(t)

window (r=1, N samples)
one cycle

Fig. 4 Shifting windows of cosine waveform with time-tag at time t = 0 s
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Two factors influence the accuracy or even the cor-
rectness of frequency estimation by exponential sam-
pling: first of all, if at the first sampling time t1 = 1/128
(s), the system frequency is suddenly changed to 65 Hz,
we have s(t1) = − 0.0491, which means b1 = 1 and intro-
duces frequency estimation error of 2Q−1 = 64 Hz; sec-
ondly, if the noise is big enough, values of samples may
change from negative to positive (e.g., b2 = − 0.3827 may
change to a positive value because of noise), which
introduce frequency error of 2Q−2 = 32 Hz. So in the
algorithm of amended exponential sampling (AES), we
may set b0 = 0 and b1 = 1 constantly for P =Q = 7.

3.2.2 Process of frequency tracking cycle-by-cycle
Flow chart of DFT iteration is shown in Fig. 5, where L

is the total number of cycles to be generated and f lmeas ,
l = 1,2,…,L are the measured frequency in the lth cycle
by inner-layered calculation. In the following, we named
the algorithm as “TLI-DFT (Two-layered iterative DFT)
aided by AES”. In Fig. 5, the inner-layered iteration

processes are implemented by iterative DFT in 1 cycle as
shown in Fig. 3.

3.2.3 Rate of change of amplitude and frequency
The rate of change of amplitude (ROCOA) is a simple
technical analysis indicator showing the difference
between the amplitudes of phasor Ar + 1 and Ar in the
period of Ts. It is calculated by taking the time-derivative
of the estimated amplitude numerically

ROCOA rð Þ ¼ Arþ1−Ar
� �

=Ts: ð21Þ

And the rate of change of frequency (ROCOF) in electri-
city networks is required by new IEEE/IEC/ CENELEC
standards. Network frequency and its variation are key in-
dicators of network stability and balance between electri-
city supply and demand. This balance is becoming more
critical with the increasing use of highly variable renewable
energy sources for electricity generation. At the same time,
ROCOF measurements are inadequate for monitoring this
balance. The ROCOF is calculated by

Fig. 5 Iteration process of TLI-DFT aided by AES
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ROCOF rð Þ ¼ f rþ1− f r
� �

=Ts : ð22Þ

3.3 DFT analysis of off-nominal stepped-signals
In general, voltage and current waveforms are not al-
ways nominal sinusoids or cosine wave, particular in
a distributed power system. Researchers have done
some works on correcting this asynchronous effect
[13, 28, 29]. Transients are non-unsteady states that
occur in the power system. They are electrical tran-
sients and electromechanical transients generally.
The former are caused by faults and other switching

operations, while the latter ones are generated by dy-
namic movement of rotors of generators and follow-
ing power system disturbances [26, 30]. Phasors
calculated in electrical transients often display a step
change in phase angles and amplitude, but not the
frequency. However, the motor speed in modern

power systems may deviate from synchronous speed
by 0.1~5 Hz, the phase angle behavior during the
phasor estimation window is approximately linear [26,
30]. Recommend by IEEE Std. C37.118-2005 [30],
three step-changing models are adopted.

3.3.1 Scenario of amplitude step
Signal of amplitude step is

x 0≤ t < 2Tð Þ ¼ A cos 2π f 0t þ φ0ð Þ
x t ¼ 2Tð Þ ¼ Aþ A

0

2
cos 2π f 0t þ φ0ð Þ

x 2T < t < 4Tð Þ ¼ A
0
cos 2π f 0t þ φ0ð Þ

8>><
>>:

; ð23Þ

where A and A' (we haveA′ ∈ {0.9A, 0.8A, 0.7A}) are
the amplitudes of a voltage or current signal. An ex-
ample of an amplitude step is shown in Fig. 6, in
which A = 1 p.u.. A step change occurs (A’→ A) at

Measured frequency (Hz) ROCOF

a b

c d

e f

Fig. 6 Amplitude step change scenarios (step change occurs at the beginning of the second cycle; A = 1 p.u., f0 = 60 Hz, φ0 = 0)
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time t = 2 T (cycle) in Fig. 6a. Amplitude given by
phasor is shown in Fig. 6b. The total vector error
(TVE) accuracy criterion detects errors in time
synchronization, and phasor magnitude and angle es-
timation errors shown in Fig. 6c, where an amplitude
variation of 0.1A generates 10% TVE.
TVE calculate the distortion of the signal from the

nominal one by

TVE ¼ Xmeas−Xnomij j
j Xnomi j � 100%; ð24Þ

where Xmeas is the measured vector, and Xnomi is the
nominal one.
The theoretical values of a synchrophasor representa-

tion of a sinusoid and the values obtained from a PMU
(phasor measure unit) may include differences in both
amplitude and phase. Although they could be separately
specified, the amplitude and phase differences are

considered together in this standard in the quantity
called TVE. TVE is an expression of the difference be-
tween a “perfect” sample of a theoretical synchrophasor
and the estimate given by the unit under test at the same
instant of time [25].
The amplitude step change can influence phase angle

of a phasor, the measured frequency, and ROCOF.
ROCOA, ROCOF, and frequency calculated by trad-

itional DFT algorithm is shown in Fig. 6c–e. We find
that an amplitude step can influence phasor measure-
ment whose samples contains the stepped one and the
variation starts from the beginning of first cycle to be-
ginning of second cycle (in time-axis) as shown in Fig. 6.

3.3.2 Scenario of phase step
A step change of phase angle Δω (Δω ∈ {π/2, π/3, π/6})
at time t = 2 T (cycle) is shown in Fig. 7, in which A = 1
p.u., f0 = 60 Hz, φ0 = 0. We have

Time domain waveform Amplitude of phasor with 

ROCOA Measured phase angle, nominal phase angle and their difference

Difference of measured phase angle and the nominal one TVE

a b

c d

e f

Fig. 7 Phase step change examples (step change occurs at the beginning of the second cycle t = 2 T, A = 1 p.u., f0 = 60 Hz, φ0 = 0)
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x 0≤ t < 2Tð Þ ¼ A cos 2π f 0tð Þ
x t ¼ 2Tð Þ ¼ A cos 2π f 0t þ Δω=2ð Þ
x 2T < t < 4Tð Þ ¼ A cos 2π f 0t þ Δωð Þ

8<
: ð25Þ

Phase step influences amplitude and phase of measured
phasor in a great deal. The measured TVE, frequency, and
ROCOF are influenced as well as shown in Fig. 7.

3.3.3 Scenario of frequency step
The signal of frequency step is

x 0≤ t < 2Tð Þ ¼ A cos 2π f 0t þ φ0ð Þ
x t ¼ 2Tð Þ ¼ A

x 2T < t < 4Tð Þ ¼ A cos 2π f 0 þ Δ fð Þtð Þ

8<
: ; ð26Þ

where Δf is the frequency step of the signal as shown in
Fig. 8, in which A = 1 p.u., f

0
= 60 Hz, and φ

0
= 0.

Step occurs at the beginning of the second cycle t =
2 T (cycle).

A phasor is severely influenced by step frequency as
long as it exists in the signal. The circumstances of

Time domain waveform (Δf=3 Hz) Amplitude of phasor with Δdifferent f

ROCOA Measured phase angle, nominal phase angle and their difference(Δ f=3 Hz)

Difference of measured phase angle and the nominal one TVE

Measured frequency (Hz) ROCOF

a b

c d

e f

g h

Fig. 8 Frequency step change examples (step change occurs at the beginning of the second cycle; A = 1 p.u., f0 = 60 Hz, φ0 = 0)
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phase step and frequency step are similar as shown in
Figs. 7 and 8.

4 Simulation results and data analysis
Traditionally, an adaptive sampling algorithm with vary-
ing sample interval Ts is adopted. Based on a feedback
system, if the sampling frequency fs equals to N times of
the frequency of the incoming signal finput, it provides
that the incoming signal does not fluctuate in frequency
[31]. New algorithm is compared with the traditional
one. Parameters used in simulation are listed in Table 1.
Weighted mean value of frequency f r in Eq. 27 is

adopted by iteration process.

f r ¼ 0:6� f rþ2 þ 0:3� f rþ1 þ 0:1� f r r≥0ð Þ:
ð27Þ

Weighted mean of fr, fr + 1, and fr + 2 that are calcu-
lated by three successive windows is adopted as a substi-
tute of fr, which can provide a more smooth value for
evaluation [25].

Five more complicated scenarios are considered to
demonstrate the performance of the algorithms in the
following text.
Scenario 1: Frequency changes randomly in every cycle.
The signal with frequency change randomly in each

cycle is represented as

x tð Þ ¼ A cos 2π f 0 þ Δ f lð Þt þ φ0½ � þ Nnoise

l ¼ 1; 2;…; L; 0≤ t≤LTð Þ;
ð28Þ

where Δfl = {Δf1, Δf2,…,ΔfL} and the integral Δfl ∈ [−5,
5]Hz are generated stochastically.
Sudden change of frequency introduces harmonics.

Signals of this scenario contain additive white Gaussian
noise (AWGN) Nnoise which can influence convergence
of DFT iteration, especially in the situation of low SNR.
Results of frequency tracking cycle-by-cycle by three al-
gorithms are listed in Table 2, in which the smallest
MSE is gotten by TLI-DFT aided by AES. Mean squared
error (MSE) of frequencies versus SNR and the number
of iterations are shown in Fig. 9.
Because Δfl is generated stochastically in every cycle,

frequencies of different cycles are irrelevant. Iterative
DFT algorithm was utilized according to Fig. 3.
Comparing with algorithm of DFT iteration (red curve)

in 1 cycle, algorithm of “DFT aided by AES (Green curve)”
would not do much help as shown in Fig. 9. It is due to
the fact that frequency step happens at the beginning of
every cycle randomly, and the frequency calculated in pre-
vious cycle would not help to give a more precise initial
frequency for the following cycle. In the algorithm of [31],
the sampling frequency at each iteration is re-calculated
till the value of tan(φm/2) approaching the nominal and
fixed value tan(φ0/2) [31].
In each cycle of iteration, three measured frequencies are

calculated by shifting windows, and then they are weighted
and averaged by Eq. 27. Performance of DFT iteration is
better than the traditional one. In Figs. 9a and 10a, MSE

Table 1 Parameters used in simulation

Symbol Quantity Value Unit

f0 Fundamental frequency 60 Hz

ω Angular frequency of fundamental signal – Radian

A Amplitude of fundamental signal 1 p.u.

φ0 Initial phase angle 0 Degrees

N Number of samples per cycle 12 –

fs Sampling frequency – Hz

Ts Sampling interval – Seconds

L Length of signal (in cycles) 1000 Cycles

T Length of 1 cycle 0.0167 Seconds

Δf Shifting frequency off the nominal one [− 5, 5] Hz

SNR Signal-to-noise ratio [10, 40] dB

Table 2 Comparison of three algorithms (iterative process stops at third iteration)

SNR Algorithm Δf l (input frequency generated randomly per cycle, which are listed for the first 10 cycles, Hz) Total
MSE1 2 3 4 5 6 7 8 9 10

0 (60) 0 (60) 5 (65) − 3 (57) 2 (62) − 2 (58) − 2 (58) 4 (64) 0 (60) 1 (61)

20 dB DFT iteration aided by AES 60.0333 58.4136 64.0000 57.9770 60.6543 57.1513 57.5411 63.5073 58.9226 61.1667 1.9778

DFT iteration 59.2771 58.7789 65.5311 57.7068 60.6949 56.6914 57.1799 64.4430 59.3222 62.5303 1.4521

Variable sampling measurement [31] 57.4167 62.9167 62.7500 60.3333 61.0000 58.4167 60.2500 64.8333 55.7500 61.8333 5.5808

15 dB 3 (63) 2 (62) 5 (65) − 3 (57) 4 (64) 0 (60) 2 (62) − 4 (56) − 3 (57) 5 (65)

DFT iteration aided by AES 64.0144 60.2727 62.6321 55.2965 60.7808 58.0518 65.3453 57.9144 58.0186 64.9271 3.8810

DFT iteration 63.6640 61.2829 57.7354 56.3717 65.5300 57.5044 62.4709 55.4884 56.9142 60.9407 3.6784

Variable sampling measurement [31] 58.2500 61.0833 64.0000 60.2500 62.0833 51.5167 60.0000 51.6667 58.8333 68.9167 10.9262
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decreases with the increasing of SNR. In Figs. 9b and 10b,
the gain is 5.6~6 dB better than algorithm of [31] .
Scenario 2: Amplitude modulated by a cosine signal.
The signal with amplitude modulated by a cosine sig-

nal is represented as
x tð Þ ¼ A 1þ a � cos 2π f mtð Þ½ � cos 2π f 0t þ φ0ð Þ þ Nnoise 0≤ t≤LTð Þ;

ð29Þ
where a and fm are the modulating factor and the modula-
tion frequency. Performances of three algorithms are
compared and shown in Fig. 10, from which we find per-
formance of algorithm TLI-DFT aided by AES is better
than other two if the SNR is less than 20 dB. And two or
three times of iteration can give a satisfying result as
shown in Fig. 10b.
In Fig. 11, MSE increases with the increasing of fm and

a. Using trigonometric function, Eq. 29 is rewritten to be
x tð Þ ¼ A cos 2π f 0t þ φ0ð Þ þ Nnoise þ Aa

2
cos 2π f 0 þ f mð Þt þ φ0½ �

þAa
2

cos 2π f 0− f mð Þt þ φ0½ � 0≤ t≤LTð Þ:
ð30Þ

The amplitude modulation can be look on as adding
inter-harmonics into a nominal signal from Eq. (30).
Because the modulation frequency fm is generally much

smaller than the nominal frequency, the inter-harmonics
are quite close to the nominal one in spectrum. It is hard

to be eliminated by low-pass filters (LPF) or smoothed by
windows. Influence of inter-harmonics on TVE is shown
in Fig. 12 with different fm and a.
Scenario 3: Phase modulated by a cosine signal.
The signal with phase modulated by a cosine signal is

represented by

x tð Þ ¼ A cos 2π f 0t þ a � cos 2π f mtð Þ þ φ0ð Þ þ Nnoise

¼ A cos 2π f 0t þ φm þ φ0ð Þ þ Nnoise;

ð31Þ

where a is modulation factor and fm is modulation fre-
quency. Adopting second-order Taylor expansion and
trigonometric function, we have

x tð Þ ¼ A cos 2π f 0t þ a cos 2π f mtð Þ þ φ0ð Þ
¼Taylor

A cos 2π f 0t þ φ0ð Þ−A2π f 0 sin 2π f 0t þ φ0ð Þ
�a cos 2π f mtð Þ
−A 2π f 0ð Þ2 cos 2π f 0t þ φ0ð Þ

2!
� a � cos 2π f mtð Þ½ �2 þ…

≈ A cos 2π f 0t þ φ0ð Þ−A2π f 0a
2

sin 2π f 0 þ f mð Þt þ φ0½ �

−
A2π f 0a

2
sin 2π f 0− f mð Þt þ φ0½ �;

ð32Þ

where phase modulation factor a < < 1. The phase

MSE vs. SNR (Iteration process stops at 3 iteration) MSE vs. Number of iteration (SNR=20 dB)rda b

Fig. 9 Performance comparison of three algorithms in scenario 1 (in the first algorithm (red)), initial frequency estimation of DFT iteration is aided by AES,
in which P=Q= 7. In the second algorithm (green), initial frequency for DFT iteration is set to be 60 Hz in every cycle. The third one is from paper [31])

MSE vs. SNR (Iteration process stops at 3rd iteration) MSE vs. Number of iteration (SNR=20 dB)a b 

Fig. 10 Performance comparison of three algorithms in scenario 2 (a = 0.04, fm = 2 Hz)
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MSE vs. fm MSE vs. aa b

Fig. 11 Performance of TLI-DFT with or without AES algorithms in scenario 2 (iterative process stops at third iteration, a = 0.04, fm = 2 Hz)

Amplitude of phasor (fm=2 Hz) TVE (fm=2 Hz)

Amplitude of phasor (fm=4 Hz) TVE (fm=4 Hz)

Amplitude of phasor (fm=6 Hz) TVE (fm=6 Hz)

a b

c d

e f

Fig. 12 Amplitude and TVE of phasor in amplitude modulation with different modulating factor and modulation frequency (A = 1 p.u.,
f0 = 60 Hz, φ0 = 0)
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modulation is the same as amplitude modulation in
Eq. 30. And if the amplitude and phase modulations
occur simultaneously, the signal x(t) contains the sum
and difference frequencies of sine and cosine compo-
nents, which is called inter-modulation. TVE of phasor
in phase modulation with different modulation fre-
quency is shown in Fig. 13.
Scenario 4: Frequency modulated by a cosine signal.
A signal whose frequency is modulated by cosine sig-

nal with the modulation factor a and the modulation
frequency fm is represented as

x tð Þ ¼ A cos 2π f 0 þ a � cos 2π f mtð Þð Þt þ φ0ð Þ þ Nnoise

¼ A cos 2π f 0t þ a2π cos 2π f mtð Þt þ φ0ð Þ þ Nnoise

¼ A cos 2π f 0t þ φ
0
m þ φ0

� 	
þ Nnoise;

ð33Þ

whose representation is the same as the representa-
tion of Eq. 31, except φ

0
m ¼ a2π cosð2π f mtÞt . And the

φ
0
mwill become bigger and bigger with the passing of

time t. Fortunately, three kinds of modulation in sce-
nario 2~4 are all of short-time characteristic, which
lasts only several cycles in transient states of a power
system. So the representations of three modulation
models are all similar in transient conditions.
Scenario 5: Decaying direct current offset components.

In an electrical power system, when a fault or a dis-
turbance occurs, the current signal consists of expo-
nentially decaying direct current (DC) offsets. The
decaying rate of a DC offset depends on the
time-constant determined by the inductive reactance
to resistance ratio (X/R ratio) of the system. The
large the X/R ratio is, the slower the DC component
decays. Signal containing both the nominal compo-
nent and decaying DC offsets is

x tð Þ ¼ A cos 2π f 0t þ φ0ð Þ−
XNDC

i¼1

Iie
−t=τi þ Nnoise 0≤ t≤TDCð Þ;

ð34Þ
where NDC is the number of DC offset components,
Ii and τi are the amplitude and time constant of the
ith DC offset component. TDC is the operation time
of decaying DC offsets. DC offset is a non-periodic
signal whose frequency encompasses the whole
spectrum, and it cannot be removed by simple anti-
aliasing LPF.

fm=2 Hz fm=4 Hz

fm=6 Hz

a b

c

Fig. 13 TVE of phasor in phase modulation with different modulating factor and modulation frequency (A = 1 p.u., f0 = 60 Hz, φ0 = 0)

Table 3 Parameters of decaying DC offset components

Number Amplitude Ii (p.u.) Time constant τi (cycle)

1 − 1 0.5

2 − 0.125 5
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A digital mimic filter was proposed to suppress the
effect of decaying DC offsets over a broad range of
time constants [32, 33]. But this filter needs exact
values of the time constants for eliminating DC off-
sets, which is usually impractical in power system.
Kalman filter also needs the exact time constants to
obtain a good performance of filtering [5–7, 34].
DFT-based techniques are generally used for removal
decaying DC offset from phasor estimation [35–40].
On the other hand, the decaying DC component af-
fects the accuracy of the DFT algorithm greatly [41–
43]. Different windows have been suggested and
half-cycle DFT was used to get the phasor [10, 43–
45] in the case of decaying DC offsets. Full-cycle
DFT is a widely adopted [33, 36, 46]. Suppose there
are two decaying DC offset components (i.e., NDC =

2). Their parameters are listed in Table 3. Their
wave-forms are shown in Figs. 14 and 15. Speed of
decaying of DC offset 1 is faster than that of DC off-
set 2. But the absolute value of amplitude of DC off-
set 2 is smaller.
In Figs. 9, 10, and 16, SNR = 20 dB is about the

point of inflection, although curves of MSE are not as
smooth as desirable owing to the limitation of num-
ber of estimated frequencies (i.e., TDC = 10 cycle). MSE
of our proposed algorithms would not obtain much
more gain when number of iterations is more than 3
or 4 as shown in Fig. 16b.
Frequency tracking and ROCOF by TLI-DFT are

plotted in Fig. 17. Performance of algorithm TLI-DFT
aided by AES is almost the same as that of TLI-DFT,
because AES is used only once in the initial

Fig. 14 Waveform described in scenario 5

Fig. 15 Amplitude of decaying DC offsets
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frequency estimation of inner-layered iteration in the
first cycle.

5 Additional discussions
Chaari et al. proposed a new tool of wavelets for the
resonant-grounded power distribution systems [47–49].
An earth-phase fault was simulated, and then a wavelet
transform (WT) is applied on two kinds of fault currents
in the transient signals. The meaningful information is
contained in fault signals and was obtained by this re-
cursive wavelet transformation.
They also used wavelets-associated artificial neural

networks to classified fault currents. They chose
“mother wavelet” by fast decaying oscillation function
in a simulated 20 kV resonant grounded relaying
networks.
According to WT theory, Zhang et al. constructed a

mother wavelet that is suitable for processing transient
signals in a power system [50]. WT was carried out to
detect transform inrush current. This recursive WT con-
sist of two parts: backward transform based on historical
data and forward transform, the latter one is calculated
with future data and is based on the detection of the
singularity of the power signals.
WT is more suitable in detecting disturbances than

DFT/FFT when the time varies. With the

time-frequency localization characteristics embedded
in wavelets, the information of frequency and time
combined might be presented as a visualized scheme
[51]. Morlet wavelets was adopted and tested of vari-
ous simulated disturbances, e.g., harmonics analysis,
momentary interruption and oscillatory, voltage
swell, and sag. It is feasible and practical to use WT
in supervising disturbances in a power system [52];
however, more suitable WT approaches should be
found and evaluated.
Trapezoid WT was supposed to be better than

other WT methods, such as Mexico hat wavelet, Haar
wavelet, and Morlet wavelet, in localizability and sym-
metry, and it had a more even frequency characteris-
tics [53]. Trapezoid WT required less time-window
data to detect characteristics in the fault signal and
was better continuous than Shannon wavelet function
in frequency tracking.
Lin et al. proposed a two-stepped approach to filter

the high order harmonics by a bi-orthogonal WT and
then extract the oscillation feature from the remnant
signal by a complex WT. And in order to be imple-
mented for real-time applications, they used a Mallat
algorithm and the recursive version for torsional oscil-
lation [54]. And furthermore, an improved boundary
protection scheme based on a complex WT (which was

MSE vs. SNR (Iteration process stops at 3rd iteration) MSE vs. Number of iteration (SNR=20 dB)a b

Fig. 16 Performance of three algorithms with decaying DC offsets (considering the time constants of two decaying DC offsets. TDC = 10 cycle)

Frequency measured cycle-by-cycle ROCOF calculated cycle-by-cyclea b 

Fig. 17 Frequency tracking and ROCOF by TLI-DFT with decaying DC offsets
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used as a band-pass filter to contain enough higher
frequencies) and spectrum energy evaluation was put
forward to distinguish internal faults from different
kinds of external ones with higher reliability [55]. Their
scheme provides an option to implement boundary pro-
tection and transient-based protection.
Within three samples of an input signal, a recursive

WT was capable of estimating the frequency known
as fast response. It also could achieve accurate esti-
mation over a wide range of frequency changes [56–
58]. To meet the needs of high accuracy and low
amount of calculation, people could select the signal
sampling rate and data window length arbitrarily. In
their conclusions, selecting sampling frequency of 18
kHz, a phasor could be computed within 0.5 cycle of
input signal and the error was less than 1% TVE.
How to select the two parameters of sampling rate
and window length is the key issue.

6 Conclusions
A new approach of two-layered iterative DFT is proposed
to track the input frequency in dynamic states. Inner-lay-
ered DFT iteration is adopted in every cycle, and
frequency estimated in the previous cycle is used as the
initial frequency in the following one. And a simple and
fast method, exponential sampling is amended to adapt to
the non-steady states. This algorithm is more accurate
than the traditional one. New algorithms are compared
with the old one with different situations, e.g., input fre-
quencies changing randomly, signal modulated by a cosine
signal, and in the presence of decaying DC offsets. New
algorithms are tested with different simulation parameters,
such as different SNR and maximal numbers of iteration
predefined to stop the iteration process.
Simulation results show that SNR of 20 dB is about

the point of inflection. Low SNR would influence the
performance of proposed algorithm. Fortunately,
many researches show that wide-band AWGN is not
a serious problem is power system, which is always
more than 40 dB. And maximal numbers of iteration
is better to be three or four. More iteration would
not do much help to increase the accuracy of fre-
quency estimation.
In practical, variable sampling algorithms are highly

connected with phase locked loop (PLL) of the fre-
quency generator and the digital signal processor.
Multiple-rated structure of adaptive PLL and
time-varying PLL-based sampling methods is the main
work for implementation of the proposed TLI-DFT
algorithm.
In the following study, Hamming window, Hanning

window, Blackman window, and other kinks of win-
dows should be compared with rectangle window
used in this study.

7 Appendix

A. Formula derivations of Η(Δf,N,Ts).

From Eq. 9, we have

Η Δ f ;N ;Tsð Þ ¼ 1
N

�
XN−1

n¼0

e j2πΔfnTs ¼ 1
N

� 1−e
jN2πΔfT s

1−e j2πΔfTs

¼ 1
N

� 1− cos N2πΔfT sð Þ− j sin N2πΔfTsð Þ
1− cos 2πΔfT sð Þ− j sin 2πΔfT sð Þ

¼ 1
N

� 1− 1−2 sin2 NπΔfTsð Þ
 �
− j2 sin NπΔfTsð Þ cos NπΔfTsð Þ

1− 1−2 sin2 πΔfT sð Þ
 �
− j2 sin πΔfT sð Þ cos πΔfTsð Þ

¼ 1
N

� sin NπΔfTsð Þ
sin πΔfT sð Þ � sin NπΔfTsð Þ− j cos NπΔfT sð Þ

sin πΔfTsð Þ− j cos πΔfTsð Þ

¼ 1
N

� sin NπΔfT sð Þ
sin πΔfT sð Þ � cos NπΔfTsð Þ þ j sin NπΔfT sð Þ

cos πΔfTsð Þ þ j sin πΔfT sð Þ

¼ 1
N

� sin NπΔfTsð Þ
sin πΔfT sð Þ � e j N−1ð ÞπΔfT s½ �:

ð35Þ

Using second-order Taylor expansion and also trigono-
metric function, we have

s tð Þ ¼ A1 sin ω1t þ a
0
sin ωmod

0
t

� 	
þ φ1

� 	

¼Taylor
A1 sin ω1t þ φ1ð Þ þ A1ω1 cos ω1t þ φ1ð Þ � a0

sin ωmod
0
t

� 	

−A1ω
2
1
sin ω1t þ φ1ð Þ

2!
� a0 � sin ω0

modt
� �
 �2 þ…

≈ A1 sin ω1t þ φ1ð Þ þ A1ω1a
0

2
sin ω1 þ ωmod

0
� 	

t þ φ1

h i

−
A1ω1a

0

2
sin ω1−ωmod

0
� 	

t þ φ1

h i
:

ð36Þ

Η� 2 f 0 þ Δ f ;N ;Tsð Þ

¼ 1
N

� sin Nπ 2 f 0 þ Δ fð ÞTs½ �
sin π 2 f 0 þ Δ fð ÞTs½ � � e j N−1ð Þπ 2 f 0þΔ fð ÞTs½ �

n o�

¼ 1
N

� − sin Nπ 2 f 0 þ Δ fð ÞTs½ �
− sin π 2 f 0 þ Δ fð ÞTs½ � � e− j N−1ð Þπ 2 f 0þΔ fð ÞTs½ �

¼ 1
N

� sin Nπ − 2 f 0 þ Δ fð Þð ÞTs½ �
sin π − 2 f 0 þ Δ fð Þð ÞTs½ � � e j N−1ð Þπ − 2 f 0þΔ fð Þð ÞTs½ �

¼ Η − 2 f 0 þ Δ fð Þ;N ;Tsð Þ:
ð37Þ

B. Moduli of H(Δf,N,Ts) and H(2f0 + Δf,N,Ts).

Li EURASIP Journal on Wireless Communications and Networking         (2019) 2019:28 Page 17 of 19



Abbreviations
AES: Amended exponential sampling; AWGN: Additive white Gaussian noise;
DC: Direct current; DFT: Discrete Fourier transform; FFT: Fast Fourier
transform; LPF: Low-pass filters; MSE: Mean squared error; PLL: Phase locked
loop; PMU: Phasor measure unit; ROCOA: Rate of change of amplitude;
ROCOF: Rate of change of frequency; SNR: Signal-to-noise ratio; TLI-
DFT: Two-layered iterative DFT; TVE: Total vector error; WT: Wavelet
transform; X/R: Inductive reactance to resistance

Acknowledgements
Not applicable

Funding
This work in partly supported by High Tech. of Key Research and
Development Project of Hainan Province (ZDYF 2018012) and by National
Natural Science Foundation of China (no. 61661018).

Authors’ contributions
HL contributed 100%. The author read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.
A small part of this paper was submitted to 2018 International Conference
on Communications, Signal processing and Systems (CSPS 2018) previously.
However, the vast majority of this study is original, and new algorithms and
scenarios are introduced firstly in the paper. In this paper, a frequency
estimation method named exponential sampling is amended to calculate
the initial sampling frequency in the inner-layered process of the DFT iter-
ation. Performance of new algorithm were studied and analyzed in some
non-steady states of different scenarios (e.g., sudden and random frequency
change, signal modulated by a cosine signal).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 6 September 2018 Accepted: 11 December 2018

References
1. M.M. Begovic, P.M. Djuric, S. Dunlap, A.G. Phadke, Frequency tracking in

power networks in the presence of harmonics. IEEE Trans. Power Del 8(2),
480–486 (1993)

2. C.T. Nguyen, K. Srinivasan, A new technique for rapid tracking of frequency
deviation based on level crossings. IEEE Trans. Power App. Syst PAS-103(8),
2230–2236 (1984)

3. M.S. Sachdev, M.M. Giray, A least error squares technique for determining
power system frequency. IEEE Trans. Power App. Syst PAS-104(2),
437–444 (1985)

4. V.V. Terzija, M.B. Djuric, B.D. Kovacevic, Voltage phasor and local system
frequency estimation using Newton type algorithm. IEEE Trans. Power Del
9(3), 1368–1374 (1994)

5. H.C. Wood, N.G. Johnson, M.S. Sachdev, Kalman filtering applied to power
system measurements for relaying. IEEE Trans. Power App. Syst PAS-104(12),
3565–3573 (1985)

6. A. Routray, A.K. Pradhan, K.P. Rao, A novel Kalman filter for frequency
estimation of distorted signals in power systems. IEEE Trans. Instrum.
Meas 51(3), 469–479 (2002)

7. E.M. Siavashi, S. Afshania, M.T. Bina, M.K. Zadeh, M.R. Baradar, Frequency
estimation of distorted signals in power systems using particle extended
Kalman filter (2nd Int. Conf. PEITS, Shenzhen, 2009), pp. 174–178

8. T. Lobos, J. Rezmer, Real-time determination of power system frequency.
IEEE Trans. Instrum. Meas 46(4), 877–881 (1997)

9. R. Vianello, M.O. Prates, C.A. Duque, A.S. Cequeira, P.M. da Silveira, P.F.
Ribeiro, New phasor estimator in the presence of harmonics, DC-offset and
interharmonics (14th ICHQ, Bergamo, 2010), pp. 1–5

10. J.Z. Yang, C.W. Liu, A new family of measurement technique for tracking
voltage phasor, local system frequency, harmonics and DC offset, IEEE PES
Summer Meeting (IEEE, Seattle, 2000), pp. 1327–1332

11. B. Zeng, Z.S. Teng, Y.L. Cai, S.Y. Guo, B.Y. Qing, Harmonic phasor analysis based
on improved FFT algorithm. IEEE Trans. Smart Grid 2(1), 51–59 (2011)

12. M. Karimi-Ghartemani, B. Ooi, A. Bakhshai, in Investigation of DFT-based
phasor measurement algorithm. IEEE PES General Meeting (IEEE, Minneapolis,
2010), pp. 1–6

13. A.G. Phadke, J.S. Thorp, M.G. Adamiak, A new measurement technique
for tracking voltage phasor, local system frequency and rate of
change of frequency. IEEE Trans. on Power App. Syst PAS-102(5),
1025–1038 (1983)

14. S. Kay, Simple frequency estimation via exponential samples. IEEE Signal
Process. Lett 1(5), 73–75 (1994)

15. H. Olkkonen, J.T. Olkkonen, Log-time sampling of signals: Zeta transform.
Open J. Discrete Mathematics 1(2), 62–65 (2011)

16. I. Sadinezhad, V.G. Agelidis, in Extended staggered undersampling
synchrophasor estimation technique for wide area measurement systems.
IEEE PES ISGT (IEEE, Perth, 2011), pp. 1–7

17. C. Rusu, P. Kuosmanen, Phase approximation by logarithmic sampling of gain.
IEEE Trans. Circuits Syst. II Analog Digit. Signal Process 50(2), 93–101 (2003)

18. S. Trittle, F.A. Hamprecht, Near optimum sampling design and an efficient
algorithm for single tone frequency estimation. Digit. Signal Process 19(4),
628–639 (2009)

19. C.S. Yen, Phase-locked sampling instruments. IEEE Trans. Instrum. Meas 14(1/2),
64–68 (1965)

20. H. Karimi, M. Karimi-Ghartemani, M.R. Iravani, Estimation of frequency and its
rate of change for applications in power systems. IEEE Trans. Power Del
19(2), 472–480 (2004)

21. R. Elasmi-Ksibi, H. Besbes, R. Lopez-Valcarce, S. Cherif, Frequency estimation
of real-valued single-tone in colored noise using multiple autocorrelation
lags. Signal Process 90(7), 2303–2307 (2010)

22. P. Stoica, R.L. Moses, T. Soderstrom, J. Li, Optimal high-order Yule-Walker
estimation of sinusoidal frequencies. IEEE Trans. Signal Process 39(6),
1360–1368 (1991)

23. D. Hart, D. Novosel, H. Y, B. Smith, M. Egolf, A new frequency tracking and
phasor estimation algorithm for generator protection. IEEE Trans. Power Del
12(3), 1064–1073 (1997)

Modulus of f,N,Ts) Modulus of H(2f0 f,N,Ts)a b

Fig. 18 Moduli of H(Δf,N,Ts) and H(2f0 +Δf,N,Ts) vs. Δf when Δf approaches 0 (f0 = 60 Hz)

Li EURASIP Journal on Wireless Communications and Networking         (2019) 2019:28 Page 18 of 19



24. A.G. Phadke, B. Kasztenny, Synchronized phasor and frequency
measurement under transient conditions. IEEE Trans. Power Del 24(1),
89–95 (2009)

25. IEEE Standard for Synchrophasors Measurement for Power Systems. IEEE
Power & Energy Society. IEEE Std. C37.118.1-2011 (Revision of IEEE Std. C37.
118TM-2005). 2011

26. K. Martin, D. Hamai, M.G. Adamiak, S. Anderson, M. Begovic, G. Benmouyal, G.
Brunello, J. Burger, J.Y. Cai, B. Dickerson, V. Gharpure, B. Kennedy, D. Karlsson, A.
G. Phadke, J. Salj, V. Skendzic, J. Sperr, Y. Song, C. Huntley, B. Kasztenny, E. Price,
Exploring the IEEE Standard C37.118-2005 synchrophasors for power systems.
IEEE Trans. Power Del 23(4), 1805–1811 (2008)

27. S. Gomes, N. Martins, A. Stankovic, in Improved controller design using new
dynamic phasor models of SVC’s suitable for high frequency analysis. IEEE PES
Transm. Distrib. Conf. Exhibi (IEEE, Dallas, 2006), pp. 1436–1444

28. K. Nakano, Y. Ota, H. Ukai, K. Nakamura, H. Fujita, Frequency detection method
based on recursive DFT algorithm (14th PSCC, Sevilla, 2002), pp. 1–7

29. M.H. Wang, Y.Z. Sun, A practical method to improve phasor and power
measurement accuracy of DFT algorithms. IEEE Trans. Power Del 21(3),
1054–1062 (2006)

30. IEEE Standard for Synchrophasors for Power Systems. IEEE Power
Engineering Society. IEEE Std. C37.118-2005 (Revision of IEEE Std. 1344TM-
1995). 2006

31. G. Benmouyal, An adaptive sampling-interval generator for digital relaying.
IEEE Trans. Power Del 4(3), 1602–1609 (1989)

32. G. Benmouyal, Removal of DC–offset in current waveforms using digital
mimic filtering. IEEE Trans. Power Del 10(2), 621–630 (1995)

33. C.S. Yu, A discrete Fourier transform-based adaptive mimic phasor estimator for
distance relaying applications. IEEE Trans. Power Del 21(4), 1839–1846 (2006)

34. A.A. Girgis, R.G. Brown, Application of Kalman filtering in computer relaying.
IEEE Trans. App. Syst PAS-100(7), 3387–3397 (1981)

35. T.S. Sidhu, X. Zhang, F. Albasri, M.S. Sachdev, Discrete-Fourier transform-
based technique for removal of decaying DC offset from phasor estimates.
IEE Proc. Gen. Transm. Distrib 150(6), 745–752 (2003)

36. V. Balamourougan, T.S. Sidhu, in A new filtering technique to eliminate
decaying dc and harmonics for power system phasor estimation. IEEE Power
India Conf (IEEE, New Delhi), p. 2006

37. D. Belega, D. Petri, in Accuracy of a DFT phasor estimator at off-nominal
frequency in either steady state of transient conditions. IEEE Int. Conf. SMFG
(IEEE, Bologna, 2011), pp. 45–50

38. S.H. Kang, D.G. Lee, S.R. Nam, P.A. Crossley, Y.C. Kang, Fourier transform-
based modified phasor estimation method immune to the effect of the DC
offsets. IEEE Trans. Power Del 24(3), 1104–1111 (2009)

39. D.G. Lee, Y.J. Oh, S.H. Kang, B.M. Han, in Distance relaying algorithm usinga
DFT-based modified phasor estimation method. IEEE Bucharest Power Tech.
Conf (IEEE, Bucharest, 2009), pp. 1–6

40. A.D. de Oliveira, L.R.M. Silva, C.H. Martins, R.R. Aleixo, C.A. Duque, A.S.
Cerqueira, in An improved DFT based method for phasor estimation in fault
scenarios. IEEE PES General Meeting (IEEE, San Diego, 2012), pp. 1–5

41. H.B. ElRefaie, A.I. Megahed, in A novel technique to eliminate the effect of
decaying DC component on DFT based phasor estimation. IEEE PES General
Meeting (IEEE, Minneapolis, 2010), pp. 1–8

42. Y.H. Lin, C.W. Liu, in A new DFT-based phasor computation algorithm for
transmission line digital protection. Asia Pacific IEEE/PES Transm. Distrib. Conf.
Exhibi (IEEE, Yokohama, 2002), pp. 1733–1737

43. X. Liu, M. Jia, X. Zhang, W. Lu, A novel multi-channel internet of things
based on dynamic Spectrum sharing in 5G communication. IEEE Internet
Things J. (Early Access) 99, 1–1 (2018)

44. X. Liu, F. Li, Z.Y. Na, Optimal resource allocation in simultaneous cooperative
Spectrum sensing and energy harvesting for multichannel cognitive radio.
IEEE Access 5, 3801–3812 (2017)

45. G. JC, Y. SL, Removal of DC offset in current and voltage signals using a
novel Fourier filter algorithm. IEEE Trans. Power Del 15(1), 73–79 (2000)

46. X. Liu, M. Jia, Z.Y. Na, W. Lu, F. Li, Multi-modal cooperative Spectrum sensing
based on Dempster-Shafer fusion in 5G-based cognitive radio. IEEE Access
6, 199–208 (2018)

47. M. Kezunovic, P. Spasojevic, B. Perunicic, New digital signal processing
algorithms for frequency deviation measurement. IEEE Trans. Power Del
7(2), 1563–1573 (1992)

48. O. Chaari, M. Meunier, in A recursive wavelet transform analysis of Earth fault
currents in Petersen-coil-protected power distribution networks. IEEE-SP

international symposium on time- frequency and time-scale analysis (IEEE,
Philadelphia, 1994), pp. 162–165

49. O. Chaari, M. Meunier, F. Brouaye, Wavelets: A new tool for the resonant
grounded power distribution system relaying. IEEE Trans. Power Del 11(3),
1301–1308 (1996)

50. C.L. Zhang, Y.Z. Huang, X.X. Ma, W.Z. Lu, G.X. Wang, in A new approach to
detect transformer inrush current by applying wavelet transform. International
Conference on Power System Technology. Proceedings (IEEE, Beijing, 1998),
pp. 1040–1044

51. S.J. Huang, C.T. Hsieh, C.L. Huang, Application of Morlet wavelets to supervise
power system disturbances. IEEE Trans. Power Del 14(1), 235–243 (1999)

52. O. Poisson, P. Rioual, M. Meunier, in Detection and measurement of power
quality disturbances using wavelet transform. 8th International Conference on
Harmonics and Quality of Power (IEEE, Athens, 1998), pp. 1125–1130

53. Z. Ren, Q.G. Huang, L. Guan, W.Y. Huang, in A new method for power systems
frequency tracking based on trapezoid wavelet transform. 5th APSCOM (IEEE,
Hongkong, 2000), pp. 364–369

54. X.N. Lin, H. Zhang, P. Liu, O.P. Malik, Wavelet based scheme for detection of
torsional oscillation. IEEE Trans. Power Sys 17(4), 1096–1101 (2002)

55. X.N. Lin, H.F. Liu, in A fast recursive wavelet based on boundary protection
scheme. IEEE Power Engineering Society General Meeting (IEEE, San
Francisco, 2005), pp. 1–6

56. J. Ren, M. Kezunovic, in Use of recursive wavelet transform for estimating
power system frequency and phasors. IEEE PES T&D (IEEE, New Orleans, 2010),
pp. 1–6

57. J. Ren, M. Kezunovic, in A wavelet method of power system frequency and
harmonic estimation. North American Power Symposium (IEEE, Arlington,
2010), pp. 1–6

58. J. Ren, M. Kezunovic, Real-time power system frequency and phasors
estimation using recursive wavelet transform. IEEE Trans. Power Del 26(3),
1392–1402 (2011)

Li EURASIP Journal on Wireless Communications and Networking         (2019) 2019:28 Page 19 of 19


	Abstract
	Introduction
	Method of frequency estimation by DFT
	Algorithm of classic DFT
	Frequency estimation by classic DFT
	Frequency analysis for an off-nominal signal

	Frequency tracking by iterative DFT with �re-sampling
	Inner-layered DFT iteration by re-sampling
	Outer-layered DFT iteration between cycles
	Determination of initial frequency by amended exponential sampling
	Process of frequency tracking cycle-by-cycle
	Rate of change of amplitude and frequency

	DFT analysis of off-nominal stepped-signals
	Scenario of amplitude step
	Scenario of phase step
	Scenario of frequency step


	Simulation results and data analysis
	Additional discussions
	Conclusions
	Appendix
	Abbreviations
	Acknowledgements
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

