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Abstract

To significantly promote Internet of Things (IoT) development, 5G network is enabled for supporting IoT
communications without the limitation of distance and location. This paper investigates the channel allocation
problem for IoT uplink communications in the 5G network, with the aim of improving the quality of experience (QoE)
of smart objects (SOs). To begin with, we define a mean opinion score (MOS) function of transmission delay to
measure QoE of each SO. For the sum-MOS maximization problem, we leverage a game-theoretic learning approach
to solve it. Specifically, the original optimization problem is equivalently transformed into a tractable form. Then, we
formulate the converted problem as a game-theoretical framework and define a potential function which has a
near-optimum as the optimization objective. To optimize the potential function, a distributed channel allocation
algorithm is proposed to converge to the best Nash equilibrium solution which is the global optimum of maximizing
the potential function. Finally, numerical results verify the effectiveness of the proposed scheme.
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1 Introduction
The Internet of Things (IoT) is a system of human-to-
object or object-to-object connection that sensors, con-
troller, mechanical and digital machines, objects, animals,
or people are interrelated and transfer data over a network
by using information technology [1, 2]. In IoT, a thing can
be a person with wearable devices, an autonomous vehi-
cle with sensors, a farm animal with biochip transponders,
or any other smart objects (SOs) provided with the abil-
ity to transfer data over a network [3, 4]. The concept
of IoT is first mentioned by Kevin Ashton in a presenta-
tion he made to Procter Gamble in 1999. At that time,
the computers use the data they gathered with the help
from human beings [5]. However, people have very limited
time, attention, and accuracy, which results in that they
are not very good at capturing data about things in reality.
The enormous potential demand for things connection
drive the rapid development of IoT. IoT SOs contain
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different types, in which some are sensitive for delay, some
are need for high reliability, and some are low-power and
low-cost. Moreover, most of the IoT traffic is in the uplink
and IoTs’ messages are typically small in size and sparse in
time. These characteristics of IoT SOs make their access
to the network different from classical users, which brings
the network a great challenge [6]. Therefore, providing
satisfactory service for IoT applications with differentiated
demands is an important field, and the requirement for
ultra-reliable low-latency communications of IoT SOs is
greatly emphasized.
5G heterogeneous networks are envisioned to play a

key role in providing a promising infrastructure for the
massive proliferation of IoT SOs and the corresponding
services [7–11]. IoT SOs with very limited computing
and storage capabilities are associated with access points
of 5G network for cloud services and communications
[12, 13]. To handle the massive connectivity and satisfy
the requirements of ultra-reliable low-latency commu-
nications, 5G network supporting IoT communications
requires huge spectrum resources or the improvement
of spectral efficiency [14]. Moreover, the interference
management problem is one of the key challenges in
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5G-enabled IoT, since the co-channel model that small
cell base stations (SCBSs) overlayed on the covering area
of macrocell base station (MBS) share the same fre-
quency band is generally adopted in 5G network [15].
The resource allocation strategies are usually optimized
to overcome the interference problem [16]. In particular,
the requirement of ultra-reliable low-latency communi-
cations for IoT SOs is greatly emphasized, and thus, the
performance enhancement of quality of experience (QoE)
of IoT is a challenging and attractive research area. Moti-
vated by achieving a real-time and reliable transmission of
IoT, a QoE-driven resource allocation scheme is proposed
in this paper.
Next, we give a brief review of the works related to our

research. More related works on the efficient IoT sup-
port in 5G can be found in [17–19]. Yerrapragada and
Kelley [17] investigated a perfect interference alignment
scheme for multiple-input multiple-output systems and
applied it to a 5G-enabled IoT architecture. Since inter-
cell interference significantly degraded the performance
of IoT communications, Dao et al. [18] proposed a novel
algorithm for finding the most appropriate pair of IoT
terminal or its associated BS to provide a relay-assisted
communication for the IoT terminal with poor signals in
the inter-cell interference area. For IoT in cognitive 5G
networks, the multiband cooperative spectrum sensing
and resource allocation framework was presented in [19].
IoT communications in 5G network are expected to pro-
vide flexible delivery of broad services with a high QoE.
Recently, the research on improving QoE of IoT SOs has
attracted more and more attention [20–22]. Aminjavaheri
et al. [20] presented an underlay control signaling method
for ultra-reliable low-latency communication applications
in an LTE network and analyzed its performance. Since
the satisfaction of QoE becomes the major challenge in
content-centric IoT, the authors in [21] have analyzed
lots of factors, i.e., content popularity and weight factor,
which impact the resource allocation and how they sub-
sequently influence the QoE. As a cloud resource, fog
computing is rationally used for the delay-sensitive ser-
vices of IoT by minimizing resource underutilization and
enhancing QoE [22].
Resource allocation in IoT is investigated in many lit-

eratures by using game theory [23–27]. Huang et al.
[23] employed a cooperative game to model and analyze
device-to-device communication for achieving high-
performance data transportation in the new cloud-
centric IoT paradigm. Device-to-device communication
underlaying cellular networks was investigated in [24]
to improve spectral efficiency, and a game-theoretic
resource allocation scheme was designed by exploring the
inherent competition of spectrum resource among users.
The authors in [25] proposed Stackelberg game andmany-
to-many matching to solve the multi-stage problems of

pairing, resource pricing, and purchasing in three-tier
IoT fog networks. Although the proposed framework can
achieve high performance, the optimal solution is ambigu-
ous. In addition, matching theory was also used in [26]
to find a stable IoT node pairing. In [27], the problem
of efficiently and effectively securing IoT networks was
investigated by carefully allocating security tools.

2 Methodology
Bearing the above in mind, we tend to leverage the game-
theoretic learning algorithm to solve the resource alloca-
tion problem in 5G-enabled IoT network. In this paper, we
assume that there are some SOs that access to 5G network,
and it is looking forward to achieving the effective deploy-
ment of IoT without considering the limitation of distance
and location. Certainly, this is confronted with more chal-
lenges. SOs are usually sensitive to latency, which raises a
higher demand for data transmission. However, the inter-
ference, deriving from the reuse of radio resource, greatly
affects SOs’ QoE in 5G network. The non-convex and
integer optimization objective brings a great challenge to
achieve the rational allocation of resource. Moreover, a
distributed algorithm is desired for various SOs with dif-
ferent service requirements. In this paper, we study the
channel allocation problem by applying game theory to
analyze the distributed decisions made by SOs, and per-
form the learning algorithm to maximize the sum-MOS
of SOs in the 5G network. The main contributions of our
work are summarized as follows:

• We consider the QoE of all SOs in the 5G-enabled
IoT network as the objective function. A MOS
standard in terms of the data transmission delay is
proposed to measure QoE of various services. Then,
an equivalent form is derived to replace the original
optimization objective.

• We use the game-theoretic model to formulate the
modified optimization problem in which the
designed potential function is an approximation of
the optimization objective. Then, we prove it to be an
exact potential game, whose best Nash equilibrium
(NE) point is a near-optimal solution of the original
optimization problem.

• To find the best NE point, we design a distributed
learning algorithmwhich can asymptotically converge
to the global optimal solution that maximizes
potential function with arbitrary high probability.

The rest of this paper is organized as follows. In
Section 3, the system model and the QoE metric are pre-
sented. Then, the proposed channel allocation problem is
equivalently converted into a tractable problem. Accord-
ing to the converted optimization problem, Section 4
establishes a game framework and then investigates the
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properties of the equilibrium. In Section 5, we propose
an algorithm and the asymptotical optimality is verified.
Finally, numerical results and discussion are presented in
Section 6, and Section 7 concludes this paper.

3 Systemmodel and problem formulation
3.1 Systemmodel
We consider an uplink 5G-enabled IoT network consisting
of B BSs, K diverse SOs (i.e., smart phone, smart meter,
wearable device, and monitoring device) and N orthog-
onal channels, illustrated by Fig. 1. The set of all BSs is
denoted by B = {1, 2, . . . ,B} and the set of all SOs is
represented by K = {1, 2, . . . ,K}. Suppose that the asso-
ciations between BSs and SOs have been predetermined
and let bk ∈ B be the BS at the service of SO k ∈ K.
Moreover, suppose that each SO chooses a channel for
data transmission and the bandwidth of each orthogonal
channel is the same. We denote the set of the channels by
N = {1, 2, . . . ,N}. Let ak be the channel allocation strat-
egy of SO k ∈ K andAk be the set of all possible selections
for k. Thus, a = (a1, a2, . . . , aK ) is the channel selection
profile for all SOs and A = A1 × A2 × · · · × AK is the
space of all possible selections for all SOs.
The channel from SO k ∈ K to BS bk ∈ B is sup-

posed to be flat fading and the channel gain is denoted
by hk,bk . Let pk be the transmit power of SO k. Then, the
received signal-to-interference-plus-noise ratio (SINR) of
BS bk from SO k is given by:

γk = pkhk,bk∑
l∈K\{k} plhl,bk1{al=ak} + σ 2

k
, (1)

where σ 2
k is the power of the additive white Gaussian noise

at the BS associated by SO k, and the indicator variable

1{al=ak} ∈ {0, 1} is used to denote that the channel allo-
cated to SO k is occupied by SO l, i.e., 1{al=ak} = 1, or not
occupied, i.e., 1{al=ak} = 0.
In IoT, different SOs perform different applications,

i.e., picture/video collection, game, file upload, and con-
trol information transmission.When performing different
applications, SOs need to transfer different sizes of data
for purpose of obtaining the same user experience in the
same period of time. Mathematically, the set of service
types required by SOs is represented as S = {1, 2, . . . , S},
and sk ∈ S is denoted as the performed service type of SO
k. Let Csk be the amount of data required from SO k dur-
ing a given period of time. Hence, the uplink transmission
time from SO k is described as follows.

Tk = Csk
Rk

, (2)

where Rk = B log2(1 + γk) is the achievable rate of BS bk
from SO k and B is the bandwidth of each channel.

3.2 QoEmetric
To measure QoE of various services, we propose a mean
opinion score (MOS) standard, ranging from 1 to 5, in
terms of the data transmission delay. Letting τ1,sk and τ2,sk
be respectively the most satisfied delay and the maximal
tolerable delay based on the different service types, the
MOS is defined as follows.

MOSk(a) =

⎧
⎪⎨

⎪⎩

5,Tk ≤ τ1,sk ,
α ln τ1,sk+τ2,sk−Tk

β
, τ1,sk < Tk < τ2,sk ,

1,Tk ≥ τ2,sk ,
(3)

where α = 4
ln τ2,sk−ln τ1,sk

and β = τ1,sk

(
τ1,sk
τ2,sk

) 1
4 . Figure 2

shows the curve variation tendency of MOS with the

Fig. 1 The 5G-enabled IoT network
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Fig. 2 The QoE metric

change of delay. The MOS values range from 1 to 5, where
MOS = 1 represents an unacceptable QoE for SOs and
MOS = 5 reflects an excellent user experience. In general,
SOs have different tolerances for delay with regard to the
different services. The application characteristics of SOs
are determined by τ1,sk and τ2,sk .

3.3 Problem formulation and transformation
In this paper, to improve the overall transmission perfor-
mance of the 5G-enabled IoT network by the optimization
of channel allocation, we consider the sum-MOS maxi-
mization problem, which is mathematically expressed as:

P : max
a∈A

∑

k∈K
MOSk(a). (4)

The problem P is a non-convex and discrete
optimization problem, for which finding its solu-
tion is expected to be very challenging. In what
follows, We convert it into a tractable form. For
notational convenience, we first define Uk = pkgk,bk
and Ik(ak , a−k) = ∑

l∈K\{k} plgl,bk1{al=ak} + σ 2
k , where

a−k is the channel selection profile of all the SOs except
SO k. Then, we have

Tk(a) = Csk

B log2
(
1 + Uk

Ik(a)

) . (5)

By using first-order approximation of Taylor expansion
at the point a′ , Tk is expanded as T̃k , namely,

T̃k
(
a

′
, a

)
� Tk

(
a

′) +
dTk

(
a′)

dIk

(
Ik(a) − Ik

(
a

′))

= �1,kIk(a) + �2,k ,
(6)

where �1,k = BCskUk

ln 2T2
k

(
a′)(

I2k
(
a′)+UkIk

(
a′)) and �2,k =

Tk
(
a′) − �1,kIk

(
a′).

According to (6), (3) is expanded at the point a′ , namely,

˜MOSk
(
a′, a

)

=
⎧
⎨

⎩

5, Ik(a) ≤ τ̃1,sk ,
�3,kIk(a) + �4,k , τ̃1,sk < Ik(a) < τ̃2,sk ,
1, Ik(a) ≥ τ̃2,sk ,

(7)

where τ̃1,sk = τ1,sk−�2,k
(
a′)

�1,k
(
a′) , τ̃2,sk = τ2,sk−�2,k

(
a′)

�1,k
(
a′) ,

�4,k = α ln
τ1,sk+τ2,sk−Tk

(
a′)

β
− �3,kIk

(
a′), and �3,k =

αβ

Tk
(
a′)−

(
τ1,sk+τ2,sk

) .

By comparing (6) with (3), it is noted that (4) and
∑

k∈K ˜MOSk
(
a′ , a

)
have the same solution when a′ = a∗

where a∗ is the optimal solution to (4). Therefore, the
original problem (4) is equivalently transformed into the
following optimization problem.

P̃ : max
a′=a∗,a∈A

∑

k∈K
˜MOSk

(
a′, a

)
. (8)

According to the above definition, it is noted that MOS
of each SO depends on not only its channel selection strat-
egy, but also on other SOs’ strategies. If too many SOs
occupy the same channel to transmit data, the transmis-
sion rates are relatively low, and then the low MOSs lead
to low-efficient data processing and put pressure on the
data storage. Due to the interdependent and interactional
relationship among different SOs, we adopt game theory
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to model and analyze the channel allocation strategies of
SOs in P̃. Furthermore, it is difficult for each SO to obtain
other information of SOswith different types, whichmoti-
vates us to propose a distributed learning algorithm for
achieving the equilibrium solution of the game modeled
from the channel access problem.

4 Game-theoretic analysis
In this section, we study the distributed optimization of
the channel access problem by using game theory. Every
SO is regarded as a player in the game, and the channel
access game is defined as Ga′ = {K, {Ak}k∈K, {uk}k∈K},
where K is the player (SO) set, Ak is the action space of
player k, and uk is the utility function of player k. The
action space of each player is exactly the available channel
set. To build a bridge between Ga′ and problem (8), we give
the definition of utility function of k, k ∈ K as follows.

uk = �3,kIk(a) +
∑

l∈K\{k}
�3,lpkgk,bl1{al=ak}. (9)

Then, we investigate the properties of Ga′ .

Theorem 1 If the variable a′ is predetermined and the
potential function φ(a) = ∑

l∈K
(
�3,lIl(a) + �4,l

)
, Ga′ is

an exact potential game which exists at least one NE point
a∗. Moreover, the near-optimal solution to the proposed
channel access problem (4) is a pure strategy NE of Ga∗ .

Proof The potential function of Ga′ is defined as follows:

φ(a) =
∑

l∈K

(
�3,lIl(a) + �4,l

)
. (10)

Then, (10) is rewritten as (11).

φ(a) = �3,kIk(a) +
∑

l∈K\{k}
�3,lpkgk,bl1{al=ak }

︸ ︷︷ ︸
uk (ak ,a−k )

+
∑

l∈K

(
�3,lσ

2
l +�4,l

) +
∑

l∈K\{k}

⎛

⎝�3,l

⎛

⎝
∑

m∈K\{l,k}
pmgm,bl1{am=al}

⎞

⎠

⎞

⎠

︸ ︷︷ ︸
v(a−k )

(11)

Suppose that an arbitrary player k unilaterally changes
its strategy from ak to āk , we can obtain the following
equation based on (11):

φ(āk , a−k) − φ(ak , a−k) = uk(āk , a−k) − uk(ak , a−k).
(12)

The equation above shows that the change in any single
player’s utility function due to unilateral strategy deviation
results in exactly the same amount of change in the poten-
tial function. Therefore, according to Definition 2.2 in
[24, 28], Ga′ is an exact potential game with potential

function φ(a). As a kind of potential games, Ga′ has some
desirable properties, one of which is that Ga′ exists at least
one NE point.
Although each player in Ga′ focuses on maximizing its

own utility value, we characterize the achievable perfor-
mance of NE points of Ga′ by exploiting the inherent
structure of the exact potential game.
Denote aopt as an optimal channel allocation profile that

maximizes the potential function φ, i.e.:
aopt ∈ argmax

a∈A φ(a). (13)

It has been proved that all NEs are the maximizers of
the potential function φ, either locally or globally, for any
exact potential game [28]. The best equilibrium point is
aopt. Obviously, aopt is a near-optimal solution of (4) when
a′ = a∗.
Hence, Theorem 1 is proved.

5 Decentralized algorithm for achieving the best
NE

According to the above theoretic analysis of Ga′ , an
approach of achieving the best NE of Ga′ is also the
approach to obtain a near-optimal solution of problem
(4). In this section, we propose a distributed channel allo-
cation learning algorithm to solve (4) in a distributed
manner.

5.1 Algorithm description
Taking into account the above analysis, we give a

detailed procedure of solving the channel allocation prob-
lem, labeled as Algorithm 1. Algorithm 1 includes two-tier
loops of inner loop and outer loop, in which the variable
a′ is updated until the near-optimal solution is achieved
in inner loop. Two stages of inner loop in this improved
algorithm are presented as follows: (a) In step 1, one player
is randomly selected from the set of updatable players to
update its strategy. Then, the selected player chooses an
action and gets feedback in the form of the resulting state
and an associated reward. (b) In step 2, the selected player
updates its alternative action selection based on (14). In
Algorithm 1, the stop criterion is set to be the case that
the change of the potential function is trivial.
The proposed algorithm is not easily trapped in an

undesirable NE when the game has multiple NE points
because of its some favorable properties: (a) it is an uncou-
pled algorithm, namely, each player only needs to acquire
the information of channel selection actions; (b) it can
achieve the best NE which is the global optimum of
maximizing potential function.

5.2 Convergence and optimality analysis
In order to investigate the actual performance of
Algorithm 1, Theorems 2 and 3 characterize its conver-
gence and optimality.
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Algorithm 1 Distributed channel allocation algorithm
1: Initiating the initial variable a′ and loop
2: Initialization: Set the initial time index t = 0 and let

each player k ∈ K randomly select an actionak(0) ∈ Ak .

3: For every time slot t = 1, 2, · · · ,
4: Step 1: Randomly select one player, say k, according

to a fixed probability distribution qk = 1
|K| . Player k

selects one experiment action ak uniformly from the
player’s action set Ak while other players’ selections
remain unchanged, i.e. a−k(t) = a−k(t − 1).

5: Step 2: Player k updates its selection according to the
following rule:

⎧
⎨

⎩

pakk (t) = (1+λ)
γuk (ak ,a−k (t−1))

max
{
(1+λ)γuk (a(t−1)),(1+λ)

γuk(ak ,a−k (t−1))
} ,

pak(t−1)
k (t) = 1 − pakk (t),

(14)

where λ is the learning parameter and γ is the
smoothing factor. If the action ak is selected, let
a∗(t) = a(t); otherwise, a∗(t) = a∗(t − 1).

6: Step 3: If ∀t, there exists a transition probability pk(t)
of player k, for ∀k ∈ K, which is approaching one, e.g.,
larger than 0.99, stop; otherwise, go to step 1.

7: If a′ = a∗, end loop; otherwise, return 2 and let
a′ = a∗ if a∗ is a better channel allocation strategy
profile.

Theorem 2 If all players perform the proposed dis-
tributed channel allocation learning algorithm with the
fixed a′ , the network converges to an unique stationary
distribution of players’ strategy profile, which is given by:

π(ā) = (1 + λ)γφ(ā)
∑

a∈A(1 + λ)γφ(a) . (15)

Proof Let z(t) be the state of channel allocations at the
t-th iteration of Algorithm 1 with the fixed a′ . Obviously,
z(t) is an irreducible and aperiodic Markov process. Then,
we will verify that the process determined by the distribu-
tion (15) is reversible. It is to say that for ∀a, ā ∈ A, we
have:

π(a)P(ā|a) = π(ā)P(a|ā), (16)

where P(ā|a) is the the transition probability from state a
to ā.
When a = ā, (16) clearly holds. When a �= ā, one player,

say k, changes its working channel, which results in that
one element of the network state has been changed, i.e.,
a = (ak , a−k) and ā = (āk , a−k). It is easy for us to check
that:

π(a)P(ā|a) =
(

(1 + λ)γφ(a)
∑

ã∈A(1 + λ)γφ(ã)

) (
1

|K|
)

(
(1 + λ)γuk(āk ,a−k)

max
{
(1 + λ)γuk(a), (1 + λ)γuk(āk ,a−k)

}

)

= c(1 + λ)γ (φ(a)+uk(āk ,a−k)),
(17)

where c = c1c2, c1 = 1
|K| ∑ã∈A(1+λ)γφ(ã) , and c2 =

1
max

{
(1+λ)γuk (a),(1+λ)

γuk(āk ,a−k)
} .

According to the symmetry, we have:

π(ā)P(a|ā) = c(1 + λ)γ (φ(ā)+uk(ak ,a−k)). (18)

By substituting (12) into (17), we can obtain:

π(a)P(ā|a) = c(1 + λ)γ (φ(ā)+uk(ak ,a−k))

= π(ā)P(a|ā). (19)

Thus, we can derive that:
∑

a∈A
π(a)P(ā|a) =

∑

a∈A
π(ā)P(a|ā) = π(ā), (20)

which is the balanced equation of Markov process.
Hence, Theorem 2 is proved.

Theorem 3 If the variable a′ is fixed, the inner loop of
Algorithm 1 converges to the best NE point of Ga′ with
an arbitrarily high probability when γ is sufficiently large.
Therefore, the MOS level of the IoT network is approxi-
mately maximized when a′ is the NE point.

Proof It is noted from Theorem 1 that aopt is repre-
sented as an optimal channel allocation profile that max-
imizes the potential function φ, which is also the best NE
of Ga′ .
According to Theorem 2, the proposed algorithm con-

verges to a unique stationary distribution. When γ is
sufficiently large, (1+ λ)γφ(aopt) 	 (1+ λ)γφ(a),∀a ∈ A \
{a}. According to (15), the unique stationary distribution
of players’ strategy profile is (0, . . . , 0, 1, 0, . . . , 0), where
1 denotes the probability of the optimal channel alloca-
tion solution and the probabilities of other non-optimal
solutions are all 0. Thus:

lim
γ→∞ π

(
aopt

) = 1, (21)

which means that the proposed learning algorithm con-
verges to the best NE of Ga′ with an arbitrarily high prob-
ability. When a′ = aopt, the NE obtained by the proposed
algorithm is a near-optimum solution to problem (8).
Then, the MOS level of the IoT network is approximately
maximized when a′ is the NE point.
Thus, the proof is completed.
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Fig. 3 The comparison results of the convergence performance of Algorithm 1 and BRD with fixed a
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6 Simulation results and discussion
In this section, numerical simulations are performed by
Matlab software to validate the efficiency and perfor-
mance of our proposed algorithm for solving the channel
allocation problem of IoT uplink communications over
cellular networks.

6.1 Scenario setup
We consider one MBS with a hexagonal coverage area
where there are randomly layouts of 2 SCBSs. For conve-
nience, we assume that there are 3 SOs randomly located

in each SCBS and the other 10 SOs in the coverage area of
MBS. Here, we suppose that each SO has the same uplink
transmission power which is set to 23 dBm. Accordingly,
suppose that the total 5 MHz bandwidth in this hetero-
geneous network constitutes N = 10 channels with each
same bandwidth 487.5 kHz. Each SO chooses 1 channel
for transmission. Rayleigh fading model is considered in
the simulation and hbc is the link gain from SO d to BS bc,
which is expressed as hbc = ξbc

(
Lbc

)−θ , where Lbc is the
distance between SO d and BS bc, ξbc denotes the chan-
nel fading component and θ is the path loss exponent. The
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Fig. 4 The changing curves of the optimization objectives as the number of iterations increases by Algorithm 1 with fixed a
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Fig. 5 The comparisons of utility, M̃OS and MOS for each SO obtained by preforming Algorithm 1

noise power is set to σ 2 = − 174 dBm/Hz. In the fol-
lowing simulations, the simulation results are obtained by
400 independent trials and those parameters involved are
optimized by experiments.

6.2 Convergence behavior and optimality of this
algorithm

In this subsection, we first investigate the convergence
behavior comparison between Algorithm 1 and best
response dynamic (BRD). It is shown from Fig. 3 that
Algorithm 1 and BRD can respectively converge to two
stable points as the number of iterations increases. Com-
pared with BRD, Algorithm 1 has a faster convergence

speed and achieves a better solution. It is supported with
the proved fact that BRD can only converge to one NE of
the potential game which may be not the best NE. Con-
versely, our algorithm can find the the best NE which is
also the optimal solution of maximizing potential func-
tion. Therefore, the proposed algorithm is distributed and
can obtain a better convergence performance. Figure 4
plots the changing curves of the optimization objectives
in problems P and P̃ as the number of iterations increases
by performing Algorithm 1 with fixed a′ . It is shown from
Fig. 4 that sum-MOS in problem P gradually increases and
converges eventually along with the increase of iteration
times, which is consistent with the variation tendency of
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Fig. 6 The changing curve of sum-MOS as the number of iterations increases by preforming Algorithm 1
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sum-˜MOS in problem P̃. This indicates that the increase
of sum-˜MOS by selecting better channel allocation strat-
egy profile also causes the improvement of sum-MOS.
Although sum-˜MOS continues to increase in the latter
process, the value of sum-MOS is unchangeable. Since
MOS is a piecewise function, the better solution for P̃ can-
not further enhance the performance of P, which implies
that multiple optimal solutions exist.
In the following, we evaluate the MOS performance

of each SO by preforming Algorithm 1. From Fig. 5, it
is worth noting that Algorithm 1 can maintain a bet-
ter SO fairness with respect to MOS performance by
taking into account the impact of the interference gen-
erated by each SO on the entire network. Algorithm 1
is proposed to find the best NE of the channel access
game Ga′ , which achieves an approximately equal util-
ity value for each SO shown in Fig. 5. Moreover, the
fairness among SOs with respect to MOS or ˜MOS perfor-
mance is guaranteed. Figure 6 plots the changing curve of
sum-MOS as the number of iterations increases by pre-
forming Algorithm 1. It is shown that Algorithm 1 can
improve the QoE of SOs. However, our proposed algo-
rithm cannot guarantee convergence to the global optimal
solution of P̃ since the potential function in Ga′ is dif-
ferent from the optimization objective in P̃ where ˜MOS
is a piecewise function. The best NE a∗ of Ga∗ , i.e., the
maximum of potential function, is obtained by perform-
ing Algorithm 1 which is only the near-optimum of P.
It is noted from Fig. 6 that sum-MOS in P can eventu-
ally converge to a fixed point as the number of iterations
increases and is close to themaximum value of sum-MOS.
This indicates that our approach provides high perfor-
mance for solving this difficult non-convex optimization
problem.

7 Conclusion
In this paper, we investigated the channel allocation prob-
lem in 5G-enabled IoT, by using a game-theoretic learning
algorithm, to improve the QoE of SOs. In order to mea-
sure the QoE of SOs in IoT, we first defined a MOS
function. Then, we proposed the exact potential game
to formulate this optimization problem, in which the
potential function was designed by approximatively con-
verting the objective function into a tractable form. It
was proved that the exact potential game existed the best
NE which was a near optimization solution of the chan-
nel allocation problem. Aiming at the proposed game,
we designed a distributed learning algorithm and proven
it can converge to the best NE with an arbitrarily high
probability.
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