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DOA estimation for far-field sources in
mixed signals with mutual coupling and
gain-phase error array
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Abstract

Mutual coupling and gain-phase errors are very common in sensor channels for array signal processing, and they
have serious impacts on the performance of most algorithms, especially in practical applications. Therefore, a new
approach for direction of arrival (DOA) estimation of far-field sources in mixed far-field and near-field signals in the
presence of mutual coupling and gain-phase imperfections is addressed. First, the model of received data with two
kinds of array errors is founded. Then matrix transformation is used for simplifying the spectrum function according
to the structure of the uniform linear array (ULA). At last, DOA of far-field signals can be obtained through searching
the peaks of the modified spatial spectrum. The usefulness and behavior of the presented approach are illustrated by
simulated experiments.
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1 Introduction
The traditional direction of arrival (DOA) estimation
originates from 1960s; it is usually used in radar [1–5],
underwater detection [6–8], and mobile communica-
tion [9–15]. Generally speaking, most of the direction
finding algorithms need to know the accurate array
manifold, and they are very sensitive to the errors in
the sensor channels. However, due to the present pro-
cessing technology, perturbations in applications are
often inevitable, such as temperature, humidity, shake,
and device aging, all of them will lead to the estimation
performance deterioration. The main errors in array
signal processing include mutual coupling, gain-phase
uncertainty, and sensor position errors, so the array re-
quires to be calibrated.
Existing calibrations can be categorized as active

correction and self-correction; the former needs a cor-
rection source in known orientation; it has a low com-
putation and wide calibration range, but there is often
some deviation between the direction of the actual cor-
rection source and that of the preset value. While
self-correction does not need the correction source, it

usually evaluates the DOA and array errors simultan-
eously by some criteria; this kind of algorithms have
small cost and a great potential of applications: Hawes
introduced a Gibbs sampling approach based on Bayes-
ian compressive sensing Kalman filter for the DOA esti-
mation with mutual coupling effects; it is proved to be
useful when the target moves into the endfire region of
the array [16]. Rocca calculated the DOA of multiple
sources by means of processing the data collected in a
single time snapshot at the terminals of a linear antenna
array with mutual coupling [17]. Based on sparse signal
reconstruction, Basikolo developed a simple mutual
coupling compensation method for nested sparse circu-
lar arrays; it is different from previous calibrations for
uniform linear array (ULA) [18]. Elbir offered a new data
transformation algorithm which is applicable for
three-dimensional array via decomposition of the mutual
coupling matrix [19, 20].
For the gain-phase error, Lee used the covariance ap-

proximation technique for spatial spectrum estimation
with a ULA; it achieves DOA, together with gain-phase
uncertainty of the array channels [21]. A F Liu introduced
a calibration algorithm based on the eigendecomposition
of the covariance matrix; it behaves independently of
phase error and performs well in spite of array errors [22].
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Cao addressed a direction finding method by fourth- order
cumulant (FOC); it is suitable for the background of
spatially colored noise [23]. In [24], the Toeplitz structure
of array is employed to deal with the gain error, then sparse
least squares is utilized for estimating the phase error. In re-
cent years, the spatial spectrum estimation in the presence
of multiple types of array errors has also been researched; Z
M Liu described an eigenstructure-based algorithm which
estimates DOA as well as corrections of mutual coupling
and gain-phase of every channel [25]. Reference [26, 27]
respectively discussed the calibration techniques for three
kinds of errors existing in the array simultaneously. For the
same questions, Boon obtained mutual coupling, gain-
phase, and sensor position errors through maximum likeli-
hood estimation, but it needs several calibration sources in
known orientations [28].
For the past few years, DOA calculation for mixture

far-field and near-field sources (FS and NS) has got
more and more attentions and rapid development; Liang
developed a two-stage MUSIC algorithm with cumulant
which averts pairing parameters and loss of the aperture
[29]. In [30], based on FOC and the estimation of signal
parameters via rotational invariance techniques (ES-
PRIT), K Wang proposed a new localization algorithm
for the mixed signals. In [31, 32], two localization
methods based on sparse signal reconstruction are pro-
vided by Ye and B Wang respectively; they can achieve
improved accuracy and resolve signals which are close
to each other. The methods above only apply to the
background of only FS, but there are rare published lit-
eratures of DOA estimation for mixed signals at the
background of more than one kind of array error.
This paper considers the problem of DOA estimation

of FS in mixed sources with mutual coupling and
gain-phase error array. It skillfully separates the array
error and spatial spectrum function by matrix trans-
formation, then the DOA can be obtained through
searching the peaks of the modified spatial spectrum,
thus the process of array calibration is avoided; mean-
while, the approach is also suitable for the circumstance
that the FS and NS are close to each other.

2 Methods
Before modeling, we assume that the array signal satis-
fies the following conditions:

1. The incident signals are narrowband signals, they
are independent of one another and stationary
processes with zero-mean

2. The noise on each sensor is zero mean white
Gaussian process, they are independent of one
another and the incident signals

3. The sensor array is isotropic

4. In order to assure that every column of array
manifold is linear independent of one another,
number of FS K1 and NS K2 are known beforehand,
where that of FSK1 meets K1 <M, and K1 +K2 < 2M
+ 1, where 2M + 1is the number of sensors.

2.1 Data model
The data model is given in Fig. 1; consider K1 far-field
signals sk1ðk1 ¼ 1; 2;⋯;K1Þ and K2 near-field signals sk2
ðk2 ¼ 1; 2;⋯;K2Þ impinging on a 2M + 1-element array
from ½θ1;⋯; θK1 ; θK1þ1;⋯; θK � , define 0th-element as
the reference sensor; here, we have K = K1 + K2, d is the
unit inter- element spacing, and it is equal to half of the
signal wavelength, the range between sk2 and reference
sensor is lk2 , then the received data can be written

X tð Þ ¼ A θð ÞS tð Þ þN tð Þ ð1Þ

where

X tð Þ ¼ ½X−M tð Þ;⋯;X−m tð Þ;⋯;X0 tð Þ;⋯;

Xm tð Þ;⋯;XM tð Þ�T
ð2Þ

here, Xm(t) is the received data on the mth channel,
andA(θ) is the array manifold

A θð Þ ¼ ½aFS θ1ð Þ;⋯; aFS θk1ð Þ;⋯; aFS θK1ð Þ;
aNS θK1þ1ð Þ;⋯; aNS θk2ð Þ;⋯; aNS θKð Þ�

¼ AFS;ANS½ �
ð3Þ

where AFS ¼ ½aFSðθ1Þ;⋯; aFSðθk1Þ;⋯; aFSðθK1Þ� is the
array manifold of FS for the ideal case, and aFSðθk1Þis the
steering vector of sk1 ; ANS ¼ ½aNSðθK1þ1Þ;⋯; aNSðθk2Þ;⋯
; aNSðθK Þ� is the array manifold of NS for the ideal case,
and aNSðθk2Þ is the steering vector of sk2 , therefore.

aFS θk1ð Þ ¼ ½ exp − j2π f τ−M θk1ð Þð Þ;⋯; exp − j2π f τ−m θk1ð Þð Þ;
⋯; 1;⋯; exp − j2π f τm θk1ð Þð Þ;⋯; exp − j2π f τM θk1ð Þð Þ�T

k1 ¼ 1; 2;⋯;K 1ð Þ
ð4Þ

where f is the frequency, and

τm θk1ð Þ ¼ m
d
c
sinθk1

ðm ¼ −M;⋯;−m;⋯; 0;⋯;m;⋯;M;
k1 ¼ 1; 2;⋯;K1Þ

ð5Þ

is the propagation delay for the k1 ‐ th (k1 = 1, 2,⋯K1) FS
at sensor m with respect to sensor 0, in the same way,
we have.
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aNS θk2ð Þ ¼ ½ exp − j2π f τ−M θk2ð Þð Þ⋯; exp − j2π f τ−m θk2ð Þð Þ;
⋯; 1;⋯; exp − j2π f τm θk2ð Þð Þ;⋯; exp − j2π f τM θk2ð Þð Þ�T

k2 ¼ 1; 2;⋯;K 2ð Þ
ð6Þ

by examining the geometry information in Fig. 1, we
have

τm θk2ð Þ ¼
lk2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2k2 þ mdð Þ2−2lk2md sinθk2

q
c

ð7Þ

it is the propagation delay for NS sk2 at sensor m with
respect to sensor 0; Eq. (7) can be expressed as another
form according to Taylor series [33].

τm θk2ð Þ ¼ −
m2d2

4lk2c
cos2θk2 þ

1
c
md sinθk2−

m2d2

4lk2c
ð8Þ

in (1), signal matrix is

S tð Þ ¼ SFS; SNS½ �T
¼ S1;⋯; Sk1 ;⋯; SK1 ; SK1þ1;⋯; Sk2 ;⋯; SK½ �T

ð9Þ
where SFS ¼ ½S1;⋯; Sk1 ;⋯; SK1 �T is matrix of FS, and

SNS ¼ ½SK1þ1;⋯; Sk2 ;⋯; SK �T is that of NS. N(t) is the
Gaussian white noise matrix, so covariance of received
data for the ideal case is

R ¼ 1
B
X tð ÞXH tð Þ

¼ 1
B
A θð ÞS tð ÞSH tð ÞAH θð Þ þ σ2I

¼ RFS þ RNS þ σ2I

ð10Þ

where

RFS ¼ 1
B
AFSSFSSHFSA

H
FS ð11Þ

RNS ¼ 1
B
ANSSNSS

H
NSA

H
NS ð12Þ

and B is the number of snapshots, I is the identity
matrix with the dimension (2M + 1) × (2M + 1).

2.2 Array error model
The mutual coupling of ULA can be expressed by the
following matrix W(1)

W 1ð Þ ¼

1 c1 ⋯ cQ
c1 1 c1 ⋱

c1 cQ
⋮ ⋱ ⋱ ⋱
cQ

⋱ 1 c1
cQ c1 1

2
666666664

3
777777775

ð13Þ

here, cq(q = 1, 2,⋯,Q) denotes the mutual coupling coef-
ficient, and Q represents the freedom degree.
The gain-phase perturbation is usually expressed as

W 2ð Þ ¼ diag W −M;⋯;W −m;⋯; 1;⋯;Wm;⋯;WM½ �T
� �

ð14Þ
where

Wm ¼ ρme
jϕm

m ¼ −M;⋯;−m;⋯; 0;⋯;m;⋯;M ð15Þ
ρm,ϕm are respectively the gain and phase errors, and

they are independent with each other.
Therefore, the steering vector of the kth signal with

mutual coupling and gain-phase errors is

a
0
θkð Þ ¼ W 1ð ÞW 2ð Þa θkð Þ ¼ Wa θkð Þ ð16Þ

here

Fig. 1 Data model
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W ¼ W 1ð ÞW 2ð Þ ð17Þ

Then the array manifold with array errors can be
written

A
0
θð Þ ¼ ½a0FS θ1ð Þ;⋯; a0FS θk1ð Þ;⋯; a0FS θK1ð Þ;

a0NS θK1þ1ð Þ;⋯; a0NS θk2ð Þ;⋯; a0NS θKð Þ�
¼ A0

FS;A
0
NS

� �
¼ WA θð Þ

ð18Þ

where

A0
FS ¼ WAFS

¼ a0FS θ1ð Þ;⋯; a0FS θk1ð Þ;⋯; a0FS θK1ð Þ� � ð19Þ

a0FSðθk1Þ is the steering vector of sk1 , and

A0
NS ¼ WANS

¼ a0NS θK1þ1ð Þ;⋯; a0NS θk2ð Þ;⋯; a0NS θKð Þ� � ð20Þ

a0NSðθk2Þ is the steering vector of sk2ðtÞ , thus the re-
ceived data with array errors is

X
0
tð Þ ¼ A

0
θð ÞS tð Þ þN tð Þ

¼ WA θð ÞS tð Þ þN tð Þ ð21Þ

for the convenience of derivation below, we also define
the vector of the two array errors as

w ¼ W 1ð Þ½ ρ−Me jϕ−M ;⋯; ρ−me
jϕ−m ;⋯;

1;⋯; ρme
jϕm ;⋯; ρMe

jϕM �T ð22Þ

2.3 Constructing spatial spectrum
The covariance with the two kinds of array imperfec-
tions is

R
0 ¼ 1

B
X0 tð Þ X0 tð Þð ÞH

¼ 1
B
A

0
θð ÞS tð ÞSH tð Þ A0 θð Þð ÞH þ σ2I

¼ 1
B
WA θð ÞS tð ÞSH tð ÞAH θð ÞWH þ σ2I

¼ R0
FS þ R0

NS þ σ2I

ð23Þ

where the covariance of the FS is

R0
FS ¼

1
B
WAFSSFSSHFSA

H
FSW

H ð24Þ

that of the NS is

R0
NS ¼

1
B
WANSSNSSHNSA

H
NSW

H ð25Þ

so the noise eigenvector U′ can be acquired by decom-
posing R′, here, and then we are able to plot the spatial
spectrum [34] as a function of DOA of FS

PMU−F θð Þ ¼ 1

a0FS θð Þ� �H
U

0
U

0� �H
a0FS θð Þ

¼ 1

aHFS θð ÞWHU
0
U

0� �H
WaFS θð Þ

¼ 1
Y

ð26Þ

2.4 Transforming spectrum function
The denominator of (26) is equivalent to

Y ¼
XK1

k1¼1

aHFS θk1ð ÞWHU
0
U

0
� �H

WaFS θk1ð Þ
	 


ð27Þ

transform (27) into another form

Y ¼
XK1

k1¼1

aHFS θk1ð ÞWHU
0
U

0
� �H

WaFS θk1ð Þ

¼
XK1

k1¼1

wH diag aFS θk1ð Þð Þð ÞHU0
U

0
� �H

diag aFS θk1ð Þð Þ
� �

w

¼ wHD θð Þw
ð28Þ

where

D θð Þ ¼
XK1

k1¼1

diag aFS θk1ð Þð Þð ÞHU0
U

0
� �H

diag aFS θk1ð Þð Þ
� �

ð29Þ
solving the peaks of (26) means minimizing (28). w ≠ 0,
thus wHD(θ)w will be zero only if the determinant of
D(θ) is 0, so θ equals the practical signals at this time,
then θ1;⋯θK1 can be evaluated by plotting the modified
spatial spectrum as a function of DOA of FS

PMMU−F θð Þ ¼ 1
D θð Þj j ð30Þ

where |D(θ)| stands for determinant of D(θ), the ad-
dressed approach is appropriate for FS in mixed signals,
so it is called FM for short, and we know from the de-
duction above, the course of estimating array errors has
been averted. According to the derivation, we know sig-
nal and sensor number must satisfy K < 2M + 1, but
there is no limitation to specific number of far-field and
near-field signals. Then, FM can be summarized by the
following Fig. 2:

3 Computation
Assume the region of DOA θ is limited in 0 < α < θ
< β < π

2, plotting step sizes of DOA is Δθ. The proposed
FM approach involves computing (2M + 1) × (2M + 1) di-
mensional covariance matrices, determining their eigen-
vectors, solving one-dimensional spatial spectrums, and
estimating local maximum values for FS; here, we just
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calculate the primary procedures for simplicity, so

the computation is about ð2M þ 1Þ2Z þ 8
3 ð2M þ 1Þ3

þ 2ðβ−αÞð2Mþ1Þ2
Δθ

, and that of mixed near-field and far-field

source localization based on uniform linear array partition
(MULAP) [30] needs to form three 2M × 2Mfourth-order
cumulant matrices, decompose a 4M × 4M matrix. Then
using the ESPRIT to estimate the DOA with decomposing

two 2(M − 1) × 2(M − 1) matrices, so it is nearly 3ð2MÞ2B
þ 4

3 ð4MÞ3 þ 8
3 ð2M−1Þ3.

4 Results and discussion
In this section, simulation results are used for the pro-
vided approach; first, let us consider four uncorrelated FS
and three NS impinging on an eleven-element array from
(13∘, 35∘, 50∘, 68∘) and(25∘, 60∘, 85∘); their frequencies are
3 GHz, the array signal model is shown in Fig. 1, and the
sixth sensor is deemed as the reference. In view of com-
plexity of the array imperfections, the establishment of

error model will be simplified, assuming c1 = a1 + b1j,c2 =
a2 + b2j, Q = 2,a1 and b1 distribute in (−0.5~0.5), a2 and b2
is selected in (‐0.25~0.25) uniformly. Gain and phase
errors are respectively chosen in [0, 1.6] and [−24∘, 24∘]
randomly, α = 0∘, β = 90∘, Δθ = 0.1∘, 500 independent trials
are run for each scenario. And the estimation error is
defined as

ε ¼
XK1

i¼1

θi−θ̂i



 


 ð31Þ

where θi is the true DOA of the ith FS, and θ̂i is the cor-
responding estimated value. Sparse Bayesian array cali-
bration (SBAC) [25], MULAP, and FM are compared for
the simulations.
First, Fig. 3 demonstrates the modified spatial

spectrum of uncorrelated FS; it can be observed that the
four peaks correspond the actual DOA, and Fig. 4 illus-
trates the estimation accuracy versus signal-to-noise ra-
tio (SNR) when number of snapshots B is 25, then Fig. 5
describes that versus number of snapshots B when SNR
is 8 dB. As it is seen in Figs. 4 and 5, all the three algo-
rithms fail to estimate the results at lower SNR, and they
perform better as the SNR or number of snapshots in-
creases, finally converge to some certain value. As
MULAP is not suitable for super-resolution direction
finding in the presence of array imperfections, a large
error still exists even if SNR is high or number of snap-
shots is large enough. And SBAC needs the array cali-
bration ahead of estimating DOA, but the procedure of
mutual coupling and gain-phase uncertainty estimations
also introduces some error. Comparatively speaking, FM
avoids the process of array correction before deciding
FS, so it outperforms SBAC and MULAP in most cases,
but when SNR is lower than−6 dB, as the signal sub-
space is not completely orthogonal to the noise sub-
space, its performance is poorer than SBAC.
In the second section, we will discuss the performance

for the circumstance of far-field DOA estimation when
FS and NS are close to each other; consider four FS and
three NS impinging on an eleven-element array from
(3∘, 12∘, 20∘, 28∘), (8∘, 17∘, 33∘); other conditions are the
same with the trial above.
Figure 6 demonstrates the modified spatial spectrum

when FS and NS are close to each other, and it can be
seen, DOA of the FS is still resolved successfully by the
proposed FM. Then Fig. 7 gives the estimation accuracy
versus SNR when number of snapshots B is 25, and
Fig. 8 demonstrates that versus number of snapshots B
when SNR is 8 dB. It is noted that the three algorithms
perform almost the same with the circumstance when
FS and NS are close to each other; we can properly en-
hance the SNR or number of snapshots to improve
their performance.

Fig. 2 Steps of the proposed FM
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Fig. 3 Spatial spectrum

Fig. 4 Estimation errors versus SNR
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Fig. 5 Estimation errors versus number of snapshots

Fig. 6 Spatial spectrum when FS and NS are close to each other
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Fig. 7 Estimation errors versus SNR when FS and NS are close to each other

Fig. 8 Estimation errors versus number of snapshots when FS and NS are close to each other
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5 Conclusions
This paper introduces the DOA estimation problem of
FS in mixed FS and NS with mutual coupling and
gain-phase error array. The approach avoids array cali-
bration by spectrum function transformation according
to the structure of the array, so as to lessen the compu-
tational load to a great extent. Then we will concentrate
on calculating these parameters of array imperfections
and locating NS in the future.

Abbreviations
DOA: Direction of arrival; EM: Expectation-maximization; ESPRIT: Estimation of
signal parameters via rotational invariance techniques; FM: FS in mixed signals;
FOC: Fourth-order cumulant; FS: Far-field signals; MULAP: Mixed near-field and
far-field source localization based on uniform linear array partition;
NS: Near-field signals; SBAC: Sparse Bayesian array calibration; SBL: Sparse Bayesian
learning; SNR: Signal-to-noise ratio; ULA: Uniform linear array

Acknowledgments
The authors would like to thank all the paper reviewers and Heilongjiang
province ordinary college electronic engineering laboratory of Heilongjiang
University.

Funding
This work was supported by the National Natural Science Foundation of
China under Grant 61501176, Natural Science Foundation of Heilongjiang
Province F2018025, University Nursing Program for Young Scholars with
Creative Talents in Heilongjiang Province UNPYSCT-2016017, and the
postdoctoral scientific research developmental fund of Heilongjiang Province in
2017 LBH-Q17149.

Availability of data and materials
All data are fully available without restriction.

Authors’ contributions
Jiaqi Zhen conceived and designed the algorithm and the experiments.
Baoyu Guo gives the revised version. Both of the authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 11 August 2018 Accepted: 11 December 2018

References
1. U. Nielsen, J. Dall, Direction-of-arrival estimation for radar ice sounding

surface clutter suppression. IEEE Trans. Geosci. Remote Sens. 53, 5170–5179
(2015). https://doi.org/10.1109/TGRS.2015.2418221

2. S. Ebihara, Y. Kimura, T. Shimomura, R. Uchimura, H. Choshi, Coaxial-fed
circular dipole array antenna with ferrite loading for thin directional
borehole radar Sonde. IEEE Trans. Geosci. Remote Sens. 53, 1842–1854
(2015). https://doi.org/10.1109/TGRS.2014.2349921

3. R. Takahashi, T. Inaba, T. Takahashi, H. Tasaki, Digital monopulse
beamforming for achieving the CRLB for angle accuracy. IEEE Trans.
Aerosp. Electron. Syst. 54, 315–323 (2018). https://doi.org/10.1109/TAES.
2017.2756519

4. D. Oh, Y. Ju, H. Nam, J.H. Lee, Dual smoothing DOA estimation of two-
channel FMCW radar. IEEE Trans. Aerosp. Electron. Syst. 52, 904–917 (2016).
https://doi.org/10.1109/TAES.2016.140282

5. A. Khabbazibasmenj, A. Hassanien, S.A. Vorobyov, M.W. Morency, Efficient
transmit beamspace design for search-free based DOA estimation in MIMO
radar. IEEE Trans. Signal Process. 62, 1490–1500 (2014). https://doi.org/10.
1109/TSP.2014.2299513

6. A.A. Saucan, T. Chonavel, C. Sintes, J.M.L. Caillec, CPHD-DOA tracking of
multiple extended sonar targets in impulsive environments. IEEE Trans.
Signal Process. 64, 1147–1160 (2016). https://doi.org/10.1109/TSP.2015.
2504349

7. A. Gholipour, B. Zakeri, K. Mafinezhad, Non-stationary additive noise
modelling in direction-of-arrival estimation. IET Commun. 10, 2054–2059
(2016). https://doi.org/10.1049/iet-com.2016.0233

8. H.S. Lim, P.N. Boon, V.V. Reddy, Generalized MUSIC-like Array processing for
underwater environments. IEEE J. Ocean. Eng. 42, 124–134 (2017). https://
doi.org/10.1109/JOE.2016.2542644

9. T. Basikolo, H. Arai, APRD-MUSIC algorithm DOA estimation for reactance
based uniform circular array. IEEE Trans. Antennas Propag. 64, 4415–4422
(2016). https://doi.org/10.1109/TAP.2016.2593738

10. Z.Y. Na, Z. Pan, M.D. Xiong, X. Liu, W.D. Lu, Turbo receiver channel
estimation for GFDM-based cognitive radio networks. IEEE Access 6,
9926–9935 (2018). https://doi.org/10.1109/ACCESS.2018.2803742

11. R. Pec, B.W. Ku, K.S. Kim, Y.S. Cho, Receive beamforming techniques for an
LTE-based mobile relay station with a uniform linear array. IEEE Trans. Veh.
Technol. 64, 3299–3304 (2015). https://doi.org/10.1109/TVT.2014.2352675

12. A. Gaber, A. Omar, A study of wireless indoor positioning based on joint
TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.
11ac. IEEE Trans. Wirel. Commun. 14, 2440–2454 (2015). https://doi.org/10.
1109/TWC.2014.2386869

13. X. Liu, M. Jia, X.Y. Zhang, W.D. Lu, A novel multi-channel internet of things
based on dynamic spectrum sharing in 5G communication. IEEE Internet
Things J. (2018). https://doi.org/10.1109/JIOT.2018.2847731

14. X. Liu, F. Li, Z.Y. Na, Optimal resource allocation in simultaneous cooperative
spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE
Access. 5, 3801–3812 (2017). https://doi.org/10.1109/ACCESS.2017.2677976

15. X. Liu, M. Jia, Z.Y. Na, W.D. Lu, F. Li, Multi-modal cooperative spectrum
sensing based on Dempster-Shafer fusion in 5G-based cognitive radio. IEEE
Access 6, 199–208 (2018). https://doi.org/10.1109/ACCESS.2017.2761910

16. M. Hawes, L. Mihaylova, F. Septier, S. Godsill, Bayesian compressive sensing
approaches for direction of arrival estimation with mutual coupling effects.
IEEE Trans. Antennas Propag. 65, 1357–1368 (2017). https://doi.org/10.1109/
TAP.2017.2655013

17. P. Rocca, M.A. Hannan, M. Salucci, Single-snapshot DOA estimation in array
antennas with Mutual coupling through a multiscaling BCS strategy. IEEE
Trans. Antennas Propag. 65, 3203–3213 (2017). https://doi.org/10.1109/TAP.
2017.2684137

18. T. Basikolo, K. Ichige, H. Arai, A. Novel Mutual, Coupling compensation
method for underdetermined direction of arrival estimation in nested
sparse circular arrays. IEEE Trans. Antennas Propag. 66, 909–917 (2018).
https://doi.org/10.1109/TAP.2017.2778767

19. A.M. Elbir, A novel data transformation approach for DOA estimation with
3-D antenna arrays in the presence of mutual coupling. IEEE Antennas and
Wireless Propagation Letters 16, 2118–2121 (2017). https://doi.org/10.1109/
LAWP.2017.2699292

20. A.M. Elbir, Direction finding in the presence of direction-dependent mutual
coupling. IEEE Antennas and Wireless Propagation Letters 16, 1541–1544
(2017). https://doi.org/10.1109/LAWP.2017.2647983

21. J.C. Lee, Y.C. Yeh, A covariance approximation method for near-field
direction finding using a uniform linear array. IEEE Trans. Signal Process. 43,
1293–1298 (1995). https://doi.org/10.1109/78.382421

22. A.F. Liu, G.S. Liao, C. Zeng, An Eigenstructure method for estimating DOA
and sensor gain-phase errors. IEEE Trans. Signal Process. 59, 5944–5956
(2011). https://doi.org/10.1109/TSP.2011.2165064

23. S.H. Cao, Z.F. Ye, N. Hu, DOA estimation based on fourth-order cumulants in
the presence of sensor gain-phase errors. Signal Process. 93, 2581–2585
(2013). https://doi.org/10.1016/j.sigpro.2013.03.007 Accessed 3 May 2018

24. K.Y. Han, P. Yang, A. Nehorai, Calibrating nested sensor arrays with model
errors. IEEE Trans. Antennas Propag. 63, 4739–4748 (2015). https://doi.org/
10.1109/TAP.2015.2477411

25. Z.M. Liu, Y.Y. Zhou, A unified framework and sparse Bayesian perspective for
direction-of-arrival estimation in the presence of array imperfections. IEEE
Trans. Signal Process. 61, 3786–3798 (2013). https://doi.org/10.1109/TSP.
2013.2262682

26. Y. Song, K.T. Wong, F.J. Chen, Quasi-blind calibration of an array of acoustic
vector-sensors that are subject to gain errors/mis-lo-ation/mis-orientation.
IEEE Transactions on Signal Processing 62, 2330–2344 (2014). https://doi.
org/10.1109/TSP.2014.2307837

Zhen and Guo EURASIP Journal on Wireless Communications and Networking        (2018) 2018:295 Page 9 of 10

https://doi.org/10.1109/TGRS.2015.2418221
https://doi.org/10.1109/TGRS.2014.2349921
https://doi.org/10.1109/TAES.2017.2756519
https://doi.org/10.1109/TAES.2017.2756519
https://doi.org/10.1109/TAES.2016.140282
https://doi.org/10.1109/TSP.2014.2299513
https://doi.org/10.1109/TSP.2014.2299513
https://doi.org/10.1109/TSP.2015.2504349
https://doi.org/10.1109/TSP.2015.2504349
https://doi.org/10.1049/iet-com.2016.0233
https://doi.org/10.1109/JOE.2016.2542644
https://doi.org/10.1109/JOE.2016.2542644
https://doi.org/10.1109/TAP.2016.2593738
https://doi.org/10.1109/ACCESS.2018.2803742
https://doi.org/10.1109/TVT.2014.2352675
https://doi.org/10.1109/TWC.2014.2386869
https://doi.org/10.1109/TWC.2014.2386869
https://doi.org/10.1109/JIOT.2018.2847731
https://doi.org/10.1109/ACCESS.2017.2677976
https://doi.org/10.1109/ACCESS.2017.2761910
https://doi.org/10.1109/TAP.2017.2655013
https://doi.org/10.1109/TAP.2017.2655013
https://doi.org/10.1109/TAP.2017.2684137
https://doi.org/10.1109/TAP.2017.2684137
https://doi.org/10.1109/TAP.2017.2778767
https://doi.org/10.1109/LAWP.2017.2699292
https://doi.org/10.1109/LAWP.2017.2699292
https://doi.org/10.1109/LAWP.2017.2647983
https://doi.org/10.1109/78.382421
https://doi.org/10.1109/TSP.2011.2165064
https://doi.org/10.1016/j.sigpro.2013.03.007
https://doi.org/10.1109/TAP.2015.2477411
https://doi.org/10.1109/TAP.2015.2477411
https://doi.org/10.1109/TSP.2013.2262682
https://doi.org/10.1109/TSP.2013.2262682
https://doi.org/10.1109/TSP.2014.2307837
https://doi.org/10.1109/TSP.2014.2307837


27. C.M.S. See, Method for array calibration in high-resolution sensor array
processing. IEE Proceedings-Radar, Sonar and Navigation. 142, 90–96 (1995).
https://doi.org/10.1049/ip-rsn:19951793

28. C.N. Boon, C.M.S. See, Sensor-array calibration using a maximum-likelihood
approach. IEEE Transactions on Antennas Propagations. 44, 827–835 (1996).
https://doi.org/10.1109/8.509886

29. J.L. Liang, D. Liu, Passive localization of mixed near-field and far-field sources
using two-stage MUSIC algorithm. IEEE Trans. Signal Process. 58, 108–120
(2010). https://doi.org/10.1109/TSP.2009.2029723

30. K. Wang, L. Wang, J.R. Shang, Mixed near-field and far-field source
localization based on uniform linear Array partition. IEEE Sensors J. 16,
8083–8090 (2016). https://doi.org/10.1109/JSEN.2016.2603182

31. T. Ye, X.Y. Sun, Mixed sources localisation using a sparse representation of
cumulant vectors. IET Signal Processing 8, 606–611 (2014). https://doi.org/
10.1049/iet-spr.2013.0271

32. B. Wang, J.J. Liu, X.Y. Sun, Mixed sources localization based on sparse signal
reconstruction. IEEE Signal Processing Letters 19, 487–490 (2012). https://
doi.org/10.1109/LSP.2012.2204248

33. E. Zeidler, Teubner Taschenbuch der Mathematik (Oxford University Press,
Oxford, 2003)

34. R.O. Schmidt, Multiple emitter location and signal parameter estimation.
IEEE Trans. Antennas Propag. 34, 276–280 (1986). https://doi.org/10.1109/
TAP.1986.1143830

Zhen and Guo EURASIP Journal on Wireless Communications and Networking        (2018) 2018:295 Page 10 of 10

https://doi.org/10.1049/ip-rsn:19951793
https://doi.org/10.1109/8.509886
https://doi.org/10.1109/TSP.2009.2029723
https://doi.org/10.1109/JSEN.2016.2603182
https://doi.org/10.1049/iet-spr.2013.0271
https://doi.org/10.1049/iet-spr.2013.0271
https://doi.org/10.1109/LSP.2012.2204248
https://doi.org/10.1109/LSP.2012.2204248
https://doi.org/10.1109/TAP.1986.1143830
https://doi.org/10.1109/TAP.1986.1143830

	Abstract
	Introduction
	Methods
	Data model
	Array error model
	Constructing spatial spectrum
	Transforming spectrum function

	Computation
	Results and discussion
	Conclusions
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

