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Abstract

accuracy.

The intensity acquisition and fluctuation of the signal intensity of the interference source caused by the indoor
multipath effect are very great, and there is a problem that the best eigenvalue is difficult to choose. A kind of
unsupervised machine learning algorithm is proposed, which can independently identify and select the optimal
eigenvalue without relying on the prior information. First, the wave signal filtering is reduced and processed by
kernelized principle component analysis (KPCA) algorithm. Then, the eigenvalues are selected and the redundant
features are eliminated by adaptive parameter adjustment denoising auto-encoder (APADAE) algorithm. Finally, the
feature vectors are classified and identified by Softmax algorithm and the classification process are optimized by
the particle swarm optimization (PSO) algorithm. Experimental results of the Smart Cyber-Physical systems show
that the algorithm can indirectly improve the accuracy of the source location based on improving the classification

Keywords: Indoor positioning, Deep learning, Denoising auto-encoder (DAE), Kernelized principle component
analysis (KPCA), Smart Cyber-Physical systems, Spectrometer receiver

1 Introduction
Because of the small size, low power, and portability of
new communication jammers such as pseudo-base sta-
tions, short interference duration, and high randomness
of interference area, it is very difficult to supervise them.
Interference source is essentially a radio signal transmit-
ter. It covers the frequency band of mobile phone and
other communication tools with a large signal intensity.
Through the right-signing loophole of a mobile phone, it
compels it to link with the pseudo-base station, passively
receives spam messages, or leaks security information.
People’s lives are deeply affected by it, which causes the
regulatory authorities to attach great importance to it.
There are few researches on the location of interference
sources [1] in indoor environment. At present, fingerprint
method [2] is often used to extract fingerprint features of
signals in different locations. Indoor radio wave multipath
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effect makes the signals fluctuate greatly. How to extract
fingerprint features effectively is very important to the lo-
cation accuracy. Spectrum research technology for com-
munication signal sources is more advanced, but mostly
outdoor research, such as satellite, radar, communication
base station, and other radiation sources [3] spectrum
research. In the field of indoor positioning, fingerprint
enhancement is usually achieved by adjusting the access
point (AP) mode. The maximum matching method pro-
posed by Zhang et al. [4] aimed to select the best AP com-
bination to improve the positioning accuracy. The
premise of the method is that there are sufficient AP
resources in the region. Reference [5] applied principal
component analysis (PCA) and used AP with the highest
contribution rate to locate. On the basis of it, Liu et al. [6]
improved Kalman filter method, improved the accuracy of
signal acquisition, and thus improved the overall position-
ing performance. Yin et al. [7] proposed to optimize the
positioning efficiency according to AP energy consump-
tion. On this basis, the water injection model AP
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optimized deployment method [8] enhanced fingerprint
characteristics to improve the overall positioning effi-
ciency. It deployed up to seven positioning APs in a small
positioning environment. The enhancement of fingerprint
features in the above literature mainly improves the effi-
ciency of the localization system by increasing the contri-
bution rate of AP matching, but none of them can
optimize the system with a small number of AP. In the ac-
tual location of the interference source, each additional 1
AP will increase the cost and personnel deployment of the
amount of labor collected.

In recent years, artificial intelligence [9-13] and ma-
chine learning technology [14, 15] have been popularized
and applied, in which depth learning training test model
[16] is more significant and has been widely used in
image resolution pattern recognition and other fields.
The quality of feature selection determines the
generalization performance. The contributions of this
paper are as follows:

1) The spectrum characteristics of interference source
signal are taken as the research object in the study.

2) A novel unsupervised machine learning algorithm
based on traditional multi-layer denoising auto-
encoder (DAE) [17] is proposed to extract AP
multi-position spectrum features from the localized
coordinate points. It can independently distinguish
and select the optimal unlabeled data features
without prior information.

3) In the end, the dimension reduction subset of the
labeled data is extracted by KPCA [18]. And we
explored deep learning model training, testing, and
classifying the output data to improve the
positioning accuracy.

The rest of this paper is organized as follows. Section
2 discusses the methods and indoor interference source
location system, followed by the selection and extraction
of eigenvalues of spectrum signals models in Section 3.
The classifier construction, optimization, and training
test are discussed in Section 4. Section 5 shows the
choice of experimental equipment and the experimental
results. Section 6 concludes the paper with summary
and future research directions.

2 Indoor interference source location system and
pretreatment

2.1 Methods

This study originates from the need of finding illegal
radio stations, and pseudo-base stations have become
the focus of the regulatory authorities. Radio interfer-
ence sources are essentially radio signal transmitters.
The shielding effect of radio waves makes it very difficult
to locate interference sources in indoor environment. At
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present, indoor location is widely applied in location fin-
gerprint information matching method.

In recent years, there have been manystudies on finger-
print positioning methods in the field of indoor positio-
ning. The fingerprint positioning method mainly include
two stages: off-line location fingerprint acquisition to es-
tablish database and online positioning. The main task of
the off-line phase is to establish the location fingerprint
information database by detecting the signal intensity of
the location area with a radio spectrum analyzer. In the
online positioning stage, the detected signal intensity value
is directly compared with the fingerprint database in the
server through the algorithm, and then, the position coor-
dinates of the signal transmitter can be inferred.

2.2 Indoor interference source location system and
pretreatment

Traditional fingerprint localization methods usually de-
ploy multiple AP in the localization area, sample inter-
ference sources at a reference point (RP) location at the
same time, and collect all AP received signal strength in-
dicators (RSSI) to the server as fingerprint characteris-
tics of the point coordinates. There are two difficulties
in indoor fingerprint localization of interference sources.
First, spectrometer receiver is not suitable for large-scale
deployment because of its high price and constrained by
the field environment. Second, there are many kinds of
interference sources with complex spectrum characteris-
tics, and its optimal characteristic parameters are not
easy to choose, so it is not suitable to use traditional fin-
gerprint method to characterize the location label.

In view of the above problems, this paper proposes a new
feature selection localization method. The localization

system includes two stages: off-line acquisition and online
localization, as shown in Fig. 1.

In the off-line acquisition stage, the interference source is
deployed in a fixed RP position, and the system only calls an
AP to detect the spectrum signal. Test data at multiple differ-
ent AP locations around each RP coordinate. That is to say,
the spectrum fingerprint features of different points around
RP are extracted to represent an RP coordinate of the inter-
ference source. In order to build a positioning system, we
choose the learning classification strategy training test.

In the online positioning stage, the random position
signal samples of the interference source are collected
on the spot, and the input system is compared with the
database feature space. The coordinates of the interfer-
ence source are identified by the classifier according to
the RP position class label.

2.3 Off-line acquisition of interference source signal
spectrum

The spectrum characteristics of interference source sig-
nal mainly include transient spectrum characteristics
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and steady-state spectrum characteristics. The former
has a short duration and is difficult to capture. There-
fore, steady-state spectrum acquisition is the main
method in the research.

The experimental acquisition is carried out in the 20 m x
13 m open classroom of AI College. The RP coordinates
are divided into equal intervals according to the grid. The
SA44B spectrum receiver of Signal Corporation of America
is deployed on the support of 0.8 m from the center, and
the data collected by the receiver is transmitted to the ser-
ver through the USB data line. The unlicensed illegal mo-
bile phone communication jamming source is deployed on
the same level of support of the receiver. Its essence is a
modulation signal transmitter with controllable frequency
band and mode. It can set up interference modulation
mode of CDMA, GSM, DCS, and PHS. Its radio frequency
range is 800-1990 MHz, 1 W transmitting power, and 2 dB
transmitting antenna gain and can cover radius 30—40 m.
The distance between the interference source and the re-
ceiver is determined by adjusting the bracket.

The spectrum receiver is set as SignalTrace mode at the
system end, which can track the center frequency of the
current jammer signal and output the spectrum to the
interface. The sampling span SPAN is set to 140 Mhz, and
the resolution bandwidth RBW is set to 100 kHz. In order
to clearly compare the illegal signal with the normal sig-
nal, the jammer is set as DCS mode at the distance of 2 m
between AP and RP. Start the detection program to collect
the data of the receiver. Sampling time is 1.250s, and
8561 data points are collected. The interference signals
collected separately and the spectrum of the same fre-
quency mobile phone dialing signals are superimposed
and output to the interface, as shown in Fig. 2.

It can be seen from Fig. 2 that the spectrum of the
radio signal can be seen:

The mobile phone signal is covered by the high-intensity
signal of the interference source, and the spectrum band-
width of the interference source is larger than the bandwidth
of the mobile phone signal. The peak value of this type of
interference source is not unique. Traditional indoor

fingerprint positioning methods mostly collect only one cen-
troid frequency and corresponding RSSI values to represent
the location characteristics of interference sources in Fig. 2.
The spectrogram collected by the spectrum analyzer is rough
and contains obvious noise, so it is difficult to extract the
characteristics of the radio wave signal.

2.4 Interference source signal pre-processing

The rough edge of the signal spectrum will lead to too large
error in extracting eigenvalues. By smoothing the noisy sig-
nal with the median filter, the sharp edge information can
be well preserved. The smoothed spectrum with the median
filter still contains noise, which needs to be denoised. In
practical applications, the wavelet denoising method has a
better effect on the spectrum Gauss white noise suppression.
The commonly used wavelet denoising methods include
modulus extremum denoising method [19], wavelet correl-
ation denoising method [20], and wavelet threshold denois-
ing method [21]. The commonly used wavelet threshold
algorithms include the hard threshold algorithm and the soft
threshold algorithm. However, the hard threshold wavelet
denoising algorithm is prone to Gibbs oscillation. And the
soft threshold wavelet denoising algorithm is prone to edge
distortion due to the constant deviation of wavelet coeffi-
cients. A two-stage wavelet threshold function is constructed
within the framework of Malat algorithm [22] to balance
this problem. The traditional threshold function is improved
as follows:

‘/;V _ aWyr+ (1—(1) Sg}’l(Ww‘() . (|Ww>[|—b/1), }W%(! >)
ET 0, Wy <2
(1)
Among them, the primary threshold is set, and the second-
ary threshold is set according to the soft threshold function.

. AR

0.6475

V =

The corresponding adjustment parameters are as
follows:
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In which W' is the mean of neighborhood wavelet co-
efficients, and the primary threshold corresponds to the
“coarse tuning” signal. The adjustment parameter a de-
creases with the decrease of the wavelet coefficients in
the range of (0,1). When the wavelet coefficients ap-
proach the threshold A, 2 — 1, when the wavelet coeffi-
cients approach zero, a — 0, and the wavelet coefficients
are updated to 6; =a,p after the primary denoising.
The secondary threshold b is independent according to
the sparsity of sample points. The adjustment parameter
corresponds to the “fine tune” signal, and the wavelet
coefficient is updated to &,=0,- b, after secondary
noise reduction. After the two-level threshold thickness
is adjusted to denoise the spectrum, the coefficients of
each scale operation are used to reconstruct the signal.
The API program of the spectrum analyzer is called by
LabVIEW software, and combined with MATLAB pro-
gramming, the median filter wavelet denoising of inter-
ference source input signal is processed, and the

spectrum diagram of noise separation as shown in Fig. 3
is obtained.

3 Selection and extraction algorithms of spectrum
signal eigenvalues

3.1 Selection of signal characteristics

Traditional eigenvalue extraction mostly adopts manual
extraction method, which is inefficient and unsuitable
for optimal feature selection. In recent years, deep learn-
ing technology has been favored. Among them, DAE
algorithm [23] belongs to unsupervised learning algo-
rithm. It is based on the application of auto-encoder
(AE) [24], which actively distributes unlabeled data into
noise, and then trains. The training system acquires
noise-free input by learning to remove noise, which is
more robust to the training of random input signals.
The core of the training system is the extension of the
neural network algorithm.

The traditional multi-layer DAE algorithm is modified
by artificially setting the number of layers to the adaptive
parametric multi-layer embedded APADAE algorithm.
As shown in Fig. 4, the front DAE1 output layer is linked
to the front-end layer of the second DAE2 neuron, and
the second DAE2 output is linked to the front-end of
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the back-end neuron. The unlabeled sample data set x is
mapped from the DAEL1 layer to the hidden layer y, and
the full connection layer is reconstituted by y to z = g(y)
= S(w'y +b). The minimum value of loss function L(x, )
constructed by x, y, which is obtained through parameter
optimization. Among them, y = s(wx + b), w is the weight
matrix of 1 dimension, w is the constraint weight of
self-encoder, and it is a reciprocal matrix with w, that is
w =w?, b is deviation function, and s is activation func-
tion. The s function is selected as the standard sigmoid
function.

In this study, the data in the initial input layer of
DAE1 vector x are “destroyed” by adding artificial noise.
The data in x are randomly zeroed proportionally to
form x; as the input of the next layer of DAE2 and then
transmitted to the reconstructed output layer z, via the
hidden layer y, of DAE2 mapping. The optimal solution
of the system can make the reconstructed error the most
by adjusting the parameters of each layer. The cost func-
tion is defined as follows:

1 n
= in— L ~n7 ~n
J(w,b) = arg min ig:l (%nsZn)

G ~
= arg mm;ZL[xn,g(f(xn))] (2)
i—1
L(%p,2n) = H&,—Z‘nHZ is the loss function of APADAE

network and further assumes that the input vector x
obeys Bernoulli distribution, so the reconstructed
cross-soil loss function is constructed as follows:

d
L(F,2k) = - Y [& lgax + a* (1-&) lg(1-20)]  (3)
k=1

Among them, the latter adjusts the weight attenuation
and controls the weight of cost function by adjusting the
parameter a* =Y to avoid overfitting. Deep learning net-
work (DLN) improves the output precision by feedback
factor in its back propagation error algorithm. Residual
&P is defined to represent the difference between recon-
structed y, of DAE, layer network and high-dimensional
input zx;. The layer k is determined by calculating the
minimum loss function iteratively. First, we calculate the
residuals & of the output DAE; layer:

el — _( <k—1>_x(k—1>) e (y<k>) (4)

7 () = 5 (€) (15 (69)

= (ey +e” +2)71 (5)

<

(k)

Then, iteratively calculate the residual &€~V of the
hidden layer. From the backpropagation error algorithm,
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we can see that the descent vector along the gradient is
as follows:

dJ(w,b - )\

POB) _ goon (-0 ©)
oJ(w,b) _ k-1

T ¢ @)

When the above formula converges to the optimum
value, the parameter vector w, b, a* =" is used as the
optimum adapting parameter of APADAE network
model layer and is used to train the sample data. Sample
data are input into multi-layer embedded DAE network
one by one according to the algorithm flow to select fea-
tures and map them to low-dimensional vector output.

Simplified experiments were conducted to verify the fea-
ture selection effect of APADAE algorithm. Six network
output nodes were set up, i.e., six feature points selected
from the single spectrum. The interference sources were
deployed on eight RP coordinates one by one. One AP
was fixed at the center of the classroom, and one
spectrum was collected by each RP. Each RP label pair
was extracted by APADAE algorithm selection. According
to the characteristic data of the spectrum map, eight
groups of features are extracted. As shown in Table 1,
each row corresponds to a class label, each class label cor-
responds to six feature points, each feature point corre-
sponds to two dimensions (signal strength RSSI and
frequency f), and each feature point corresponds to 12 di-
mensions. In the experiment, the parameter vector k of
the algorithm APADAE maps to 11 layers of network.

3.2 Analysis of characteristic data
As shown in Table 1, it is obvious that unsupervised ma-
chine learning method has no prior autonomous feature
extraction throughout the spectrum, and its dispersion
is high and irregular. As the number of RP labels and
AP sampling spectrum increases, its spatial dimension
and total feature number will be geometrically doubled.
When the least coordinate labels are collected as s - ¢
=8 in the indoor interference source location experi-
ment, then m =4 collection points are deployed. Each
collection point collects 7 = I signal spectrums, and each
spectrum selects j = 4 feature points. Each feature point
corresponds to two parameters RSSI;, f;, RSSL, f,
-'RSSL;, f;, the number is 2j = 8. The feature vector set
of each coordinate label can be constructed, and the
total dimension number of feature vectors can be calcu-
lated as mx nx 2j=4x 1 x 8 =32, and the total number
of eigenvalues can reach by m x nx 2j x 8 =32 x 8 = 256.
With the increase of the number of coordinate labels,
sampling points, and spectrum, the number of data di-
mensions and eigenvalues will increase sharply. When
the parameters got s -t =24,x =4,y = 3,j = 12, calculation
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Table 1 DAE algorithm feature selection simplifies experimental data

Class RSSI/(dBm) f/(Mhz)

label RSSI1 RSSI2 RSSI3 RS RSSIS RS fl n 3 4 f5 fo

L1y —-525 -50.2 -51.8 —49.1 -516 —-539 1.803 1.767 1.851 1.785 1.845 1.829
L1s -502 —496 -502 -516 -503 -496 1.813 1.827 1.869 1.807 1.856 1.863
L3 —-49.6 —483 —49.7 —485 —50.1 -505 1.821 1.837 1.758 1.812 1.846 1.829
Lig - 505 —494 -513 -50.7 -515 -517 1.809 1.826 1.873 1.774 1.871 1.817
Lo -514 -515 -507 —-493 —494 —505 1.858 1.842 1.845 1.856 1.855 1.829
Ly —-439 — 447 —435 —-42.2 —44.5 —432 1.783 1.851 1.841 1.821 1.869 1.855
L3 —432 —44.1 —438 —44.7 —-416 —425 1.861 1.844 1.856 1.809 1.841 1.828
Log - 506 —495 —-498 -512 —496 -503 1.834 1.861 1.863 1.845 1.857 1.864

shows that the overall feature dimension contains m x
nx2j=4x3x24=288, and the total quantity is up to
mxnx2jx24=288x24=6912 Fig. 5.

3.3 Dimension reduction

From the analysis of feature data, it can be seen that the
increase of data will lead to too much computational
complexity, which may lead to “dimension disaster,” and
slow data training process will affect generalization abil-
ity. Moreover, the feature vectors selected by APADAE
algorithm are not all effective, so the redundant feature
vectors are eliminated without reducing the classification
accuracy, and a feature reduction subset is constructed.
The main methods of dimension reduction are com-
pressed sensing, principal component analysis, convolu-
tion mapping, and threshold filtering.

KPCA is a commonly used nonlinear dimension re-
duction method [25]. It is based on the kernel function
technique to “kernelize” the linear dimension reduction
method. It can be used to improve the ability of princi-
pal component analysis (PCA) to analyze nonlinear sam-
ple data. Mercer kernel function is introduced into the
study, and evaluation parameters are embedded to adjust
the proposed method. In order to reduce the dimension
of feature data and eliminate the multiple correlations
between vectors, the component process is used to ex-
tract the high-dimensional nonlinear reduction subset
with high cumulative contribution rate.

The feature space data Z = (z;, 2, z) extracted from
the APADAE algorithm is standardized by z; = (z;-;)/
o;, 4 is the sample mean, and o is the sample standard
deviation, and then, it is mapped to the hyperplane of
W= (wy, wa, ..., wy).

<Z V,'ViT> w;j :P,/'Wj (8)
i=1

v; is the mapping of a sample point z in
high-dimensional feature space, so we got the parameter

Wj.

m m T

W‘*l V-VT w; = V‘Vi e
/_e‘ v ] i 2.
J \i=1 i=1 ]

a] =#vlw; is the j component of a;, and w is trans-
7

formed into w; = 37" ¢(r;)a]. The Mercer kernel func-
tion is introduced as follows:
T
k(ti,7j) = Pp(1:1)" ¢(1)) (10)
That is Ko/ = 8,-0/, and K is the kernel of x correspond-
ing to the nuclear parameter 7. It can be got that K(z;
1) =k(1,1;) and o = (af;al;..;af,) . According to
eigenvalue decomposition, the largest eigenvalue € of K
and its corresponding eigenvectors are obtained.

vi=wi (1) = i“{’(('[ia 7) (11)

In (11), the j dimension coordinate vector after the
mapping of the new data point 7.

The selection of kernels has great influence on the im-
plementation of KPCA. The common kernels are linear
kernels, polynomial kernels, Gauss radial basis function,
sigmoid kernels, etc. Gauss Radial Basis Kernel (RBF)
function is easy to extract local features from different
kinds of labels while retaining the overall feature infor-
mation. Therefore, it is chosen as a nonlinear relation-
ship between the eigenvalues to mine. Its mathematical
expression is as follows:

2
I((Ti, Tj) = exp (M>

= (12)

In (12), the ¢ is the radial base nucleus width. In order
to measure the interclass separability, we define the
hyper parameters d; to adjust the extraction process of
the L principal component (class label) process.
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d ! LZI: zL: 1 Aop (13)
L=——— - exp|-
L(L + 1) a=1 f=a+1 ré + rlﬁ

In (13), we can get d,g is the L principal classification
intervals between the a and thep class label. Then, rL
and r/Lg are the maximum distance between the E princi-
pal component and the center of class a« and j3, respect-
ively. And # = |(ds - dp)|/d,, is defined as the adjustment
margin of d;. When 7 reaches the minimum value, d;
takes the maximum value.

The ratio of extracted principal components to the cu-
mulative variance contribution rate of eigenvalues is
weighed.

Papy =Y /> ¢
=1 =1

The value of Pcpy represents the size of principal
component implication information. In order to prevent
data from overfitting, we select feature vectors of Pcpy
value before ¢ and construct special reduction setsc = 2.

The implementation steps of KPCA dimension reduc-
tion algorithm are the following:

Step 1: Initialize the program, normalize the sample
data to get the mapping matrix W, and then get the
Gauss kernel matrix K;

Step 2: The eigenvalues and eigenvectors are calcu-
lated, and the eigenvalues of the correlation coefficient
matrix are sorted £, > £, > ... » ¢; and the eigenvector
V1, V2, ..., V; corresponding to Schmidt orthogonalization
is obtained;

Step 3: The d; and Pcpvyare evaluated and evaluated.

Step 4: When # approaches 0.0001, the program ter-
minates, and the feature vectors corresponding to the
principal components of Pcpy before ¢ sort are output
to form a new reduced feature set.

(14)

3.4 Feature vector extraction

After processing Table 1 data by the KPCA algorithm,
where the value of the core width parameter ¢ is equal
to 0.5, we get the eigenvalue € and the cumulative con-
tribution rate Pcpy of the data, and the order is as
follows:

Comparing with Table 2, it is obvious that the KPCA
algorithm extracts eigenvector components more signifi-
cantly than PCA. The PCA algorithm extracts eight vec-
tors according to approximate values, while the KPCA
algorithm can extract 14 eigenvectors with stronger fea-
ture representation ability. The first four of them contain
95.81% of the original signal feature information, but the
computational overhead of KPCA algorithm is slightly
larger. The feature vectors of the first four ranking
values of KPCA algorithm are selected as the feature
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Table 2 The data of two PCA methods

Principal PCA KPCA

;Cr)é? npa(iir:)ennt ¢ Pepv/% L Pepv/%
1 0.628 2 5153 0394 8 52.72
2 03147 25.82 01166 2572
3 0.137 5 11.28 0.069 3 10.59
4 0.075 8 6.22 0.050 8 6.78
5 0.0391 321 0.046 7 517
6 00161 1.32 0.029 5 2.74
7 0.007 4 0.61 00153 1.78
8 0.000 2 0.02 0.009 8 1.31
9 0 0 0.006 2 0.83
10 0 0 0.004 3 057
11 0 0 0.003 5 047
12 0 0 0.001 6 0.21
13 0 0 0.000 4 0.05
14 0 0 0.000 1 0.01
15 0 0 0 0

16 0 0 0 0

representation of the coordinate label, that is, the ori-
ginal 16-dimensional feature vectors are replaced by four
dimension optimal feature vectors, and the dimension
reduction is 1/4 and the labeled optimal feature set is
formed.

4 Classifier construction, optimization, and
training test

The reduced subset after KPCA processing is classified
and processed. The number of classes is equal to the
label number or the number of RP coordinates. There
are many commonly used shallow learning classification
methods: the BP neural network, the support vector ma-
chine (SVM) classification, the Softmax classification
[26], and so on. Most of the binary classification
methods need to change and combine to form a
multi-classification pattern. When the dimension is too
large, the increase of the classification level results in the
slow process of the algorithm.

4.1 The establishment of classifier

According to the analysis of APADAE network algo-
rithm, it is obvious that not only dimensionality reduc-
tion but also classification function can be achieved by
controlling the number of nodes in the output layer, but
the extraction category is rough and inefficient. Softmax
classification model, which is widely used in the field of
in-depth learning, and PSO optimization process are in-
troduced to improve classification efficiency. The core of
this research is to normalize the mapping values of
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neurons in the classification layer into class label prob-
abilities, which is essentially an extension of the logistic
regression model in multi-classification applications.

Defining the feature subset U is {u(l), u?, ~~u(1)},
[€[1, L], the probability of input samples according to
corresponding class labels is p(L” =L|u®;6) and to
realize Softmax-based multi-class classification, its loga-
rithmic regression loss function is defined as:

p(L<l> = 1|u(1); 91>
o(u0) = | P(L" = 2lu":0)

p(Lw _ i|u(l);gL)

69174,4(1)
1 engﬂ(l)
= - . (15)
W .
el 07l

=1

In the above formula, L is the number of class labels,
and system parameter 6 determines the probability of
class labels and here assigns 6 = (67,601, --0]). Matrix
0 corresponds to the probability of one class label per
row. The maximum probability p(L?” = L|u”; 6) is the
classification label of class u“corresponding to [ class,
and the update cost function is

o7 u®
n_ et
{u() = l} log ZlLlegLTu(z)‘|

(16)

tﬂé

The gradient derivative method is applied to solve the
partial derivatives of the classification labels, and the
corresponding class label parameter ; is obtained by
the following formula.

- [Z (110 = 1} -p(10 = 1u:6))

=1

9Q(6)
a0,

(17)

4.2 PSO optimizes the classification process

As an evolutionary parallel algorithm, PSO algorithm
[27] is widely used because its particles traverse the
space iteratively from random solutions and have high
precision and fast convergence. PSO is used to optimize
the classification model of Softmax in order to speed up
the classification process. The steps are as follows:

Step 1: Constructing the cost function of Softmax
multi-classification model.

1 P, = TP/(TP + FP)
R, =
F,=
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Step 2: The location of particles is initialized in the
vector space, where the initial dimension of the particle
is 16 and the number of iterations is 100.

Step 3: The fitness function Q(6) is adjusted by
gradient descent method, and the parameter 6; of
fitness is verified by K-fold cross-validation. The fold is
set to 5. The fitness value Q(6)) is iteratively calculated
to update the position of particles to achieve global
optimization.

Step 4: When the threshold condition is reached, the
optimal parameter 6; of Softmax can be obtained by
outputting the position parameters of the particles.
Step 5: In order to prevent the problem of “gradient
cliff” in convex optimization processing, the Polyak
averaging algorithm is applied to process the output of
0;. by q =100 iterations to get 8, = g7'>",6%, and then,
the label corresponding to the probability of sample
classification is obtained.

4.3 Training test validation

According to the above strategy of the off-line phase, 8,
12, 16, and 24 RP coordinates were selected respectively
as the experimental environment organized in section
1.1, and a spectrum analyzer was collected successively
around RP points on four different AP coordinates. Each
RP coordinate in DCS mode of interference source sam-
pled three groups of spectrum separately. In order to
prevent the instantaneous overshoot phenomenon of ac-
quisition signal from lasting for 20 s, the acquisition time
interval was 10s to extract the steady-state spectrum.
The total number of 24, 36, 48, and 72 groups of
spectrum were collected respectively. In order to prevent
data overtraining, 1/6 of the collected data was randomly
selected for classifier training and parameter
optimization. The remaining data was used for classifier
testing. The performance of classification testing was
measured by precision (P,), recall rate (R,), and F1 score
(F1-score, F;) [28].

TP/(TP + FN)
2P,R,/(P, + R,)

(18)

In (18), the four parameters TP, TN, FP, and FN cor-
respond to the true rate, the true negative rate, the false
positive rate, and the false negative rate of the resolution
results, respectively.

5 Results and discussion

We collect data from the same environment in Section
2. The classroom is open and barrier-free. The interfer-
ence source and the shelf are placed at the center coord-
inate (9.6, 6.4 m), and the slurry antenna is placed
vertically. We collect the spectrum data of interference
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sources one by one from the edge of the classroom by a
single receiving AP according to the grid. The width of
the mesh is 0.8 m and 1.2 m, respectively. The AP mov-
ing position coordinates are as follows: (2.5, 1.2), (4.5,
1.2), (6.5, 1.2) et al., and the RP position is (2, 1.2), (4,
1.2, 6, 1.2) and so on. In addition, we changed the num-
ber of RPs at the same acquisition interval. This makes
the dimension of data computation increase from 32 to
288. The experiment is to verify the correlation between
dimension and positioning accuracy by changing dimen-
sion parameters. We delete the location coordinate data
which are far away or unsuitable for acquisition and
classify and evaluate them using the method of Softmax
(Fig. 5). In addition, we compare it with the literature BP
[29] and SVM [30] in Table 3.

From Table 3, it can be seen that when the number of
RP is 8, and the grid of RP the location interval distance
is selected as one eighth of the width of the test class-
room, that the grid of RP is about 1.625 m. When the
number parameter of RP increases to the maximum of
24, the interval distance is equal to 24 equal parts of the
width of the test room, which is approximately 0.541 m.
When RP equals 8, we can get three evaluation values of
P, R, and F;, which correspond to three algorithms of
BP, SVM, and Softmax. Comparatively speaking, BP al-
gorithm obtains higher PR value because of its higher
computational complexity than SVM algorithm. The
highest PR value of Softmax algorithm is 80.2. It can be
seen that the training scores of the three classification
methods are better in Softmax, followed by BP, and
SVM needs to cooperate with a multi-classification strat-
egy to make its score the lowest. Obviously, the more to
add the number of RP, the higher to get the perform-
ance. Considering the limitation of the experimental

(2019) 2019:47 Page 10 of 12

Table 3 RP number and feature classification performance

RP BP SVM Softmax

number TR p R R P R

8 738 662 697 631 588 608 802 636 709
12 767 657 707 658 613 634 834 657 735
16 783 605 682 726 657 689 911 898 904
2% 776 643 703 761 638 694 868 719 787

environment and the operation cost, the RP selection 16
is relatively optimal.

In the further experiment, RP is equal to 16 and the
first three of all classifiers are selected. The interference
sources are randomly placed in 32 non-label locations in
the room to observe the relationship between resolution
accuracy and location error. Five groups of spectrum are
detected at each location. The classification results of
Softmax and the classification errors of three algorithms
are listed in Fig. 6 and Table 4 in terms of space
relationship.

It is very obvious that the data in Fig. 6 are regular. It
is a comparison result of position labels, in which the
horizontal and vertical coordinates are from L;; to Lyy.
This is the data collected when the RP parameter is se-
lected as 16, which the grid of RP is about 0.813 m. The
values of each row and column correspond to the actual
position coordinates of the test classroom environment.
We can clearly see that the diagonal data is the max-
imum probability of locating. For example, we get 91.6
values at Ly;, and 5.8 and 2.6 values at L;5, and L4, re-
spectively. This means that when the reference point is
selected at L11, about 5 of the 100 measurements are
positioned at L,, and 2 at Ly4. Obviously, this is the posi-
tioning error. We use the algorithm to express the

LH L]2 ...... ij N A 4
« RP position
21 i —
I A | a A AP position -
31 -60 -
: N A UL ey
: -80
L L,
-100
Feature
dimension
L“ ..... le ik
Y N
’\.1 ”\‘2 »77T ’xm
——t
yl’.yl’.“’vvn E> n
B oZre,2,
RSSI,. f,.RSSL,. f,.---.RSSI . f, 2j
Fig. 5 Location coordinate data spatial dimension decomposition map
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Lll L12 L13 LM L21 LZZ L23 L24

LBI L32 L’H LBII L'll L/IZ L43 L/M

L |91.6 5.8 2. 6

Lz 7. 1(89. 4 3.5

Lis 7.992. 1

L4 91.3 8.7

Lo 3.9 91.9 4.6

Loz 3. 3 93. 3|

3. 4

La3 4. 895. 2

Las 2.7

90. 6] 6.7

Lai 3.3

91.6 2.8 2. 3

Laz 2. 6

2.892.7 1.9

2.1091.7 2.1 4.1

2. 4 3. 2/92. 2 2.2

3.3 91.4 5.3

7.1]89.6 3.3

1.8 4.888.3 5.1

6. 4 2. 291. 4

Fig. 6 Feature vector classification results

positioning error clearly by comparing the probability.
In a word, the data of other coordinates are the same,
and the complete positioning error data of the test envir-
onment can be obtained through Fig. 6.

As can be seen from the test results of mixed matrix
and Table 4 in Fig. 6, there are 16 diagonal matrices for
correct classification. The overall correct average recog-
nition rate can reach 91.5%, and the overall average posi-
tioning accuracy can reach 1.16 m. Softmax classification
is more effective than other classifiers in identifying the
RP position of interference sources. The recognition rate
and positioning accuracy are basically positively corre-
lated. At the same time, it is also observed that in the
middle area of the location environment, the identifica-
tion rate is high, up to 95.2%. And the resolution errors
mostly occur in the corner coordinates of the room,
where the signal refraction causes great fluctuation,
which confirms that indoor environment has a greater
impact on location.

Table 4 Positioning error

BP SVM Softmax
Average error/m 141 123 1.16
Average recognition rate/% 734 788 91.5

6 Conclusion

By changing the traditional fingerprint positioning
method of interference source, a new positioning sys-
tem is established, which verifies the positioning ac-
curacy and reliability of the new indoor positioning
method of interference source. The method of
extracting spectrum characteristic parameters of in-
door interference sources is effective. The average
recognition rate of feature can reach 91.5%, and the
average positioning accuracy is 1.16 m, which com-
pared with the previous positioning methods is greatly
improved. As to the positioning environment in the
experiment, the number of samples collected is not
positively related to the positioning accuracy, and the
192 dimension of the overall dimension is close to
the optimal.

The experimental model in this study can provide a
new reference for the realization of indoor jamming
source location. When the types of jamming sources
and ranging and jamming communication modes are
changed, their signal characteristics will change ac-
cordingly. This requires a large number of real-time
updates of sample data to enrich the location diction-
ary. In subsequent experiments and studies, it will be
gradually improved.
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