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Abstract

The demand for indoor localization is becoming urgent, but the traditional location fingerprint approach takes a
lot of manpower and time to construct a fine-grained location fingerprint database. To address this problem, we
propose to use the approach of combining dynamic collection of fingerprint samples with Radial Basis Function

effort of manual collection of fingerprint samples.

(RBF) interpolation. Specifically, the raw sparse fingerprint database is constructed from a small number of
fingerprints collected on a few paths, in which the pedestrian track correction algorithm improves the validity
and accuracy of the sparse fingerprint database. Then, the RBF interpolation approach is applied to enrich the
sparse fingerprint database, in which the Genetic Algorithm (GA) is used to optimize the free shape parameter
and the cut-off radius is determined according to the experimental results. Extensive experiments show that the
proposed approach guarantees high interpolation and localization accuracy and also significantly reduces the
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1 Introduction

With the rapid development of intelligent terminals
and communication technologies, location-based ser-
vices have become an indispensable and important
element in daily life. Innovative services such as Didi
taxi and Mobike shared bicycles are closely related to
the development and application of localization tech-
nology. And intelligent transportation is based on the
Internet of Things (IoT) [1], 5G [2], and other tech-
nologies, which provide enormous connections of de-
vices and sensors with applications. Satellite
communications keep step with the quick develop-
ment of wireless terrestrial communications [3, 4],
such as Global Positioning System (GPS) [5], and can
provide good localization services. However, due to
the blockage of buildings in the indoor environment,
it is difficult to receive satellite signals. Therefore, the
upsurge of research and positioning has been
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transferred to the indoor localization. The existing in-
door localization systems are mainly based on Wire-
less Local Area Network (WLAN) [6], Bluetooth Low
Energy (BLE) [7], Micro Electro Mechanical Systems
(MEMS) [8], Radio Frequency Identification (RFID)
[9], and Ultra Wideband (UWB) [10]. Working in the
same frequency band as WLAN, Bluetooth technology
has attracted extensive attention of researchers. With
the increasing integration degree of Bluetooth mod-
ules, a variety of Bluetooth-based indoor localization
methods [11] emergy, such as range detection-based
localization method, signal strength-based localization
method, and Cell-ID-based localization method. The
introduction of the Bluetooth 4.0 version enables
Bluetooth technology to exhibit lower power con-
sumption in data transmission, as well as advantages
such as low cost, low delay, and long effective con-
nection distance, which promotes the development of
Bluetooth in indoor localization.

The current mainstream fingerprint-based indoor
localization approach includes two phases [12], namely
offline and online phases. In the offline phase, site sur-
veys are conducted and the regions of interest are
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planned. Received Signal Strength (RSS) samples are col-
lected at each planning Reference Point (RP) and saved
to the location fingerprint database. In the online phase,
by matching the RSS measured at the point to be posi-
tioned with the location fingerprint database, the loca-
tion result of pedestrian is output. It can be seen that
the process of constructing location fingerprint database
in offline phase consumes a great deal of time and man-
power, and is vulnerable to changes in the environment,
such as the flow of crowd and Access Point (AP) change.
When the area is too large, the cost required for con-
structing the fingerprint database cannot withstand. The
above factors all limit the promotion and application of
this technology. In this paper, we aim to construct a fin-
gerprint database with significantly reduced workload as
well as guarantee high localization accuracy in the online
phase.

To achieve this goal, a new cost-efficient fingerprint
database construction approach via dynamical collection
approach and multi-quadric [13] RBF interpolation is
proposed. In concrete terms, at fingerprints collection
stage, we collect fingerprints on a few straight-line paths
dynamically and then add error correction factors into
pedestrian dead reckoning (PDR) part, to generate an ac-
curate sparse fingerprint database. In addition, we apply
multi-quadric RBF interpolation approach to interpolat-
ing each new fingerprints, and we also rely on GA [14]
to find better shape parameter to improve interpolation
accuracy.

All the experiments are conducted in a real-world in-
door BLE environment to demonstrate the system prac-
ticability. The three main contributions of this paper are
summarized as follows:

(a) The dynamic collection of fingerprint samples and
PDR error correction factors are considered to construct
an accurate raw sparse fingerprint database.

(b) The multi-quadric RBF interpolation algorithm is
applied to expand the sparse fingerprint database, in
which the impact of free shape parameter and cut-off ra-
dius on RSS estimation is studied also.

(c) The extensive experiments in a real-world indoor
BLE environment demonstrate the effectiveness and effi-
ciency of our system in terms of localization accuracy
and fingerprint database construction effort.

The rest of the paper is organized as follows. Sec-
tion 2 shows some related works concentrating on in-
door Bluetooth localization and the way to reduce
fingerprints calibration effort. In Section 3, we intro-
duce the framework of the system, including using a
dynamic collection of fingerprint samples to construct
the sparse fingerprint database and  using
multi-quadric RBF to interpolate the sparse finger-
print database in offline phase. It also includes BLE
localization in the online phase according to the
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WKNN algorithm. Section 4 provides the experimen-
tal results, and finally, the conclusion of this paper is
given in Section 5.

2 Related work

2.1 Indoor Bluetooth localization

Indoor Bluetooth localization approaches can be di-
vided into three main categories, namely range detec-
tion, fingerprint  matching, and  propagation
model-based approaches. The range detection-based
approach makes use of the short distance transmis-
sion characteristics of the Bluetooth signal. When the
user carries the mobile device into the range of signal
coverage, the user’s location can be perceived that
achieves the range level localization accuracy. Ana-
stasi and Chawathe et al. [15, 16] put forward the
Cell-ID parameters to implement the Bluetooth
localization system. In the localization system, the
user’s movement and standing can be determined to
realize the room level localization. Signal intensity
based approaches are mainly divided into two cat-
egories, namely fingerprint matching and propagation
model-based approaches. Mo and Xiong et al. [17]
propose to classify the region according to the prox-
imity information of the signal to limit the search
range. The other parameter based localization ap-
proaches mainly use link quality information, query
feedback rate [18] and other parameters. Forno et al.
[19] propose that the Bluetooth power level can be
used to locate mobile users, and the surrounding
Bluetooth devices are obtained by filtering different
power levels to calculate the location of the user.

2.2 Collection effort reduction

To reduce the time and labor cost for fingerprint data-
base construction, many studies have been paid signifi-
cant attention to reducing the fingerprints collection
efforts. In [20], according to the auto-building system,
the authors construct the location fingerprint database.
In [21], based on the signal propagation model, the au-
thors estimate RSS at all new RPs. Ouyang et al. [22, 23]
apply the generative and discriminative semi-supervised
learning and use a few labeled RSS data and a large
number of unlabeled RSS data to construct and enrich
the fingerprint database. Liu et al. [24] propose to use
the compressed sensing theory to construct a fingerprint
database. Racko et al. [25] choose linear interpolation
for the purpose of reducing the time needed for radio
map creation and verify the approach in a corridor
which is a narrow environment. Kubota et al. [26]
propose an accurate interpolation for survey database,
part of fingerprints are estimated using a path loss
model containing wall attenuation. A novel approach to
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adapt temporal radio map is proposed in [27] by offset-
ting the varying environment factors.

Different from the studies above, we firstly determine
the capacity of fingerprint acquisition sample according
to the change characteristics of the BLE signal and
localization error of different percentile values of the fin-
gerprint database. Then, the sparse fingerprint database
is constructed by extracting dynamic sampling finger-
print samples and combining pedestrian movement pa-
rameters information. In addition, the multi-quadric
RBF interpolation approach is applied to estimate RSS
sequences of the new RPs, thus compensating the defi-
ciency of sparse fingerprint database localization accur-
acy. The cut-off area radius and shape parameter in
multi-quadric function are also studied and optimized,
which improves the interpolation accuracy of sparse fin-
gerprint database.

3 Methods

As shown in Fig. 1, the proposed fast construction ap-
proach of location fingerprint database in the offline
phase, that is, using MEMS sensors to assist in the dy-
namic collection of BLE fingerprints and applying the
RBF interpolation algorithm. First of all, using the
MEMS sensors to measure the pedestrian motion pa-
rameters and calculating the location of fingerprint
points, and then combining the BLE RSS, we construct
the sparse fingerprint database. Second, the RBF
interpolation algorithm is applied to enrich the sparse
fingerprint database by interpolating each new RP from
its neighbors. At the same time, in the online phase, the
Weighted K Nearest Neighbor (WKNN) algorithm is
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used to realize the accurate localization, which reduce
the localization time.

3.1 Speed and heading angle estimation

According to the PDR algorithm [28], the pedestrian lo-
cation is calculated from the current speed, heading
angle, and location of a pedestrian at the last moment.
In this paper, based on the output data of accelerometer,
magnetometer, and gyroscope, the speed and heading
angle of the pedestrian are obtained by combining speed
estimation and heading angle calculation modules.

The speed and heading angle estimation process are as
shown in Fig. 2. In speed estimation module, the gait de-
tection is completed by using the periodic characteristics
of the acceleration when the human body walks, and
then the step length empirical model is applied to output
the real-time step value. According to the correspond-
ence between step length and step frequency and accel-
eration variance, the BP neural network is used to train
model parameters. Finally, the speed is calculated based
on the acceleration change form and step length infor-
mation per second. In heading angle calculation module,
according to the complementary characteristics of the
three sensors, we use complementary filtering algorithm
to optimize the output data of gyroscope and then up-
date the quaternion based on Extended Kalman Filter
(EKF) [29].

3.1.1 Speed estimation

The acceleration of pedestrians changes in the form of a
sinusoidal wave during walking [30]. In this paper, the
acceleration value of a pedestrian is collected by the

r— - - -] — — — —
Collection of BLE RSS MEMS
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- . cquisition of motion
| (E | | Data pre[‘)rocessmg paraT eters |
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Fig. 1 Framework of system
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Fig. 2 Speed and heading angle estimation

acceleration sensor, we calculate the modulus of
three-axis acceleration to estimate the speed of pedes-
trian and detect the gate and steps of a pedestrian by

using the periodic variation of acceleration during walk-
ing, in which acceleration modulus Acc!®®! is obtained

by

ACCEOtal — \/(ﬂic)Z + (ﬂf)z + (ﬂf)z (1)

where a7, zzly. , and a7 are acceleration at the i-th moment,
in X axis, Yaxis, and Z axis respectively.

Next, we estimate the pedestrian step length. Pedes-
trian step length is usually related to height, walking
speed, and other factors [6]. To reasonably estimate the
pedestrian step length, we select the nonlinear step
length estimation model, which is an appropriate step
length estimation model. Moreover, by using the calibra-
tion coefficient in the training model, the applicability
and accuracy of the step length model are improved.
The step length L can be expressed as

1/4
— k- g00k
Lk - P< ACChax (lCCmm> (2)
where acck and acck; are the maximum and mini-

mum acceleration detected in k-th step. p is the calibra-
tion parameter, which is the ratio of true step length and
estimated step size and can be obtained based on the
neural network algorithm.

Finally, it is known that the sampling frequency of the
sensor is f;, the number of sampling points between two
effective peaks is AN, and the step length of k-th step is
Ly, we estimate the speed as

_ kas
AN

(3)

Vk

3.1.2 Heading angle
Based on the output data of accelerometer, magnetom-
eter, and gyroscope, we calculate the attitude angle,

including the direction angle ¢, roll angle y, and pitch
angle 6.

Assuming that the pedestrian is stationary and the
handheld terminal is placed horizontally at the begin-
ning, we initialize the filter. The output vector of
three-axis accelerometer is expressed as

ax ay a;]" =Cl[0 0 g (4)

where [a, a, a,)" is the output vector of gravity acceler-
ation in the carrier coordinate system, g is local acceler-
ation and directional cosine matrix C? is calculated by

cosy 0 siny
ct = sinf siny  cosf - sinf cosy (5)
- cosf siny sin@  cosf cosy

Based on formulas (4) and (5), we have

Ay
y = arctan———
[ 2 2
ay + a; (6)
-a
6 = arctan—2
a;

Thus the three-axis magnetometer data is decomposed
to horizontal direction as

H, = m, cosO + m, sinf

H, = my, cosy + m, siny sinf-m, cosd siny

where [m, m, m,]" is the output vector of the magnet-
ometer in the carrier coordinate system. H, and H, are
the components of magnetic in the NES navigation co-
ordinate system. Based on H, and H,, the heading angle
can be calculated by

Hy
= tan — 8
@ = arc anHy (8)

After the initialization process, next, we solve the
real-time attitude angle and set the quaternion as the
state variable of the filter, we have



Xie et al. EURASIP Journal on Wireless Communications and Networking

©)

In addition, in order to estimate the attitude angle
more accurately, we select the output values of acceler-
ometer and magnetometer to be as the observation, such
that

T
X =4, 92 93 494]

Z:[ax ay, a, m, my mZ]T (10)

According to the principle of the quaternion in the in-
ertial navigation system, we define the state equation as

X =
0 —(@wx—wy)

1| (©x—wx) 0
2 | (0y-wy)  —(w,-w,)

(@;=w;) (“’y‘wy) (11)
_((wy_WJS) _((‘)z_wz%

ZO ’ (wxy—wxy) X
—(wx—wy) 0

where w,, ©,, and w, are the output of gyroscope and
Wy, Wy, and w, are measurement noise.

After the above data preparation, the optimal quater-
nion of the state variable is obtained by updating the
EKF model. According to the conversion relationship
[31] between quaternion and the Euler angle, the
real-time heading angle is calculated as

-2(¢419, + 9043)

¥ = arctan
(45 + 4i-43-45)

(12)

3.2 Fingerprint database construction

In this paper, we use a dynamic fingerprint database
construction algorithm based on MEMS sensors assisted
BLE. The user holds the tag board containing MEMS
sensors and BLE module, collects fingerprints on prede-
termined paths in the indoor area, and synchronizes the
sensor data and BLE data of each moment by using time
label. Then, the location information can be obtained by
calculating pedestrian motion parameters such as speed
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obtained at the RPs, a sparse location fingerprint data-
base can be constructed.

Figure 3 shows the paths of fingerprint collection. For
each path, the process is described as follows.

Step 1: According to the starting and ending point of
the path L and the pre-set RP interval, the coordinates
of standard location fingerprint database are obtained as

{Xi = %o + i*Lstech

o 13
Yi =% +1 Lstep,y ( )

where i€(1,2, ,%), (X, Y;) is the i-th RP coordi-
nates, (%o, %o) and (X¥enq, Yena) are the starting point and
ending point, and Lgep, x and Lge, , are the pre-set RP
interval.

Step 2: The disadvantage of MEMS localization algo-
rithm is the cumulative error in the long-time period
[28], which leads to large localization error. To address
this problem, we add the error correction parameters to
the PDR formula, such that

j
Xj =X + E nzlvxn—&—exj

(14)
]
Vi =Yo+ D Wt

where (x;,y,) is the location of a pedestrian at the j-th
moment, and vx; and vy; are the two components of
walking speed at the j-th moment, which is calculated by

{vxi =v; sin(headj) (15)

vy; = v; cos (headj)

where head; is heading angle at the j-th moment.
And correction factors ex; and ey; are defined as

vx Ji
&Xj = end (xend _prdr)
Zn: 1 VXn ( 1 6)
vy Ji
eyj = (yend _LJ’Pd">

end
Zn:lvy n
where Ly = Zf:flvxn and Ly,q = Zf:flvyn are the

projection length of PDR result on X and Y axes.
Step 3: According to step 2, we obtain the coordinates

and heading angle, and with the BLE RSS sequences of the pedestrian at each moment, and the
S L
PR
I gl gl e Ll
_Lfiifu;i***é***iﬁl;***i *********** Fig it ?***&_

"

Fig. 3 Schematic diagram of fingerprint collection paths

Non-test area — -Path in area 1 - - Path in area 2 — - Path in area 3
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corresponding RSS sequence is also obtained. Next, we vk ok k1T
. . . . 1 ‘//2 '//pk
match the estimated pedestrian coordinates with stand- A= 2 % - xx (19)
ard fingerprint database coordinates according to the gy, yPk
1 2 P

Nearest Neighbor (NN) algorithm [32].

As shown in Fig. 4, there are N locations near the
path. For each location, calculating the Euclidean dis-
tance between the location and all standard coordinates,
and matching to the corresponding standard coordinates
in accordance with the NN algorithm. Taking the stand-
ard coordinates P; as an example, the RSS is calculated

(17)

where RSS,, is the corresponding RSS on this point, and
M is the total number of times that the point is stored
in RSS sequence.

Step 4: The coarse location fingerprint database is gen-
erated in step 3, which is constructed by pedestrians lo-
cation information and RSS at each moment. The
walking speed of the pedestrian is about 1.3 m per sec-
ond, so there are many fingerprint holes in each collec-
tion path, such as point P;, ;. To address this problem,
the distance-based spatial fingerprints interpolation algo-
rithm is selected, that is to calculate the mean RSS of
adjacent RPs and assign it to RPs that without RSS.

In the process of constructing the database, we consid-
ered the shielding factors of the human body for BLE
signal. At the same time, we consider the location fin-
gerprints of different paths including the heading angle
information, so we construct a multidirectional location
fingerprint database. For example, if the heading angle
of the path is 45° to 135°, the 90° direction database is
set. Accordingly, 0°, 180°, and 270° direction databases
are set up in turn. The RSS vector is expressed as

T
!//i‘(: |: i‘ilv"'7¢ﬁjv"'v fMj| (18)
where ¢f§}.(1 <i<Pk 1<j<M,1<k<4) indicates the RSS
value from j-th anchor received at the i-th RP. P* is the
number of RPs for the k-th direction database, and M is
the number of anchor in the indoor area. The fingerprint
database in the k direction can be expressed as

Because of the particularity of environment, the num-
ber of RPs in each direction fingerprint database is dif-
ferent, and the interpolation process behind is based on
each direction database.

3.3 Fingerprint database interpolation

For convenience, we collect fingerprint data along the
tile side line of the site and the length of a square tile is
0.8 m. We collect fingerprints by two tiles, that is, the
particle size is 0.8x 1.6m” Then, we continue to
interpolate the sparse fingerprint database, so that the
interval between the fingerprint database reference
points is 0.8 m, that is, to get a smaller fingerprint data-
base with smaller granularity.

Extract coordinates and RSSs of sampling RPs
and organize coordinates of non-sampling RPs

v

Optimize shape parameter and

cut-off area radius
v

Construct interpolation model and
estimate RSSs of new points

Traverse all
anchors

Yes

Expand the sparse fingerprint database

Traverse all non=
sampling RP

Yes

Fig. 5 Flowchart of the interpolation method
.
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3.3.1 Interpolation model construction

The general function approximation approach mainly in-
cludes polynomial interpolation [33], Kriging model [34],
neural network [35], and the RBF interpolation. The
RBF approach receives extensive attention because of its
advantages of less setting parameters and simple applica-
tion. In this paper, the RBF interpolation approach is
used to estimate RSS from the same anchor of RP in a
given area. In addition, we especially study the impact of
cut-off radius and shape parameter on interpolation pre-
cision. By optimizing the optimal values of the two pa-
rameters, the estimation error of new RPs RSS is
reduced.

The radial basis function is defined as a monotonic
function of the distance from any point x to center ¢ in
space, which is express as

y(x-c) = o([lx—cl) (20)

In this system, the Euclidean distance is applied to cal-
culate the distance between two RPs. The function space
composed of formula (20) and its linear combination
can approximate any object function.

The approach of constructing the RBF interpolation
model is described as follows. We set {x;y;} :1eRd ® R

n
J

as a sampling point coordinate set, the RBF interpolation
model is expressed as

N
f(x) = ZA,(ﬁ(“x—xj‘}),xeRd (21)
1

where A; is the weight coefficient of each sample point.
Z]/V:l Aj@(]lx—x;||) is the base function.

Based on the coordinates set of sampling points, the
base function matrix is expressed as

d(lxi—x1l])  @([lxa—1]])
Pllxr=xal)  ([lx2-22])

llli—xal)  $lllxa—a])
e (]
Bl

)

Brxn

(22)

According to ¢,,, and the RSS sequence of the same
anchor received at each sampling point, the weight coef-
ficient matrix (A;A5---A,) can be calculated by

CC2640

Fig. 7 Photos of tag board and BLE anchor
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The condition for formula (23) to be solvable is that
¢« is reversible. It has been proved that the above
equations have unique solutions when the sampling
points are different from each other [36]. Thus, formula
(23) can be further expressed as

T T

M n\ 7" [ ¢l
P I 7 I (e

L )\ el

$lml) - Pllmml)) " (24)
Hlx-ml) - Blle-zl)

Plr-xall) - Pltu—ta]])

After obtaining the weight coefficient matrix, we bring
it into formula (21). By setting the coordinates of new
RPs as input, the RSS values of the corresponding an-
chor can be solved.

3.3.2 Parameter optimization

The commonly used radial basis function includes Gauss
distribution  function of the Kriging method,
multi-quadric function of Hardy, and the inverse
multi-quadric function of Hardy. It has been proved in
[36] that linear equation (23) have unique solvability
when the kernel function is multi-quadric function, so
multi-quadric function is used as kernel function in this
paper. The base function formula can be expressed as

P(x) =/ + |l|*

where c¢ is shape parameter, and |lx|l is Euclidean dis-
tance between two points.

The shape parameter mainly affects the value of the
base function. The authors in [37, 38] study the selection
of shape parameter. However, these methods are based
on the values of the sampling points, giving an empirical
formula or a direct assignment. At the same time, the
influence of condition number on the stability of the
basis function matrix is not considered.

In this paper, we use the two criteria of root mean
square error (RMSE) and the Pearson correlation coeffi-
cient Ppear [39] to select the optimized shape parameter
value. For the selected new sampling points, we measure

(25)
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the real RSS sequences and obtain the RSS sequences es-
timated by using multi-quadric RBF interpolation algo-
rithm. The RMSE is the objective function, and
condition number of matrix is used as a constraint con-
dition, we obtain

(26)

where y(x;) is real measured RSS value of point x;, s(x;, ¢)
is the estimated RSS value of point x; based on
interpolation approach, # is the total number of selected
sampling points, and c¢ is shape parameter. The
optimization process is expressed as formula (27), and
the condition number is less than 10'° [40]. When the
above conditions are satisfied, ¢ corresponding to the
max Ppey is selected.

RSS(dBm)

0 20 40 60 80 100

RSS(dBm)

_]00 L L L L L
0 20 40 60 80 100
Time(s)
Fig. 8 RSS change trend during the tests. a RSS change trend of
Anchor 2. b RSS change trend of Anchor 6

- J
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{ arg, minf(c) o

cond(¢p) < 10"

3.3.3 Interpolation process description

In this paper, the optimized multi-quadric RBF is
used to approximate the target function of RSS of
sampling RPs, so as to achieve the purpose of
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expanding the sparse fingerprint database, as
shown in Fig. 5. We take the fingerprint samples
in one direction as an example. First of all, coordi-
nates and RSSs are extracted from sparse finger-
print database. Coordinates of non-sampling RPs
are determined based on interpolation interval.
Second, the optimal shape parameter is found
through GA, and cut-off area radius is obtained

N
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RSS(dBm)
3

© Sampling point
IRSS fitting surface

41
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o Sampling point
A\ |[RSS fitting surface

RSS(dBm)
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Fig. 9 RSS surfaces corresponding to different radius.a R=3m.b R=4m.cR=5m.dR=6m.e R=7m
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based on the sampling fingerprints. Third, the cir-
cle cut-off area range is set with each
non-sampling RP as a center. In the cut-off area,
according to RBF interpolation approach, we con-
struct an RSS surface of all sampling points from
an anchor. Then we estimate RSSs of
non-sampling RPs from the same anchor. By tra-
versing all anchors, we can estimate the RSS se-
quence of a non-sampling RP. According to the
above process, the RSS sequence of each
non-sampling RP is estimated in turn. Coordinates
of non-sampling RPs and the corresponding RSS
sequences are combined stored into sparse finger-
print database.

4 Experimental results and analysis

4.1 Environmental layout

We select the first floor of an office building in school as
the target environment (with demensions of 65 m by 17
m). As shown in Fig. 6, area 1, area 2, and area 3 are test
areas, and the grey part is the non-test area. The target
environment is a typical office environment composed
of a corridor, a hall, and many indoor rooms. A total of
7 anchors are arranged in the environment, and the

Table 1 The difference between the estimated value and
measured value of RSS (dBm)

Coordinates Radius (m)

30 4.0 50 6.0 70
(418, 6.6) 53 52 19 20 20
(42.6, 6.6) 3.1 1.6 19 20 20
(45.0, 6.6) 02 42 32 4.0 39
(45.8, 6.6) 05 19 22 23 24
(37.0, 5.0) 2.2 7.7 05 0.5 04
(37.8,5.0) 53 78 88 838 838
(40.2, 5.0) 14 52 15 15 15
(41.0,5.0) 09 0.6 05 0.6 0.6
(426, 5.0) 32 14 14 1.5 14
(434, 6.6) 4.1 52 42 53 52
(44.2, 6.6) 3.7 19 19 19 19
(46.6, 6.6) 05 50 1.0 1.0 1.0
(386,34) 30 3.1 28 29 28
(394, 34) 38 24 2.5 25 26
(402, 34) 2.1 2.2 23 23 24
(41.8,34) 1.7 59 1.2 1.2 12
(42,6, 34) 12 6.3 2.1 2.2 2.2
(434,34) 19 1.6 1.8 1.8 19
(45.0, 34) 58 56 42 52 5.1
(45.8, 34) 13 82 08 0.8 0.7
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Fig. 10 CDFs of errors in localization under different cut-off radius

J

location of the anchor is shown in the location of the
red small tower.

Our system consists of a portable tag board, several
BLE anchors, a server, and a gateway. Tag board embed-
ded CC2640 chip, including BLE module and sensor
module. BLE anchor takes CC2640 as the core chip, in-
cluding Bluetooth signal transmitting antenna. The ser-
ver is a computer. The photos of the tag board and BLE
anchor are shown in Fig. 7.

4.2 Parameter determination

4.2.1 Fingerprint sample capacity

There are seven anchors in the test environment, of
which Anchor 2 is in the corridor and Anchor 6 is in
the lobby. With Anchor 2 and Anchor 6 as representa-
tives, Fig. 8a and b show changes of pedestrian receiving
the RSS of the Anchor 2 and Anchor 6 respectively.
From this figure, we can find that the BLE fingerprints
collected dynamically by BLE platform have more stable
characteristics, besides the signal jitter. Therefore, we

N
x10'8
8

20 T T T

—*—RMSE
—6—Matrix condition number ‘H

Fig. 11 Change curve of matrix condition number and RMSE
- J
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only walk one way back and forth on the
pre-determined straight path, that is, collecting two dir-
ection fingerprint sequences on each path.

4.2.2 Cut-off radius

The multi-quadric RBF interpolation approach is se-
lected to estimate RSS values of new sampling points.
To verify the validity of this approach, we randomly se-
lect a sampling point that the coordinates is (37.8, 6.6)
and the measured RSS is — 61.09 dBm. Based on the co-
ordinates of sampling points and RSS of Anchor 7, we
obtain RSS surface. Figure 9 shows RSS surfaces corre-
sponding to radius of 3m, 4m, -+, and 7 m. From this
figure, the estimated RSS values for the reference point
are - 57.82dBm, - 58.03 dBm, - 58.3 dBm, - 58.38 dBm,
and - 58.49 dBm respectively. Therefore, it is feasible to
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estimate the RSS value of the new RPs by using RBF
interpolation algorithm within a certain range.

In order to select the cut-off area radius suitable for esti-
mating RSS values for most new RPs, we randomly se-
lected 20 test points to estimate the difference between
the RSS values and measured RSS values of these RPs, as
shown in Table 1. It can be seen that when the radius is 3
m and 4 m, there exist large errors, and when the radius is
5m, 6 m, and 7 m, the estimation errors are similar and
the whole estimated errors are smaller. In addition,
through the statistical analysis of localization results of
several sets of test data, we get the CDFs of localization er-
rors, as shown in Fig. 10. We can find from this figure that
the interpolated fingerprint database is superior to the
non interpolated fingerprint database in localization per-
formance, so it is necessary to interpolate the sparse fin-
gerprint database. And when the cut-off radius is 5 m, the
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localization accuracy performs best, the probability of er-
rors within 3 m is 76.58%.

Based on the above experimental results, we set the
cut-off area radius as 5 m.

4.2.3 Free shape parameter

Figure 11 shows the relationship between the matrix
condition number of base function matrix and shape
parameter and the relationship between RMSE of RSS
estimation and shape parameter. It can be seen that
when the range of changes in c is 0.01 to 50, RMSE in-
creases with the increase of ¢, and oscillates after ¢ is 14.
The matrix condition number is more than 10* when ¢
is 14. Figure 12 shows that when ¢ equals to different
values, the Pearson correlation coefficient between the
estimated RSS values and the measured RSS values of 52
RPs. It can be seen that when ¢ is 0.01, the overall cor-
relation coefficient is larger, that is, the estimated RSSs
is closer to the real RSSs. In addition, in order to deter-
mine the specific shape parameter, we determine that
the range of ¢ is from 0.001 to 5 and we select a genetic
algorithm to optimize the shape parameter. By setting
the popsize 50, crossover probability 0.8, mutation prob-
ability 0.04, and number of iterations 200, the output
shape parameter is set to be 0.07.

4.2.4 Localization result

In the target environment, we complete the collection
work of Static Single Direction (SSD) database, Static
Multi Direction (SMD) database, Dynamic Multi Direc-
tion (DMD) database, Static Multi Direction based RBF
Interpolated (SMD-RI) database, and Dynamic Multi
Direction based RBF Interpolated (DMD-RI) database
proposed in this paper and analyze the localization per-
formance of the 5 fingerprint database through dynamic
test data. The test path starts from point A, along

CDF of errors

Errors (m)

Fig. 14 CDF of errors under different approaches
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Anchor 3 to point B, then to point C, point D, and point
E in turn, along the corridor to point F, and finally back
to point A along the original path. Figure 13 shows the
estimated locations using several fingerprint databases.
To further prove the result, the corresponding CDFs of
errors are shown in Fig. 14. From this figure, we can find
that the proposed fingerprint database is superior to
DMD, SMD-RI, and SSD fingerprint databases and
slightly poorer than SMD fingerprint database in terms
of localization performance.

4.2.5 Time cost for fingerprints collection

To compare the time cost of the five kinds of fingerprint
database construction approaches, we select 3 indoor
environments with different size, i.e., environment 1
with 256 m?, environment 2 with 374 m? and environ-
ment 3 with 288 m> As shown in Fig. 15, it can be seen
that the time cost for DMD-RI approach that proposed
in this paper is less than that of other approaches. By
taking environment 1 as an example, the proposed
DMD-RI approach requires collecting two direction RSS
samples on 5 paths in the hall and 1 long path in the
corridor, which cost 290(=5 x 16 x 2 + 65 x 2) s. In DMD
approach, the time cost is 1350(=10 x 3 x 16 x 2 + 65 x
2 x 3) s, in which two direction RSS samples on 10 paths
in the hall and 1 long path in the corridor are collected
3 times. In the SSD approach, the time cost is
4160(=208 x 20) s, in which 20 RSS samples at each of
the 88 labeled RPs are collected. In SMD-RI approach,
the time cost is 7040(=88 x 20 x 4) s, in which 20 RSS
samples in 4 directions at each of the 88 labeled RPs are
collected. At last, the time cost for SMD fingerprint
database construction is 16640(=208 x 4 x 20) s, in which
20 RSS samples in 4 directions at each of the 208 labeled
RPs are collected (Fig. 15).

500

Il DMD-RI

400

300

200

Time cost(minute)

100

Environment 1 Environment 2 Environment 3

F

g. 15 Time cost corresponding to different approaches
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5 Conclusion

In this paper, we have proposed a new approach of redu-
cing the effort of fingerprint database construction for
indoor BLE localization by decreasing RSS sample cap-
acity, collecting the fingerprints dynamically and inter-
polating raw sparse fingerprint database by the proposed
DMD-RI approach. In the process of constructing a
sparse fingerprint database, the PDR result is more ac-
curate by adding error correction factors, and the accur-
acy of directional fingerprint database is better by
adding the heading angle. In the interpolation process,
we first optimize shape parameter and cut-off area ra-
dius and then use multi-quadric RBF approach to esti-
mate RSSs of new RPs, which makes the interpolation
accuracy higher. Extensive experimental results show
that the proposed approach is able to reduce much time
cost for fingerprints collection while maintaining high
localization accuracy. In the future, we will study the
construction of an accurate multi-directional fingerprint
database by extracting accurate crowdsourcing data.
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