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Deterministic pilot pattern allocation
optimization for sparse channel estimation
based on CS theory in OFDM system
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Abstract

Compressed sensing (CS)-based sparse channel estimation requires the sensing matrix with the minimum mutual
coherence (MC), and its corresponding pilot pattern obtain optimal estimation performance. In order to minimize
the MC of the sensing matrix, a deterministic optimized pilot pattern allocation scheme based on modified
adaptive genetic algorithm (MAGA) is investigated in this paper. By adjusting the probability of mutation and
crossover adaptively, the proposed scheme guides the search process to obtain the optimized pilot pattern. This
method guarantees the convergence of the optimization process and prevents the process into local optimization
to get the global optimization. Compared with the existing methods, simulation results prove that the proposed
scheme obtain the sensing matrix with the smaller MC, whose corresponding deterministic pilot pattern effectively
improve channel estimation performance.
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1 Introduction
Orthogonal frequency division multiplexing (OFDM) is
utilized to resist multipath fading for good performance
in wireless communication systems. The coherent de-
modulation and channel equalization of the receiver all
need precise channel state information (CSI) and there-
fore the channel estimation plays a crucial role. In recent
years, compressed sensing (CS) has become an innova-
tive signal processing and acquiring theory by solving
optimization problems [1–3]. Comparing the traditional
scheme, CS-based sparse channel estimation gets the ut-
most out of the inherent sparse characteristics of the
channel to perform the channel estimation. This method
can obtain accurate CSI with much fewer pilots, and in-
crease the spectrum utilization while improving the
channel estimation performance [4].
To channel estimation scheme based on CS, the

channel impulse response (CIS) is reconstructed by the
orthogonal matching pursuit (OMP) algorithm, when

pilots are randomly distributed in the subcarriers of the
OFDM system [5]. If the position of the pilot pattern is
randomly selected, the corresponding sensing matrix is
a random structure and the restricted isometry property
(RIP) is easy to be satisfied. If the pilot pattern location is
fixed, the sensing matrix is deterministic and needs to be
carefully designed to satisfy RIP. However, a direct and ef-
fective method to determine whether the sensing matrix
satisfies RIP has not been proposed, and computing the
mutual coherence (MC) of the sensing matrix is a good al-
ternative [6]. We utilize the minimum MC as the criterion
for optimizing the allocation of pilot patterns to perform
channel estimation based on CS. However, it is unrealistic
to blindly search the optimal pilot pattern in the actual
communication system. Therefore, it is meaningful to es-
tablish an effective pilot pattern allocation optimization
method.
Pilot pattern optimization allocation methods have

been presented respectively to get the optimal pilot pat-
tern for sparse channel estimation [7–9]. However, these
methods are essentially random search. To overcome
the disadvantages of random search, genetic algorithm
(GA) was introduced to optimize the pilot pattern by
updating the individual to find the suboptimal pilot
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pattern [10]. Nevertheless, this method requires the
probability of mutation and crossover of being continu-
ously verified to find a suitable value, and it is extremely
difficult to select the best value for various optimization
problems.
In this paper, modified adaptive genetic algorithm

(MAGA)-based pilot pattern allocation optimization
scheme is proposed for OFDM sparse channel estima-
tion based on CS Theory. In MAGA, the probability of
mutation and crossover is adjusted adaptively by individ-
ual fitness. If the solution set has a tendency to trap in
local optimal, the probability of mutation and crossover
is improved adaptively. If the solution set is scattered in
the solution space, the probability of mutation and
crossover is reduced adaptively. Therefore, the pilot pat-
tern optimization scheme based on MAGA can greatly
guarantee the convergence accuracy of the pilot pattern
search process, and effectively avoid obtaining the local
optimal solution.
The remainder of this paper is structured as follows.

We establish the CS-based channel estimation model,
and transform it into an optimization problem in Sec-
tion 2. The innovative contribution of this work is de-
tailed in Section 3, where MAGA-based pilot pattern
allocation optimization scheme is presented and applied
to solving the optimization problem. In Section 4, the
numerical results of computer simulation are per-
formed to verify the performance of the proposed
scheme. Finally, Section 5 generalizes the main con-
clusion of this paper.

2 CS-based channel estimation optimization
problem
It is assume that the number of subcarriers is N and the
subcarriers NP are chosen as transmitting pilot in
OFDM systems. The allocation position of the pilot pat-
tern is K ¼ ðk1;⋯; kNpÞ ð1≤k1≤⋯≤kNp ≤NÞ . The rela-
tionship between the received pilot and transmitted pilot
is expressed as

YNp ¼ XNp FNphþWNp ; ð1Þ

where a diagonal matrix XNP ¼ diag½Xðk1Þ;Xðk2Þ;⋯;X
ðkNP Þ� is composed of the transmitted pilot, the received

pilot is YNP ¼ ½Y ðk1Þ;Y ðk2Þ;⋯;Y ðkNP Þ�T , and the chan-
nel impulse response h = [h(1), h(2),⋯, h(N)]T is of the
length of N, among which the first L elements contain

multipath energy. WNP ¼ ½W ðk1Þ;W ðk2Þ;⋯;W ðkNP Þ�T
is the Gaussian white noise in the frequency domain.
FNP is a NP ×N partial Fourier matrix, whose NP row is
extracted from the N ×N standard Fourier matrix by the
pilot pattern K, and defined as

FNp ¼
1ffiffiffiffi
N

p
f k11 … f k1N

⋮ ⋱ ⋮
f kNp1 … f kNpN

2
4

3
5; ð2Þ

where f = e−j2π/N. We further denote

A≅XNp FNp ¼
X k1ð Þ f k11 ⋯ X k1ð Þ f k1N

⋮ ⋱ ⋮
X kNp

� �
f kNp1 ⋯ X kNp

� �
f kNpN

2
4

3
5:
ð3Þ

Then, (1) can be rewritten as

YNp ¼ AhþWNp : ð4Þ
Since the sampled interval is usually much smaller

than the channel delay propagation, the channel coeffi-
cients are either zero or nearly zero, which implies that
h is a sparse vector. According to the CS theory, the
matrix A can be regarded as the sensing matrix, and it is
essentially the weight of the transmitted pilot signal to
the partial Fourier matrix. If the placement of the pilot
pattern is randomly selected, the matrix A is a struc-
tured random matrix weighted by the transmitted pilot.
Correspondingly, if the placement of the pilot pattern is
deterministic, it is a deterministic sensing matrix. There-
fore, the process of channel estimation based on CS is
explained that the transmitted pilot is compressed to
measure the impulse response h, and then h is recon-
structed by the reconstruction algorithm with the re-
ceived pilots. Moreover, it can clearly be seen from (3)
that the pilot pattern decides the extraction of those
rows of the standard Fourier transform matrix, and then
determines the structure of the sensing matrix, and ultim-
ately affects the performance of OFDM channel estimation.
If the allocation of the pilot pattern is random, the corre-
sponding sensing matrix is the structured random matrix.
However, the pilot subcarrier with random distribution is
not easy to be realized in the actual communication system.
Therefore, it is necessary to study the deterministic sensing
matrix with optimizing pilot pattern allocation so as to en-
sure the channel estimation performance.
When the sensing matrix satisfies the RIP, the channel

impulse response can be recovered from the received pilot
with a high probability. However, there is no known
method to test whether a given matrix satisfies RIP in poly-
nomial time. Alternatively, we can compute the MC of the
sensing matrix A to verify RIP and it can be formulated as

μ Að Þ ¼ max
1≤m < n≤N

m≠n

am; anh ij j
amk k2 ank k2

; ð5Þ

where |〈am, an〉| denotes the inner product between the
mth column and the nth column of the sensing matrix
A. Substituting (3) to (5) can be obtained
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Since the pilots used in the OFDM system satisfy the
constant amplitude, we define |X(ki)| = 1 (i = 1, 2⋯Np).
Letd = n −m, and Ω = {1, 2,⋯N − 1}. Then (6) can be re-
written as

μ Að Þ ¼ max
d∈Ω

1
Np

XNp

i¼1

e− j2πkid=N
�����

�����: ð7Þ

It can be seen from (7) that the MC of matrix A is de-
termined by the pilot pattern K, when the number of
subcarrier and pilot has been determined.
As mentioned in Section 1, the pilot pattern is opti-

mized by the rule of minimizing the MC of the sensing
matrix, and the sparse channel impulse response h is re-
constructed based on CS algorithm. Replacing the A in
(7) with K and taking it as a variable, the optimized pos-
ition problem of the pilot pattern allocation can be
expressed as

Q ¼ min
K∈ P

μ Kð Þ: ð8Þ

where P is the set of all possible pilot patterns. In the
OFDM communication system, it is unrealistic to search
all pilot patterns to determine the optimal pilot pattern
because the number of pilot pattern is huge and the
computational complexity is very high. Therefore, it is

necessary to propose an optimization method to solve
Eq. (8) for reducing computational complexity and
obtaining optimal pilot pattern.

3 Method: MAGA-based pilot pattern optimization
In Section 2, the pilot pattern allocation optimization is
transformed into a combinatorial optimization problem,
and the optimal pilot pattern is

Kopt ¼ arg min
K∈ P

μ Kð Þ: ð9Þ

If the enumeration method is selected for searching
the optimal pilot pattern, the computation complexity is
huge. Therefore, a new pilot pattern optimization
method is of great necessity. This method can quickly
solve the combinatorial optimization problem (8) by
adaptive adjustment of genetic operators, and then the
optimized pilot pattern is acquired for efficient detection
of sparse channels.

3.1 MAGA
Genetic algorithm (GA) is an intelligent optimization al-
gorithm inspired by natural evolution. This algorithm
applies the selection, mutation, and crossover to obtain
the new population, which gradually evolves to get the
optimal solution. Mutation probability and crossover

μ Að Þ ¼ max
1≤m < n≤N

m≠n

1
N

XNp

i¼1

X kið Þe j2πkim=NX kið Þe− j2πkin=N
�����

�����
1ffiffiffiffi
N

p
XNp

i¼1

X kið Þe− j2πkim=N
�� ��2 !1

2
1ffiffiffiffi
N

p
XNp

i¼1

X kið Þe− j2πkin=N�� ��2 !1
2

¼ max
1≤m < n≤N

m≠n

XNp

i¼1

X kið Þj j2e− j2πki n−mð Þ=N
�����

�����
XNp

i¼1

X kið Þj j2
:

ð6Þ

Fig. 1 MAGA-based mutation probability and crossover probability. The distribution of mutation probability and cross probability based on MAGA
with individual fitness is displayed
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probability largely determine the accuracy and conver-
gence speed in the optimization process. If the value of
the crossover probability is larger, the production rate of
new individuals in the population will be accelerated,
and the destruction possibility of individuals with high
fitness will be increased. If the crossover probability is
smaller, the search time of the algorithm will become
longer or even pause. Furthermore, if the mutation
probability is larger, the algorithm becomes random
search. If the value is smaller, the new population is not
easy to generate. Therefore, how to determine mutation
probability and crossover probability is very important
in the GA. On the other hand, mutation probability and
crossover probability often need to be repeatedly verified
by manual experience. Therefore, it is hard to select the
appropriate value for different optimization problems.
Adaptive genetic algorithm (AGA) was proposed in

order to perfect genetic algorithm [11]. In the AGA, mu-
tation probability and crossover probability are adap-
tively obtained by the individual fitness. If the solution
has the local optimal tendency, mutation probability and
crossover probability will be increased adaptively. For
excellent individuals, we should reduce the probability of
crossover and the probability of mutation to protect
them. For inferior individuals, we should increase the

probability of crossover and the probability of mutation to
change them. Therefore, for the optimization problem
based on adaptive genetic algorithm, mutation probability,
and crossover probability are obtained adaptively, which
effectively ensures the convergence of the optimization
and enlarges the population diversity. However, the AGA
is suitable for later evolution of population. This is be-
cause the individual performance of the population is ex-
cellent, so we should protect the chromosomal structure
from being destroyed [12]. In the early stage of evolu-
tion, the individuals with good performance will

Fig. 2 MAGA-based pilot pattern allocation optimization scheme. The deterministic pilot pattern optimization algorithm based on MAGA is
described in detail, which includes initialization, selection, crossover, mutation, and optimal pilot output

Table 1 System-related parameters

Parameters Value

OFDM sample period T = 83.3 μs

OFDM symbol period Tu = 21.33 ms

Guard interval Tg = 5.3 ms

FFT length N = 256

Number of channel multipath S = 4

Modulation 4QAM

Number of pilot M = 26

SNR 0–30 dB
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hardly change. This will not be conducive to the evo-
lution process, and will easily cause the solution to
trap in local optimum [13].
Since the traditional AGA is easy to be trapped into a

local-optimal solution, MAGA is presented in an effort
to determine a globally optimal solution in this paper.
Mutation probability and crossover probability formulas
are respectively defined as

Pc ¼
Pc2−

Pc2−Pc1

ηmax−ηavg
η−ηavg
� �

η≥ηavg

Pc2 η < ηavg

8<
: ;

ð10Þ

Pm ¼ Pm2−
Pm2−Pm1

ηmax−ηavg
η−ηavg
� �

η≥ηavg

Pm2 η < ηavg

8<
: ;

ð11Þ

where ηavg is the population average fitness, ηmax is the
population maximum fitness, and η is the individual
fitness. The crossover probability minimum value is
Pc1 = 0.1, and the maximum value is Pc2 = 0.9. The
mutation probability minimum value is Pm1 = 0.01,
and the maximum value is Pm2 = 0.1.

Figure 1 illustrates the distribution of values of
crossover probability and mutation probability in the

Table 2 Optimized pilot patterns by MAGA, GA, and random

Type MC Running time (s) Optimized pilot pattern

Random 0.2045 570.65 4, 9, 20, 25, 34, 38, 65, 70, 75, 83, 91, 104, 125, 130, 135, 149,
171, 178, 187, 188, 194, 202, 211, 219, 226, 248

GA 0.1812 140.53 20, 26, 42, 53, 56, 64, 72, 77, 79, 85, 101, 107, 114, 119, 128,
146, 151, 156, 160, 173, 197, 208, 216, 223, 228, 244

MAGA 0.1399 310.41 4, 16, 31, 39, 46, 54, 61, 75, 92, 100, 107, 113, 135, 142, 160,
168, 176, 183, 191, 197, 205, 211, 221, 229, 246, 253

Fig. 3 Comparisons of the MC for different optimized schemes. The MC is optimized by three different optimization algorithms with random
search, GA, and MAGA
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MAGA. The mutation probability Pm and the cross-
over probability Pc of the largest fitness individuals
are not zero in the MAGA, and these values are in-
creased to Pc1 and Pm1 respectively. The modified al-
gorithm ensures that the optimization process will
not stop in the early stage of evolution, which can
avoid solutions falling into local optimum.

3.2 MAGA-based pilot pattern optimization method
If we select NP subcarriers from the N subcarriers as pi-

lots, then possible pilot patterns will be
N
NP

� 	
. It is

very difficult to obtain all the pilot patterns for selecting
the optimal. Here, we present a method to globally
search for a near-optimal deterministic pilot pattern al-
location by MAGA. This scheme is universal for OFDM
system with getting the optimized sensing matrix by
minimizing the MC, and the specific execution is dem-
onstrated in Fig. 2.
The scheme with the initial population P(0), which

consists of randomly obtained N individuals, starts the
execution of the work. The ith generation of the evolu-
tionary population is expressed as

P ið Þ ¼ p ið Þ
1 ;…; p ið Þ

N

h i
1≤ i≤Mð Þ: ð12Þ

Secondly, according to individual fitness, the roulette
rule is used to select some excellent individuals from the
P(i) generation to the P(i + 1) generation. The probability
that an individual of the population will be selected for
the next generation is defined as

wi
j ¼

ϑijXN
j¼1

ϑij

j ¼ 1; 2;⋯;Nð Þ: ð13Þ

Then, the genetic operators are adaptive to complete
mutation and crossover to get the new population based
on the MAGA. The whole optimization process is re-
peatedly iterated until the stop condition is satisfied. Fi-
nally, the individual with the greatest fitness is selected
for the output of the optimization process, which is the
suboptimal deterministic pilot pattern.

4 Results and discussion
Comparing the superiority of our proposed method with
the existing scheme, we designed simulation experiments.

Fig. 4 MSE performance comparisons with different pilot patterns optimized. The performance gain of channel estimation based on CS theory is
compared with three different deterministic pilot patterns, which are obtained by random search, GA, and MAGA respectively
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Random search, GA search, and the proposed method are
used to find the optimal deterministic pilot pattern. Simu-
lations were accomplished in MATLAB R2017a by an
Intel Core i5-3320M 2.60 GHz processor with 8 GB mem-
ory in this section. Simulation experiments were carried
out under ideal synchronization and without channel cod-
ing. The OMP algorithm is chosen to complete the sparse
channel reconstruction. It can achieve good channel esti-
mation performance with fewer pilots. However, the com-
plexity of the algorithm is increased. The complexity of
the OMP algorithm is ο(LDNP), where L is the channel
length, D is the number of iterations, and NP is the num-
ber of pilots. The channel model is channel 3 of mode B
in the DRM standard [14], and the related parameters are
displayed in Table 1.
Table 2 compares pilot patterns obtained by random

search, GA, and MAGA. Optimized pilot patterns are
placed in the last column. It is observed that these
methods generate different suboptimal pilot patterns. As
can be seen in Table 2, the mutual coherence of the pilot
pattern optimized based on the MAGA is the smallest.
The MC reduces from 0.2045 to 0.1399, which veri-
fies the effectiveness of our scheme. The complexity
of the pilot pattern generation is compared accord-
ing to the CPU running time using MATLAB. We

observe that the MAGA scheme is more time-con-
suming than the GA method in Table 2. However,
the pilot pattern generation is done offline before the
OFDM symbols are transmitted, so the proposed scheme
is still acceptable.
Figure 3 shows the optimization process of mutual co-

herence with different pilot pattern optimization methods.
The number of iteration for different schemes is 10,000.
As can be seen from Fig. 3, the proposed method can ob-
tain smaller MC compared with other methods. As dem-
onstrated in Figs. 4 and 5, we compare the channel
estimation performance using different optimized pilot
patterns to detect sparse channel. The mean square error
(MSE) of channel estimation by various optimized pilot
pattern schemes is compared in Fig. 4. MAGA outper-
forms GA and the random search obtained pilots, which
verify the practicality of the proposed method. The simu-
lation results show that the smaller MC of the sensing
matrix, the better the channel estimation performance.
The system performance in bit error rate (BER) can be dis-
played in Fig. 5. We have noticed that the pilot generated
by MAGA performs best than other optimization methods.
Therefore, MAGA-based pilot pattern optimization is a
very effective way to enhance the estimation performance
based on CS.

Fig. 5 BER performance comparisons with different pilot patterns optimized. The BER performance of channel estimation based on CS theory is
compared with three different deterministic pilot patterns, which are obtained by random search, GA, and MAGA respectively
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5 Conclusion
CS is an innovative theory for efficiently processing and
acquiring data by solving an underdetermined linear
equation. CS-based sparse channel estimation can re-
construct channel impulse response with less pilot sig-
nals to solve the optimization problem, which are far
fewer than those required by the sampling theory. This
method has shown the advantages of increasing the esti-
mation performance and reducing the pilot number by
taking advantage of the inherent sparse characteristics of
wireless channels. According to the CS theory, the
smaller MC of the sensing matrix is beneficial to en-
hance estimation performance. An optimal scheme of
deterministic pilot pattern allocation based on MAGA is
proposed in this paper, which aims at minimizing the
MC of the sensing matrix to pilot pattern. The proposed
scheme can adaptively acquire the mutation probability
and the crossover probability, and guide the optimization
process to generate a near-optimal deterministic pilot pat-
tern. The results of computer simulation prove that the
proposed method is able to obtain a smaller MC sensing
matrix compared with the existing schemes, and the esti-
mation performance with the optimized pilot pattern is
substantially improved for the OFDM sparse channel esti-
mation based on CS theory.
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