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Abstract

This paper is concerned with diversity gain analysis for millimeter-wave (mmWave) massive MIMO systems
employing distributed antenna subarray architecture. First, for a single-user mmWave system in which the transmitter
and receiver consist of Kt and Kr subarrays, respectively, a diversity gain theorem is established when the numbers of
subarray antennas go to infinity. Specifically, assuming that all subchannels have the same number of propagation
paths L, the theorem states that by employing such a distributed antenna subarray architecture, a diversity gain of
KrKtL − Ns + 1 can be achieved, where Ns represents the number of data streams. This result means that compared to
the co-located antenna architecture, using the distributed antenna subarray architecture can scale up the diversity
gain proportionally to KrKt . The analysis of diversity gain is then extended to the multiuser scenario as well as the
scenario with conventional partially connected radio-frequency structure in the literature. Simulation results obtained
with the hybrid analog/digital processing corroborate the analysis results and show that the distributed subarray
architecture indeed yields a significantly better diversity performance than the co-located antenna architectures.

Keywords: Millimeter-wave communications, Massive MIMO, Diversity gain, Multiplexing gain, Diversity-multiplexing
trade-off, Distributed antenna subarrays, Hybrid precoding

1 Introduction
Millimeter-wave (mmWave) communication has recently
gained considerable attention as a candidate technol-
ogy for 5G mobile communication systems and beyond
[1–5]. The main reason for this is the availability of vast
spectrum in the mmWave band that is very attractive
for high data rate communications. However, compared
to communication systems operating at lower microwave
frequencies (such as those currently used for 4G mobile
communications), propagation loss in mmWave frequen-
cies is much higher, in orders of magnitude. Fortunately,
given the much smaller carrier wavelengths, mmWave
communication systems canmake use of compactmassive
antenna arrays to compensate for the increased propaga-
tion loss.
Nevertheless, the large-scale antenna arrays together

with high cost and large power consumption of the
mixed analog/digital signal components make it difficult
to equip a separate radio-frequency (RF) chain for each
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antenna element and perform all the signal processing
in the baseband. Therefore, research on hybrid analog-
digital processing of precoder and combiner for mmWave
communication systems has attracted considerably strong
interests from both academia and industry [6–18]. In
particular, a large body of work has been performed to
address challenges in employing a limited number of
RF chains for massive antenna arrays. For example, the
authors in [6] investigated single-user precoding in mas-
siveMIMOmmWave systems and obtained the optimality
of beam steering for both single-stream and multi-stream
transmission scenarios. In [9], the authors showed that the
hybrid processing can realize any fully digital processing
exactly when the number of RF chains is twice the number
of data streams.
Two architectures for connecting the RF chains in the

hybrid processing that have been investigated in the liter-
ature are fully connected and partially connected. In the
former, each RF chain is connected to all the antenna
elements, while only a subset of antenna elements is
connected to each RF chain in the latter. The par-
tially connected architecture is more energy-efficient and
implementation-friendly since the number of required
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phase shifters can be reduced efficiently without a sig-
nificant performance loss. In the conventional partially
connected architecture [10–14], the antenna array is par-
titioned into a number of smaller disjoint subarrays, each
of which is driven by a single transmission chain. More
recently, a more general partially connected architecture,
referred to as hybridly connected in [15] and overlapped
subarray-based in [16], has been proposed. In such a
hybridly connected structure, each subarray is connected
to multiple RF chains while each RF chain is connected
to all the antennas, which corresponds to the subarray
in question. In particular, the authors in [15] show that
the spectral efficiency of the hybridly connected structure
is higher than that of the partially connected structure
and that as the number of RF chains increases, its spec-
tral efficiency can close to that of the fully connected
structure.
Nevertheless, due to the facts that the antenna arrays

in the abovementioned RF architectures are co-located
and mmWave signal propagation has an important fea-
ture of multipath sparsity in both the spatial and temporal
domains [19, 20], it is expected that the potentially avail-
able diversity and multiplexing gains are not large for
the co-located antenna deployment. In order to enlarge
the diversity gain and/or multiplexing gain in mmWave
massive MIMO communication systems, this paper con-
siders a more general antenna array architecture, called
distributed antenna subarray architecture, which includes
co-located array architecture as special cases. It is pointed
out that deploying distributed antennas has shown a
promising technique to increase spectral efficiency and
expand the coverage of wireless communication networks
[21–25]. As such, it is of great interest to consider dis-
tributed antenna deployment in the context of mmWave
massive MIMO systems.
The diversity-multiplexing trade-off (DMT) is a com-

pact and convenient framework to compare different
MIMO systems in terms of the two main and related sys-
tem indicators: data rate and error performance [26–29].
This trade-off was originally characterized in [26] for
MIMO communication systems operating over indepen-
dent and identically distributed (i.i.d.) Rayleigh fading
channels. Then, the framework has ignited a lot of inter-
ests in analyzing various communication systems and
under different channel models. For a massive MIMO
mmWave system, how to quantify the diversity perfor-
mance and characterize its DMT is a fundamental and
open research problem. In particular, to the best of our
knowledge, until now, there is no unified diversity gain
analysis for massive MIMO mmWave systems that is
applicable to both co-located and distributed antenna
array architectures.
To fill this gap, this paper investigates the diversity per-

formance of massive MIMO mmWave systems with the

proposed distributed subarray architecture. The focus is
on the asymptotical diversity gain analysis in order to find
out the potential diversity advantage provided by multi-
ple distributed antenna arrays. The obtained analysis can
be used conveniently to compare various massive MIMO
mmWave systems with different distributed antenna array
structures. Our main contributions are summarized as
follows: First, for a single-user system employing the pro-
posed distributed subarray architecture, a diversity gain
expression is obtained when the number of antennas at
each subarray increases without bound. This expression
clearly indicates that one can obtain a large diversity gain
and/or multiplexing gain by employing the proposed dis-
tributed subarray architecture. Second, the diversity gain
analysis is extended to the multiuser scenario with down-
link and uplink transmission, as well as the single-user
system employing the conventional partially connected
RF structure based on the distributed subarrays. Sim-
ulation results are provided to corroborate the analysis
results and show that the distributed subarray architec-
ture yields significantly better diversity performance than
the co-located single-array architecture.
The remainder of this paper is organized as follows:

Section 2 describes the massive MIMO mmWave system
model and hybrid processing with the distributed subar-
ray architecture in mmWave fading channels. Section 3
provides the asymptotical diversity analysis for the single-
user mmWave system. In Sections 4 and 5, the diversity
gain analysis is extended to the multiuser scenario and
the scenario with the conventional partially connected RF
architecture, respectively. Numerical results are presented
in Section 6. Section 7 finally concludes the paper.
Throughout this paper, the following notations are

used. The superscripts (·)T and (·)H stand for transpose
and conjugate transpose, respectively. Boldface upper
and lower case letters denote matrices and column vec-
tors, respectively. diag{a1, a2, . . . , aN } stands for a diag-
onal matrix with diagonal elements {a1, a2, . . . , aN }. The
expectation operator is denoted by E()̇. [A]ij gives the
(i, j)th entry of matrix A. A

⊗
B is the Kronecker prod-

uct of A and B. A function a(x) of x is written as o(x) if
limx→0 a(x)/x = 0. Finally, CN (0, 1) represents a circu-
larly symmetric complex Gaussian random variable with
zero mean and unit variance.

2 Systemmodel
A single-user massive MIMO mmWave system is con-
sidered as shown in Fig. 1. The transmitter is equipped
with a distributed antenna array to send Ns data streams
to a receiver, which is also equipped with a distributed
antenna array. Here, a distributed antenna array means an
array consisting of several remote antenna units (RAUs)
(i.e., antenna subarrays) that are distributively located, as
depicted in Fig. 2. Specifically, the antenna array at the
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Fig. 1 Block diagram of a mmWave massive MIMO system with distributed antenna arrays

transmitter consists of Kt RAUs, each of which has Nt
antennas and is connected to a baseband processing unit
(BPU) via fiber. Likewise, the distributed antenna array at
the receiver consists of Kr RAUs, each having Nr anten-
nas and also being connected to a BPU by fibers. Such
a MIMO system shall be referred to as a (Kt ,Nt ,Kr ,Nr)-
distributed MIMO (D-MIMO) system. When Kt = Kr =
1, the system reduces to a conventional co-located MIMO
(C-MIMO) system.
The transmitter accepts as its input Ns data streams and

is equipped with N (rf)
t RF chains, where Ns ≤ N (rf)

t ≤
NtKt . Given N (rf)

t transmit RF chains, the transmitter can
apply a low-dimension N (rf)

t ×Ns baseband precoder,Wt ,
followed by a high-dimensionKtNt×N (rf)

t RF precoder, Ft .
Note that for the baseband precoder Wt , amplitude and
phase modifications are feasible while only phase changes
can be made by the RF precoder Ft through the use of

Fig. 2 Illustration of distributed antenna array deployment

variable phase shifters and combiners. The transmitted
signal vector can be written as:

x = FtWts, (1)

where s is the Ns × 1 symbol vector such that E
[
ssH

] =
P
Ns
INs . Thus, P represents the average total input power.

Considering a narrowband block fading channel, the
KrNr × 1 received signal vector is:

y = HFtWts + n (2)

where H is KrNr × KtNt channel matrix, and n is a
KrNr × 1 vector consisting of i.i.d. CN (0, 1) noise sam-
ples. Throughout this paper,H is assumed known to both
the transmitter and receiver. Given that N (rf)

r RF chains(
whereNs ≤ N (rf)

r ≤ NrKr
)

are used at the receiver to
detect theNs data streams, the processed signal vector can
be given by:

z = WH
r FHr HFtWts + WH

r FHr n (3)

where Wr is the N (rf)
r × Ns baseband combining matrix,

and Fr is the KrNr × N (rf)
r RF combining matrix.

Furthermore, according to the architecture of RAUs at
the transmitting and receiving ends,H can be written as:

H =
⎡

⎢
⎣

√g11H11 · · · √g1KtH1Kt
...

. . .
...√gKr1HKr1 · · · √gKrKtHKrKt

⎤

⎥
⎦ . (4)

In the above expression, gij represents the large scale fad-
ing parameter between the ith RAU at the receiver and
the jth RAU at the transmitter. We assume that gij is con-
stant over many coherence time intervals. The normal-
ized subchannel matrixHij represents the MIMO channel
between the jth RAU at the transmitter and the ith RAU
at the receiver.
Based on the extended Saleh-Valenzuela model, a clus-

tered channel model is used often in mmWave channel
modeling and standardization [6, 14, 15], and it is also
adopted in this paper. As in [6], each scattering cluster is
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assumed to contribute a single propagation path for sim-
plicity of exposition. Using this model, the subchannel
matrixHij is given by:

Hij =
√
NtNr
Lij

Lij∑

l=1
αl
ijar

(
φrl
ij , θ rlij

)
aHt

(
φtl
ij , θ tlij

)
, (5)

where Lij denotes the number of propagation paths, αl
ij

denotes the complex gain of the lth ray, and φrl
ij

(
θ rlij

)
and

φtl
ij

(
θ tlij

)
denote its random azimuth (elevation) angles of

arrival and departure, respectively. Without loss of gener-
ality, the complex gains αl

ij are assumed to be CN (0, 1)1.

The vectors at
(
φtl
ij , θ tlij

)
and ar

(
φrl
ij , θ rlij

)
stand for the

normalized transmit/receive array response vectors at
the corresponding angles of departure/arrival. The array
response vector of an N-element uniform linear array
(ULA) is:

aULA(φ) = 1√
N

[
1, ej2π

d
λ
sin(φ), . . . , ej2π(N−1) d

λ
sin(φ)

]T

(6)

where λ is the wavelength of the carrier, and d is the inter-
element spacing. It is pointed out that the angle θ is not
included in the argument of aULA since the response for
an ULA is independent of the elevation angle. In contrast,
for a uniform planar array (UPA), which is composed of
Nv and Nh antenna elements in the vertical and horizon-
tal directions, respectively, the array response vector is
represented by:

aUPA(φ, θ) = aULAh (φ) ⊗ aULAv (θ), (7)

where

aULAh (φ) = 1√
Nh

[

1, ej2π
dh
λ

sin(φ), . . . , ej2π(Nh−1) dhλ sin(φ)

]T

(8)

and

aULAv (θ) = 1√
Nv

[
1, ej2π

dv
λ
sin(θ), . . . , ej2π(Nv−1) dv

λ
sin(θ)

]T
.

(9)

3 Diversity gain analysis
The most common performance metric of a digital com-
munication system is the error probability, which can be
defined either as the probability of symbol error or the
probability of bit error (i.e., the bit error rate (BER)).When
communicating over a fading channel, errors obviously
depend on specific channel realizations. As such, the ran-
dom behavior of a fading channel needs to be taken into
account, which leads to the concept of average error prob-
abilities [30]. Determining the exact expressions for the

average error probabilities for a digital communication
system operating over a certain fading channel is usually
tedious and might not give a clear insight about the sys-
tem behavior. As such, there is a need to characterize the
performance of a communication system in an insight-
ful and simple way. A popular approach is to shift the
focus from exact performance analysis to asymptotic per-
formance analysis, i.e., analyzing the performance at the
high signal-to-noise (SNR) region, as done in [31]. This is
a reasonable approach since the performance of practical
interest is in the high SNR region, and in such a region,
good approximation can be made on the exact analysis.
Formost cases, the average BER function can be approx-

imated in the high SNR region as [31]:

BER ≈ (Gc · γ̄ )−Gd (10)

where γ̄ stands for the average received SNR, and Gd and
Gc are just the diversity and coding gains, respectively. At
high SNR, the diversity gain determines the slope of the
BER curve versus γ̄ in a log-log scale, whereas the cod-
ing gain determines how the curve is shifted along the
horizontal axis with respect to a benchmark BER curve
γ̄ −Gd . Therefore, this yields a simple parameterized aver-
age BER characterization for high SNR, which can provide
meaningful insights on the system performance behavior.
In this section, the diversity gain is first examined

for a generalized selection combining. The main result is
then invoked in the diversity analysis of the distributed
mmWave massive MIMO system studied in this paper.

3.1 Diversity gain of generalized selection combining
Selection combining (SC) is the most popular low-
complexity combining scheme. In selection combining,
the receiver estimates the SNRs of all available diversity
branches and then select the one with the highest SNR
for detection. For generalized selection combining (GSC)
considered here, the receiver also estimates the SNRs of
all available diversity branches. However, instead of select-
ing the branch with the highest SNR, it selects a branch
with the lth highest SNR for detection. It is pointed out
that, while such a GSC scheme has no practical interest in
its own right, its diversity analysis can be used in the per-
formance analysis of the mmWave massive MIMO system
considered in this paper.

Lemma 1 Consider a GSC system with L receive anten-
nas operating over i.i.d. Rayleigh fading channels. If the
receiver selects the branch with the lth highest SNR for
detection then the system achieves diversity gain:

Gd = L − l + 1. (11)

Proof Let F(γ ) and f (γ ) be the cumulative distribution
function (CDF) and probability density function (PDF) of
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the instantaneous SNRs in all branches, respectively. Let
γ̄ denote the average receive SNR of each branch. With
Rayleigh fading, it follows from [31] that F(γ ) and f (γ )

can be expressed as:

F(γ ) = 1 − e− γ
γ̄ = γ

γ̄
+ o

(
γ

γ̄

)

(12)

and

f (γ ) = 1
γ̄
e− γ

γ̄ = 1
γ̄

− γ

γ̄ 2 + o
(

γ

γ̄

)

. (13)

If the receiver selects the branch with the lth highest SNR
for detection, then based on the theory of order statis-
tics [32], the PDF of the instantaneous receive SNR at the
receiver, denoted γl, is given by:

fl:L(γl) = L!
(L − l)! (l − 1)!

[F(γl)]L−l [ 1 − F(γl)]l−1 f (γl)

= L!
(L − l)! (l − 1)!

1
γ̄

(
γl
γ̄

)L−l
+ o

((
γl
γ̄

)L−l
)

.

(14)

Applying the above PDF in Proposition 1 in [31] leads to
the desired result.

Lemma 1 can be extended to the case of independent
but not identically distributed (i.n.i.d.) Rayleigh fading
channels and the result is stated in the next lemma.

Lemma 2 Suppose that the GSC system with L receive
antennas operates over the i.n.i.d. Rayleigh fading chan-
nels. If it selects the path with the lth highest SNR for
detection, then it can achieve diversity gain:

Gd = L − l + 1. (15)

Proof Let γ̄max and γ̄min denote the maximum and min-
imum values of the average receive SNRs of all these L
diversity paths, respectively. Furthermore, let A and B
denote two GSC systems, each equipped with L receive
antennas and operating over i.i.d. Rayleigh fading chan-
nels such that the average receive SNRs equal to γ̄max
and γ̄min, respectively. It is known from Lemma 1 that
the diversity gains of these two systems are the same and
equal to L − l + 1 if both systems select the branch with
the lth highest instantaneous SNR for detection. Further-
more, since the GSC system under consideration cannot
have better diversity performance than systemA and can-
not have worse diversity performance than system B, it
can then be concluded that the i.n.i.d. system must also
achieve the diversity gain of L − l + 1.

3.2 Diversity gain analysis of the distributedmmWave
massive MIMO system

From the structure and definition of the channel matrix
H in Section 2, there is a total of Ls = ∑Kr

i=1
∑Kt

j=1 Lij
propagation paths. Naturally, H can be decomposed into
a sum of Ls rank-one matrices, each corresponding to one
propagation path. Specifically,H can be rewritten as:

H =
Kr∑

i=1

Kt∑

j=1

Lij∑

l=1
α̃l
ijãr

(
φrl
ij , θ rlij

)
ãHt

(
φtl
ij , θ tlij

)
, (16)

where

α̃l
ij =

√

gij
NtNr
Lij

αl
ij, (17)

ãr
(
φrl
ij , θ rlij

)
is a KrNr × 1 vector whose bth entry is

defined as:
[
ãr

(
φrl
ij , θ rlij

)]

b
=

{ [
ar

(
φrl
ij , θ rlij

)]

b−(i−1)Nr
, b ∈ Qr

i

0, b /∈ Qr
i
(18)

whereQr
i = ((i− 1)Nr , iNr]. And ãt

(
φtl
ij , θ tlij

)
is a KtNt × 1

vector whose bth entry is defined as:

[
ãt

(
φtl
ij , θ tlij

)]

b
=

⎧
⎨

⎩

[
at

(
φtl
ij , θ tlij

)]

b−(j−1)Nt
, b ∈ Qt

j

0, b /∈ Qt
j .

(19)

where Qt
j = ((j − 1)Nt , jNt].

Lemma 3 Suppose that the antenna configurations at
all RAUs are either ULA or UPA. Then, all Ls vectors{
ãr

(
φrl
ij , θ rlij

)}
are orthogonal to each other whenNr → ∞.

Likewise, all Ls vectors
{
ãt

(
φtl
ij , θ tlij

)}
are orthogonal to

each other when Nt → ∞.

Proof It follows immediately from (18) and (19) that if
u 	= v, then vectors

{
ãr

(
φrl
up, θ rlup

)}
and

{
ãr

(
φrl
vq, θ rlvq

)}

are orthogonal. On the other hand, when u = v and p 	= q,
it is known from Lemma 1 and Corollary 2 in [6] (also
see [33]) that vectors

{
ãr

(
φrl
up, θ rlup

)}
and

{
ãr

(
φrl
vq, θ rlvq

)}

are orthogonal. The proof that
{
ãt

(
φtl
ij , θ tlij

)}
is a set of

orthogonal vectors can be shown similarly.

Theorem 1 Suppose that both sets
{
ãr

(
φrl
ij , θ rlij

)}
and

{
ãt

(
φtl
ij , θ tlij

)}
are orthogonal vector sets when Nr → ∞

and Nt → ∞. Let Ns ≤ Ls. Then, the distributed massive
MIMO system with large Nr and Nt can achieve a diversity
gain of:
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Gd = Ls − Ns + 1. (20)

Remarks 1 When Nt and Nr are large enough, (33) indi-
cates that the system multiplexing gain is at most equal
to Ls. This is reasonable since there exist only Ls effec-
tive singular values in the channel matrix H. Theorem
1 provides a simple diversity-multiplexing trade-off of a
mmWave massive MIMO system: adding one data stream
to the system decreases the diversity gain by one, whereas
removing one data stream increases the diversity gain by
one. Such a trade-off is useful in designing a system to meet
requirements on both data rate and error performance.

Remarks 2 Under the case where Nt and Nr are large
enough, it can be found from the proof of Theorem 1 that
the diversity performance of the mmWave massive MIMO
system only depends on the singular value set

{
α̃l} and is

not influenced by how sub-matrices
{√gijHij

}
are placed

in the channel matrix H (see further discussion of Fig. 9 on
this point).

Corollary 1 Consider the scenario that the antenna con-
figuration at each RAU is ULA. Also assume that Lij = L
for any i and j. Let Ns ≤ KrKtL. When both Nt and Nr
are very large, the distributed massive MIMO system can
achieve a diversity gain:

Gd = KrKtL − Ns + 1. (21)

In particular, when Kr = Kt = 1, the massive MIMO
system with co-located antennas arrays can achieve a
diversity gain:

Gd = L − Ns + 1 (22)

Remarks 3 Corollary 1 implies that for a mmWave
co-located massive MIMO system, its diversity gain and
multiplexing gain are limited and at most equal to the

number of paths L. However, these gains can be increased
by employing the distributed antenna architecture and can
be scaled up proportionally to KrKt.

4 Diversity gain analysis with the conventional
partially connected structure

The previous section has analyzed the diversity gain for
the massive MIMO system with the general fully con-
nected RF architecture. This section focuses on a massive
MIMO system employing the conventional partially con-
nected RF architecture as illustrated in Fig. 3. Here, the
transmitter equipped with Kt RF chains sends Ns data
streams to the receiver equipped with Kr RF chains. Each
of RF chains at the transmitter or receiver is connected
to only one RAU. It is assumed that Ns ≤ min{Kt ,Kr}.
The numbers of antennas per each RAU at the transmitter
and receiver are fixed asNt andNr , respectively. Note that
Nt 
 Ns and Nr 
 Ns. Both the transmitter and receiver
employ very small digital processors and very large analog
processors, represented respectively by Wt and Ft for the
transmitter andWr and Fr for the receiver.
As before, denote by s the transmitted symbol vector, by

H the fading channel matrix, and by n the noise vector.
Then, at the receiver, the processed signal vector z is given
by (3), whereasH is described as in (4). Due to the partially
connected RF architecture, the analog processors Ft and
Fr are block diagonal matrices, expressed as:

Ft = diag
{
ft1, ft2, . . . , ftKt

}
(23)

and

Fr = diag
{
fr1, fr2, . . . , frKr

}
(24)

where fti stands for the Nt × 1 steering vector of phases
for the ith RAU at the transmitter, and frj stands for the
Nr × 1 steering vector of phases for the jth RAU at the
transmitter.

Fig. 3 Block diagram of a mmWave massive MIMO system with the conventional partially connected RF architecture
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Theorem 2 Consider the case that the antenna array
configuration at each RAU is ULA and Lij = L for any
i and j. In the limit of large Nt and Nr, the distributed
massive MIMO system with partially connected RF archi-
tecture can achieve a diversity gain:

Gd = (Kt − Ns + 1)(Kr − Ns + 1)L. (25)

Remarks 4 Comparing the diversity gain given in
Corollary 1with that given in Theorem 2 reveals that when
Ns = 1, the diversity gains with the two systems under
consideration are the same. However, when Ns > 1, the
proposed distributed antenna system with fully connected
RF architecture achieves a higher diversity gain than the
system with the partially connected architecture, and the
gap between the two diversity gains is (Ns − 1)[(Kr + Kt −
Ns + 1)L − 1].

5 Diversity gain analysis for themultiuser
scenario

This section considers the downlink transmission in a
multiuser massive MIMO system as illustrated in Fig. 4.
Here, the base station (BS) employs Kb RAUs with each
having Nb antennas and N (rf)

b RF chains to transmit data
streams to Ku mobile stations. Each mobile station (MS)
is equipped with Nu antennas and N (rf)

u RF chains to sup-
port the reception of its own Ns data streams. This means
that there is a total of KuNs data streams transmitted by
the BS. The numbers of data streams are constrained as
KuNs ≤ N (rf)

b ≤ KbNb for the BS and Ns ≤ N (rf)
u ≤ Nu for

each MS.
At the BS, denote by Fb the KbNb × N (rf)

b RF precoder
and byWb the N (rf)

b × NsKu baseband precoder. With the
narrowband flat fading channel model, then the received
signal vector at the ith MS is given by:

yi = HiFbWbs + ni, i = 1, 2, . . . ,Ku (26)

where s is the signal vector for all Ku mobile stations,
which satisfies E

[
ssH

] = P
KuNs

IKuNs , and P is the average
transmit power. The Nu × 1 vector ni represents additive
white Gaussian noise, whereas the Nu × KbNb matrix Hi
is the channel matrix corresponding to the ith MS, whose
entriesHij are described as in Section 2. Furthermore, the
signal vector after combining can be expressed as:

zi = WH
uiFHuiHiFbWbs + WH

uiFHuini, i = 1, 2, . . . ,Ku

(27)

where Fui is the Nu × N (rf)
u RF combining matrix and

Wui is the N (rf)
u × Ns baseband combining matrix for the

ith MS.

Theorem 3 Consider the case that all antenna array
configurations for the downlink transmission are ULA and
Lij = L for any i and j (i.e., all subchannels Hij have the
same number of propagation paths). In the limit of large
Nb and Nu, the downlink transmission in a massive MIMO
multiuser system can achieve a diversity gain:

Gd = KbL − Ns + 1. (28)

Remarks 5 Theorem 3 implies that when Nb and Nu
are large enough, the available diversity gain Gd does not
depend on the number of mobile users Ku.

Remarks 6 In a similar fashion, it is easy to prove that
the uplink transmission in a massive MIMOmultiuser sys-
tem can also achieve a diversity gain Gd = KbL − Ns + 1.
Moreover, it can also be proved that when L = 1, the sys-
tem diversity gain is equal to Gd = Kb for the case Nu = 1,
i.e., each MS has only one antenna.

6 Simulation results and discussion
For all simulation results presented in this section, it is
assumed that each subchannel matrixHij consists of Lij =
L = 3 paths, each of the large scale fading coefficients gij

Fig. 4 Block diagram of a multiuser mmWave system with distributed antenna arrays
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equals to g = −20 dB (except for Fig. 9), and the numbers
of transmit and receive RF chains are twice the number
of data streams [9] (i.e., N (rf)

t = N (rf)
r = 2Ns). It is fur-

ther assumed that the variance of AWGN samples is unity,
and hence, the input SNR is the same as the average input
power P/Ns. For simplicity, only ULA array configuration
with d = 0.5 is considered at RAUs and BPSK modula-
tion is employed for each data stream. With such system
configurations, the instantaneous BER is given byQ(

√
2γ )

[34], where γ denotes the instantaneous receive SNR and
the Q function is defined as Q(x) = ∫ ∞

x exp
(
− y2

2

)
dy.

For ease of comparison and discussion, introduce the con-
cept of designed SNR as SNRdg = PNrNt/(NsL). This
means that P = SNRdgNsL/(NrNt) for a given designed
SNR SNRdg. In fact, there exists a power scaling law
for mmWave communications which states that the data
transmit power P can be scaled down proportionally to
1/(NrNt) in order to maintain a desirable BER perfor-
mance [35].
In all simulations, unless stated otherwise, there are

three main steps for hybrid digital-analog processing as
follows:

(a) Perform the SVD for channel matrixH and find the
optimal overall digital precoder and combiner for Ns
data streams.

(b) Form an analog precoder and an analog combiner
based on the optimal overall digital precoder and
combiner, respectively.

(c) Perform zero-forcing (ZF) digital detection based on
the analog precoder and analog combiner and
complete the data detection operation.

First studied is the diversity performance of a massive
MIMO mmWave system with distributed antenna arrays.
With Nr = Nt = N = 50 and Kr = Kt = K = 2, Fig. 5
plots BER curves versus the designed SNR for different
numbers of data streams, Ns = 2, 4, 6. For comparison,
the BER curve obtained in the case of co-located antenna
arrays are also plotted for Ns = 1, 2, 3. It can be seen that
even for the larger number of data streams, the BER per-
formance with distributed antenna arrays is clearly better
than that with co-located antenna arrays. Furthermore, as
Ns decreases, the BER performance with either distributed
or co-located antenna arrays is improved. These obser-
vations are expected and agree with Corollary 1, which
states that using distributed antenna arrays yields higher
diversity gains than using co-located antenna arrays. To
verify exactly the diversity gain result given in Corollary 1,
Fig. 6 plots the diversity gain verifying (GDV) curves pro-
duced by simulating the GSC systems. It can be seen that
a BER curve with either distributed or co-located antenna
arrays has the same slope in the high SNR region as the
corresponding GDV curve.
Illustrated in Fig. 7 is the performance with the conven-

tional partially connected (PC) RF architecture analyzed
in Section 4. With this structure, one first carries out
the SVDs for subchannel matrices

{
Hij

}
rather than for

the whole channel matrix H and then forms the analog

Fig. 5 BER versus designed SNR: comparison between distributed and co-located antenna array architectures
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Fig. 6 BER versus designed SNR: verifying diversity gain

precoder and analog combiner. Let Kr = Kt = K . With
Nr = Nt = N = 50, Fig. 7 plots the BER curves for the
following four cases: (K = 1,Ns = 1), (K = 2,Ns = 2),
(K = 3,Ns = 3), and (K = 4,Ns = 4). It is known from
Theorem 2 that the diversity gains for the four cases are
identical and equal to Gd = L = 3. To illustrate this,

a DGV curve with diversity gain Gd = 3 is also plot-
ted in this figure. It can be seen that the system with the
conventional PC structure for the four cases can achieve
the full diversity gain 3, while the coding gain increases
when both K and Ns increase. For comparison, the BER
curve obtained with the general fully connected (FC) RF

Fig. 7 BER versus designed SNR: comparion between the the proposed distributed subarray architecture and the conventional partially connected
architecture



Yue et al. EURASIP Journal onWireless Communications and Networking         (2019) 2019:54 Page 10 of 13

structure when Ns = 4 and K = 2 is also plotted. The
theoretical limit on the diversity gain in this case is 9,
which agrees well with the DGV curve having Gd = 9.
Observe that in the high SNR region, the general FC struc-
ture yields significantly better diversity performance than
the conventional PC structure.
Next, when Ns = 1, we consider the diversity perfor-

mance with the multiuser downlink scenario where there
are 5 or 10 mobile users, each having 10 antennas and
each RAU at the BS is equipped with 50 antennas. Due
to the fact that there is no cooperation among the users,
one first carries out the SVDs for subchannel matrices
{Hi} rather than for the whole channel matrixH and then
forms the analog precoder for the BS and analog com-
biners for the users. Note that the BS needs to carry out
ZF digital preprocessing before transmitting data. Figure 8
plots the BER curves versus the designed SNR for differ-
ent numbers of subarrays at the BS, namely Kb = 1, 3, 5. It
can be observed from this figure that as Kb increases, the
diversity performance of the multiuser system improves
remarkably. This is because, as established in Theorem 3,
the diversity gain becomes larger with increasing Kb. Fur-
thermore, it can be seen from Fig. 8 that the system has
the same diversity gain for different numbers of users
while the coding gain increases as Ku decreases. This
observation agrees with Remark 5.
Finally, the diversity performance of the single-user

massive MIMO mmWave system is examined under the
scenario that the distributions of large scale fading coef-
ficients, {gij}, are inhomogeneous. To this end, let G =
[ gij (dB)] denote the large scale fading coefficient matrix.

When Nr = Nt = N = 50 and Kr = Kt = K = 2, simu-
lation is performed for the following six inhomogeneousG:

G1 =
[ −25 −20

−20 −25

]

, G2 =
[ −20 −20

−25 −25

]

,

G3 =
[ −20 −25

−25 −20

]

, G4 =
[ −20 −25

−20 −25

]

,

G5 =
[ −25 −25

−20 −20

]

, G6 =
[ −25 −20

−25 −20

]

.

It can be found that the diversity performance for the six
inhomogeneous cases are almost the same (see Remark 2).
In order to illustrate this interesting phenomenon, Fig. 9
plots the BER curves versus the designed SNR with G1
and G2, respectively. For comparison, the two BER curves
for the homogeneous distributions with g = −20 dB
and g = −25 dB are also plotted. As expected, the BER
curves with the inhomogeneous coefficient distributions
are between the two BER curves with homogeneous coef-
ficient distributions. It can be concluded from this figure
that the case of inhomogeneous coefficient distributions
has the same diversity gain as in the case of homogeneous
coefficient distributions.

7 Conclusions
This paper has provided asymptotical diversity analysis
for massive MIMOmmWave systems with co-located and
distributed antenna architectures when the number of
antennas at each subarray goes to infinity. Theoretical
analysis shows that with a co-located massive antenna

Fig. 8 BER versus designed SNR: multiuser scenario with different numbers of subarrays
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Fig. 9 BER versus designed SNR: comparison between homogeneous distributions and inhomogeneous distributions for large scale fading
coefficients {gij}

array, scaling up the number of antennas of the array
can increase the coding gain but not the diversity gain.
However, if the array is built from distributed subarrays
(RAUs), each having a very large number of antennas, then
increasing the number of RAUs does increase the diversity
gain and/or multiplexing gain [36, 37]. As such, the analy-
sis leads to a novel approach to improve the diversity and
multiplexing gains of massive MIMO mmWave systems.
It is acknowledged that the asymptotical diversity analysis
obtained in this paper is under the idealistic assumption
of having perfect CSI. Performing the diversity analysis for
massive MIMO mmWave systems under imperfect CSI is
important and deserves further research.

Endnote
1 The different variances of αl

ij can easily accounted for
by absorbing into the large scale fading coefficients gij.

Appendix 1: Proof of Theorem 1
Proof The distributed massive MIMO system can be

considered as such a co-located system with Ls paths
that have complex gains

{
α̃l
ij

}
, receive array response

vectors
{
ãr

(
φrl
ij , θ rlij

)}
, and transmit response vectors

{
ãt

(
φtl
ij , θ tlij

)}
. Furthermore, order all paths in a decreas-

ing order of the absolute values of the complex gains
{
α̃l
ij

}
.

Then, the channel matrix can be written as:

H =
Ls∑

l=1
α̃lãr

(
φrl, θ rl

)
ãt

(
φtl, θ tl

)H
, (29)

where α̃1 ≥ α̃2 ≥ · · · ≥ α̃Ls . One can rewriteH in amatrix
form as:

H = ArDAH
t (30)

whereD denotes a Ls×Ls diagonal matrix with [D]ll = α̃l,
and Ar and At are defined as follows:

Ar = [
ãr

(
φr1, θ r1

)
, ãr

(
φr2, θ r2

)
, . . . , ãr

(
φrLs , θ rLs

)]

(31)

and

At = [
ãt

(
φt1, θ t1

)
, ãt

(
φt2, θ t2

)
, . . . , ãt

(
φtLs , θ tLs

)]
.
(32)

Since both
{
ãr

(
φrl, θ rl

)}
and

{
ãt

(
φtl, θ tl

)}
are orthogonal

vector sets when Nr → ∞ and Nt → ∞, Ar and At
are asymptotically unitary matrices. Then, one can form a
singular value decomposition (SVD) of matrixH as:

H = U�VH =
[
Ar|A⊥

r

]
�

[
Ãt|Ã⊥

t

]H
(33)

where� is a diagonal matrix containing all singular values
on its diagonal, i.e.:

[�]ll =
{ ∣
∣α̃l∣∣ , for 1 ≤ l ≤ Ls
0, for l > Ls

(34)

and the submatrix Ãt is defined as:

Ãt = [
e−jψ1 ãt

(
φt1, θ t1

)
, . . . , e−jψLs ãt

(
φtLs , θ tLs

)]
(35)

where ψl is the phase of complex gain α̃l corresponding to
the lth path.
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Based on (33), the optimal precoder and combiner are
chosen respectively as:

[FtWt]opt =
[
e−jψ1 ãt

(
φt1, . . . , e−jψLs ãt

(
φtNs , θ tNs

) ]

(36)

and

[FrWr]opt =
[
ãr

(
φr1, . . . , ãr

(
φrNs , θ rNs

) ]
. (37)

To summarize, when Nt and Nr are large enough, the
massive MIMO system can employ the optimal precoder
and combiner given in (36) and (37), respectively. Then,
it follows from the above SVD analysis that the instanta-
neous SNR of the lth data stream is given by:

SNRl = P
Ns

∣
∣
∣α̃l

∣
∣
∣
2
, l = 1, 2, . . . ,Ns. (38)

Now the detection of the lth data stream is equivalent
to the detection in a generalized selection combining sys-
tem, which selects the path with the lth highest SNR for
detection. Therefore, it follows from Lemma 2 that the
detection performance of the lth data stream has a diver-
sity gain Ls − l+ 1. Since the overall BER is the arithmetic
mean of individual BERs, i.e., BER = 1

Ns

∑Ns
l=1 BER(l),

the system’s diversity gain equals to the diversity gain in
detecting the Nsth data stream, which is the worst among
all data streams. Therefore, the result in (20) is obtained.
�

Appendix 2: Proof of Theorem 2
Proof When Nt and Nr are very large, the diversity

gain analysis is similar to that in Theorem 1. For the
first data stream that enjoys the best path, it is sim-
ple to see that its diversity gain is the largest and equal
to KrKtL. This is because the detection of the first
data stream is equivalent to a selection combining sys-
tem operating with KrKtL paths. However, for the sec-
ond data stream, due to the structure of Ft and Fr , its
detection is equivalent to a selection combining system
operating with (Kr − 1)(Kt − 1)L paths. Therefore, it
can be inferred that its diversity gain is equal to (Kr −
1)(Kt − 1)L. Similarly, for the last data stream among
the Ns data streams, its diversity gain is (Kr − Ns + 1)
(Kt −Ns+1)L. It then follows that the diversity gain of the
whole system is just (Kr − Ns + 1)(Kt − Ns + 1)L.

Appendix 3: Proof of Theorem 3
Proof For the downlink transmission in a massive

MIMOmultiuser system, the overall equivalent multiuser
basedband channel can be written as:

Heq =

⎡

⎢
⎢
⎢
⎣

FHu1 0 · · · 0
0 FHu2 · · · 0
...

...
. . .

...
0 0 · · · FHuKu

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

H1
H2
...
HKu

⎤

⎥
⎥
⎥
⎦
Fb. (39)

On the other hand, when both Nb and Nu are very
large, both receive and transmit array response vector
sets,

{
ãr

(
φrl
ij , θ rlij

)}
and

{
ãt

(
φtl
ij , θ tlij

)}
, are asymptotically

orthogonal. Therefore, the diversity performance for the
ith user depends only on the subchannel matrix Hi and
the choices of Fui and Fb. The subchannel matrix Hi has
a total of KbL propagation paths. Similar to the proof of
Theorem 1, by employing the optimal RF precoder and
combiner for the ith user, the user can achieve a maxi-
mum diversity gain KbL−Ns +1. It is then concluded that
the downlink transmission can achieve a diversity gain
Gd = KbL − Ns + 1.
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