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Abstract

Increasing the data rate of communication systems together with the performance are main goals of the
communication networks in the future. Multiple-input multiple-output (MIMO)-orthogonal frequency division
multiplexing (OFDM) relay networks as a key technology is one the main techniques to maintain the performance
and data rate. Being influenced by fading channels, the MIMO-OFDM relay networks need some reliable approaches
to estimate the channel response. Compressed sensing (CS) is one of the critical approaches to maintain the accuracy
together with the spectral efficiency. In this paper, we have utilized CS-based approaches to estimate the
MIMO-OFDM relay channel. Specifically, forward backward prediction (FBP) is used to estimate the fading channels.
This approach benefits from backward correction which distinguishes it from other iterative approaches and helps
interestingly in channel estimation accuracy. Moreover, in order to improve the channel estimation, pilot allocation
approaches are proposed based on the system model and probability function. Furthermore, a cross entropy-based
approach is utilized to propose two different approaches called sequential cross entropy self-coherence (SCE-SC) and
parallel cross entropy self-coherence. Actually, mutual coherence is divided into two parts namely cross coherence
and self coherence. It is demonstrated that in FBP-based approach self-coherence is important in mutual coherence.
Consequently, the computations are interestingly decreased. The superiority of the method is represented using
comparing simulations with other well-known approaches.

Keywords: Cross entropy, Compressed sensing, Forward-backward prediction, MIMO-OFDM relay channel
estimation, Pilot allocation

1 Introduction
By increasing demand of data rate and coverage area
in modern communication systems, utilizing of relay
communication networks is necessitated. In order to
combat with the frequency selectivity of the channel
and long-distance impairments, multiple-input multiple-
output (MIMO)-orthogonal frequency divisionmultiplex-
ing (OFDM) is used as the pioneer technology [1–3]. Sup-
plying some advanced features in MIMO-OFDM relays
such as beamforming, relay selection, and power min-
imization required the active nodes in the network to
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be aware of channel state information (CSI) [4, 5]. Pilot-
aided channel estimation suffers from bandwidth effi-
ciency which is very essential for the high-rate com-
munication. To provide bandwidth-efficient pilot-aided
channel estimation, compressed sensing (CS) is emerged,
recently [6].Wireless channels could bemodeled by sparse
signals, since there are considerable diffusion sources in
the wireless environments. Hence, CS is very precious in
sparse channel estimation together with the increase of
accuracy and bandwidth efficiency. Furthermore, block
sparse behavior ofMIMO communication channels which
is resulted by the existence of common scatterers, is
the critical characteristic which is utilized by researchers
in recent MIMO-OFDM compressed channel estimation
[7]. As a consequence of joint sparsity, the support of
the different channel ensembles between transmit-receive
antenna pairs in MIMO nodes is identically distributed.
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Thus, channel estimation could be extended to block-
sparse signal processing in MIMO communications [8,
9]. At first, distributed CS (DCS)-simultaneous orthogo-
nal matching pursuit (SOMP) was developed for channel
estimation in single-input single-output (SISO)-OFDM
channel estimation in [10]. Then, the authors of [11] uti-
lized DCS-SOMP-based channel estimation for MIMO
channel identification. Subsequently, a joint-OMP algo-
rithm has been proposed to estimate the CSI of massive
MIMO (mMIMO) in [12]. Recently, MIMO-OFDM relay
channel estimation has been developed using DCS-based
approach and a novel algorithm has been proposed using
compressive sampling matching pursuit (CoSaMP) called
block-verified CoSaMP (B-vCoSaMP) [13]. Furthermore,
CS-based channel estimation is getting more attractive
in massive MIMO communications [14, 15] which utilize
angular domain sparsity and time domain sparsity.
Designing appropriate pilot sequences to improve chan-

nel estimation performance is the other key obstacle in
front of researchers. In DCS-based channel estimation,
the trivial pilot pattern is the random pilot allocation;
while utilizing restricted isometry property (RIP), the
measurement matrix could be designed to develop chan-
nel estimation. Of course, mutual coherence is optimized
instead of RIP since there is no polynomial time [16]. In
DCS-based channel estimation, the pilot sequences are
translated to the measurement matrix identification and
one may optimize the mutual coherence to design appro-
priate pilot sequence. It is shown that designing pilot
sequences in terms of mutual coherence optimization is
a combinatorial optimization. Hence, evolutionary algo-
rithms are used to design pilot sequences. Specifically, the
authors in [17] proposed a genetic algorithm (GA)-based
pilot allocation algorithm in CS-based channel estima-
tion. Furthermore, in [18] a suboptimal pilot allocation
algorithm is designed based on GA for DCS-based chan-
nel estimation. Moreover, Qi et al. in [19] utilize the
estimation of distribution algorithm (EDA) to define opti-
mized pilot positions in SISO-OFDM systems. Moreover,
He et al. [18] and Akbarpour-Kasgari and Ardebilipour
[13] generate optimized pilot sequences for MIMO-
OFDM compressed channel estimation using a GA and
cross entropy (CE)-based approach.
In this paper, we have proposed to utilize a forward

backward prediction (FBP) algorithm in order to increase
the estimation accuracy. We proposed a FBP-based chan-
nel estimation algorithm where the algorithm further to
forward collecting steps consists of backward elimination
steps. In forward steps, the best atom is gathered. Fur-
ther, exploiting backward steps makes it possible to omit
bad atoms gathered in current and previous iterations.
Hence, it would increase the accuracy of estimation rather
than OMP and CoSaMP. In OMP and CoSaMP, the back-
ward elimination steps are absent; thus, the previously

unsuitable atoms would increase the error in channel esti-
mation and decrease the accuracy as well. To exploit the
proposed FBP, we design the channel matrix and mea-
surement matrix to exploit the common sparsity using
ζ -norm which is introduced. The system model is formu-
lated using matrix representation to exploit the common
sparsity of the channel. Then an FBP-based channel esti-
mation is developed to estimate the channel coefficients
in a time domain. By simulation results, it is validated that
the proposed method is superior than the other existing
methods. The superiority is caused by the backward stages
which omit the evil atoms for accuracy amplification.
Moreover, we have introduced two probability-based

pilot allocation called sequential cross entropy self-
coherence (SCE-SC) and parallel cross entropy self-
coherence (PCE-SC). As mentioned, in order to exploit
the FBP-based channel estimation and ζ -norm, we have
designed appropriate measurement matrix using pilot
symbols. It is represented in [13] that mutual coherence
is related to the self-coherence of the sub-matrices and
cross coherence of the sub-matrices related to each of
the transmitter antenna, simultaneously. Here, we have
changed the measurement matrix and we have shown that
mutual coherence is only related to the self-coherence
of the transmitter’s sub-matrices. Consequently, the com-
putation burden is considerably reduced rather than the
previous works in [9, 13]. Using self-coherence phenom-
ena, we have designed more simpler mutual coherence
fitness function to be optimized. To optimize the intro-
duced fitness function, we have proposed the probability-
based pilot allocation algorithms, specifically SCE-SC and
PCE-SC, where we have tried to optimize the new fitness
function using a probability approach. SCE-SC performs
optimization based on sampling the probability density
function (pdf) of the available subcarriers. The pdf is
updated in each iteration of the algorithm and then the fit-
ness function is calculated. Afterward, the updated pdf is
sampled for the next iteration. The iterations are contin-
ued till the steady state is resulted in the fitness function.
In SCE-SC, in each iteration, only one pdf is followed. It
will reduce the speed of convergence. In order to increase
the speed of convergence, PCE-SC is developed where the
number of pdfs are followed, simultaneously.
The contributions of the paper are summarized as

follows:

• At first, we have proposed a novel approach to
estimate the channel impulse response. In the
proposed method which is based on FBP, the
extracted appropriate atoms are reconsidered in the
backward stages to be omitted if they are not suitable
enough for estimation.

• In order to exploit the joint sparsity in a FBP
approach, the channel measurement matrix is
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developed utilizing the introduced norm. Hence, the
Gram matrix is in diagonal matrix form, and as a
consequence, mutual coherence could be defined
using self-coherence metrics.

• A novel approach called SCE-SC is designed using a
cross entropy-based method to optimize the
self-coherence of the developed measurement matrix.

• To improve the pilot sequences and considering
multiple probability density functions, PCE-SC is
introduced which is more rapid and accurate in
convergence rather than SCE-SC.

The remainder of the paper is as follows. The meth-
ods are demonstrated in Section 2. The system model
is represented in Section 3. Section 4 covers the chan-
nel estimation approach using the proposed FBP. The
pilot allocation scheme for SISO and MIMO systems
is described in Section 5. Moreover, the proposed pilot
allocation methods are represented in Section 6. Even-
tually, numerical results are expressed in Section 7 and
concluding remarks are demonstrated in Section 8.
Notations: Matrices and vectors are denoted by upper-

case and lowercase boldfaced letters, respectively. |.| and
(.)∗ denote the complex modulus and the conjugate of
a complex number. For a given matrix A, AT , AH , and
Trace(A) denote its transpose, conjugate transpose, and
trace, respectively, and Ai,j denotes the (i, j)th element of
A. For a given vector x with its element denoted by xl,
‖x‖2 = √

xHx represents the Euclidean norm, ‖x‖1 =∑
l |xl| is the l1-norm, and diag(x) denotes a diagonal

matrix with x on its main diagonal. For two vectors x and
y, < x, y > denotes their inner product. For a given set �,
n(�) is the number of elements in �. Cm×n stands for the
set of all complex-valued m × n matrices, and ∅ denotes
the null set.

2 Methods
In this paper, the channel estimation is addressed using CS
perspective. In order to increase the channel estimation
accuracy together with decreasing the spectrum utiliza-
tion, we have proposed the FBP-based channel estimation
and SCE-SC and PCE-SC pilot allocation algorithms. To
compare the proposed method with the existing ones, we
have considered a GA-based approach and B-vCoSaMP-
based channel estimation.

3 Systemmodel
Consider an amplify-and-forward (AF) relay network con-
sists of MIMO terminals (Fig. 1). The network consists
of a source node (S), a relay node (R), and a destina-
tion node (D). Besides, each terminal is equipped with
NS, NR, and ND transceiver antennas, respectively. With-
out loss of generality, we consider OFDM transmission
in MIMO terminals. Consider an OFDM system with N
subcarriers where Np of them are selected as pilot subcar-
riers. Besides, to omit the interference of other antenna’s
pilots on each other, we consider to utilize the orthogonal
pilot allocation, i.e., not only Np subcarriers are allocated
to pilot subcarriers, but also pilot subcarriers assigned to
other NS − 1 transmit antennas are reserved to be zero
[20]. Thus, the number of data subcarriers on each of
the transmit antenna is equal to N − NSNp. Assuming
xm ∈ C

N×1 as the OFDM symbol before cyclic prefix (CP)
adding to be transmitted on the mth transmit antenna
of S. In the first time slot of the time-division-duplexing
(TDD), the received signal rq for q = 1, 2, . . . ,NR is
formulated as

rq =
NS∑

m=1
XmFLmfmq + vq (1)

Fig. 1 Conceptual system model for a MIMO-OFDM relay network and joint sparsity
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where Xm is the diagonal matrix with xm as its main diag-
onal, FLm is the partial discrete Fourier transform (DFT)
matrix withNp rows corresponding to theNp pilot subcar-
riers ofmth transmit antenna and first L columns ofN×N
DFTmatrix, fmq = [

fmq(0), fmq(1), . . . , fmq(L − 1)
]T is the

channel vector between source node S and relay node R

with length L which K of them are non-zero to repre-
sent the channel sparsity. Besides, vq is the additive white
Gaussian noise (AWGN) vector in the qth antenna of relay
R. In the second time slot, relay R amplifies and retrans-
mits the received signal to the destination node D. As
a consequence, the received pilots in the nth antenna of
destination D could be formulated as

yn =
NR∑

q=1
XmF2L−1

m hmn + zn (2)

where hmn = ∑NS

m=1 βfmq ∗ gqn where ∗ stands for con-
volution, is the overall channel between S and D passing
by R and gqn is the channel vector between qth antenna
of R and nth antenna of D and F2L−1

m is the partial DFT
matrix with Np rows corresponding to the Np pilot sub-
carriers ofmth transmit antenna and first 2L− 1 columns
of N × N DFT matrix. Collecting all the received pilot
sequences, we can represent the Np × ND received pilot
matrix as Y =[ y00, y01, . . . , y0ND−1] and collecting all the
channel ensembles, we can represent the 2L − 1 × ND

as H =[h00,h01, . . . ,h0ND−1]. Hence, the extension of
(2) could be represented in matrix form for single-input
multiple-output (SIMO) case as

Y = �H + Z (3)

where Z is the AWGN matrix with corresponding
columns according to the z0v. � is the measurement
matrix with size of Np × L. Defining ζ norm for matrices
as ζ(H) = card{‖Hv‖2 �= 0} where Hv is the vth column
of H, estimating the channel could be accomplished by
following optimization criterion.

min
H

‖Y − �H‖22 (4)

s.t. ζ(H) ≤ K

Obviously, K is the maximum sparsity of the columns of
H. We called the objective function as F(H) = ‖Y−�H‖22.
Utilizing ζ(H), we can exploit the joint sparsity of the
channel ensembles in the system. The objective function
in (4) represents the error of channel estimation method
and the constraint controls the sparsity order of the chan-
nel ensembles in H. Moreover, using ζ -norm definition,
the block sparsity of the channels are exploited.
As mentioned, the channel between transmit-receive

pair which is denoted by huv consists of L resolvable
paths. These resolvable paths are resulted from L scat-
terers which are encountered by the signal conveying
from the transmitter antenna u to the receiver antenna

v. K of these L scatterers are significant scatterers where
K << L. Consequently, the channel could be mod-
eled using sparse vectors. Moreover, the signal conveyed
distance is large relative to the transmit-receive antenna
spacing in each terminal. Hence, the encountered scat-
terers in each chip period is identical between different
antennas. In other words, the delays of different paths are
the same in all the channel ensembles between two termi-
nals. Thus, the sparsity pattern of different channel pairs
could be assumed to be the samewhile the channel attenu-
ation is different. Each path consists of different subpaths
which are scattered from different scatterers which are
zero-mean and identically independent distributed (i.i.d.).
Thus, each path’s attenuation is assumed to be CN

(
0, σ 2).

Hence, the channel coefficient could be represented as

huv(l) =
I−1∑

i=0
αuv(i)g(lT − τ(i)) (5)

where τ(I − 1) ≥ · · · ≥ τ(1) ≥ τ(0) are the respective
paths’ delay and g(.) is the shaping pulse in continuous
domain. The shaping pulse is zero outside the the inter-
val [ 0,Tg], where Tg is the integer multiple of chip time T.
Without loss of generality, we assumed that τ(i) are inte-
ger multiples of T. Thus, the number of channel paths,
caused by the channel itself and shaping filter is derived by
L = τ(I − 1)/T +Tg/T + 1. Furthermore, we assume that
L is lower than Tg/T . Using the mentioned notations, we
can represent the channel impulse response using huv =
[huv(0), huv(1), . . . , huv(L − 1)]T .

4 Forward-backward pursuit channel estimation
In order to handle the optimization in (4), we have
proposed a forward-backward pursuit (FBP) based on
[21] where �0 norm was used. The algorithm is repre-
sented in details in Algorithm 1. Equation 4 could be
solved using three different methods as convex relaxation,
greedy methods, and message-passing (MP) algorithms.
FBP which is based on MP algorithm is used here because
of its forward selection and backward fixing. Specifically,
OMP which is a greedy algorithm is a special case of
FBP which the forward selection is present but the back-
ward fixing is absent; consequently, it cannot fix its own
mistakes in the previous steps. Moreover, the FBP algo-
rithm constructs the new subspace by adding just one
atom to the previous subspace, and in the backward steps,
it reconstructs the subspace by omitting bad atoms. As a
consequence, the proposed FBP algorithm could be com-
pared with its greedy one called OMP, where OMP is the
special case of FBP without backward steps to increase the
estimation accuracy.
At the end of forward stages, a metric called δ

(t)
F is

defined which represents the difference by considering the
new added atom. In the backward stages, we first consider
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Algorithm 1 FBP-based channel estimation
1: Input: the measurement matrix �, the received pilot

matrix Y and sparsity order K
2: Output: the estimation of channel impulse responses

H
3: R(0) = Y, λ0 = φ and t = 0
4: while stop criterion not met do
5: i(t) = argmaxj/∈λ(t−1) ‖(R(t))Hφj‖2
6: Merging supports of the pervious iteration and the

present one λ(t) = λ(t−1) ∪ i(t)
7: DefineH(t) = �

†
λ(t)Y

8: δ
(t)
F = F(H(t−1)) − F(H(t))

9: while 1 do
10: j(t) = argminj∈λ(t) F(H(t) − H(t)

�j )

11: δ
(t)
B = F(H(t)

�j ) − F(H(t))

12: if δ
(t)
B ≥ 0.5δ(t)

F then
13: Update residual R(t) = Y − �λ(t)H(t)

14: break
15: end if
16: Omit bad atom λ(t) = λ(t) − j(t)
17: UpdateH(t) = �

†
λ(t)Y

18: Update residual R(t) = Y − �λ(t)H(t)

19: end while
20: end while

all the collected atoms individually and their effect on the
residual is considered by calculating argminj∈λ(t) F(H(t) −
H(t)

�j ) and subsequently δ
(t)
B is computed to determine the

worst collected atom. These calculation is absent in other
known algorithms whichmakes this algorithm an efficient
one in the CS-based channel estimation approaches.
In Algorithm 1, |i(t)| denotes the number of selected

atoms in forward step, and H(t)
�j represents the H(t) while

j(t)th column is omitted.
In order to extend the proposed method to the MIMO

case, one can extend themeasurementmatrix and channel
matrix as follows. In order to extend the channel matrix,
we add the other transmitting antenna caused channels
row-wise to the each other and represent channel matrix
H ∈ C

(2L−1)NS×ND as

H =

⎛

⎜
⎜
⎜
⎝

h00 h01 . . . h0(ND−1)
h10 h11 . . . h1(ND−1)
...

...
. . .

...
h(NS−1)0 h(NS−1)1 . . . h(NS−1)(ND−1)

⎞

⎟
⎟
⎟
⎠
. (6)

Moreover, the measurement matrix � ∈ C
NSNp×(2L−1)NS

is extended as

� =

⎛

⎜
⎜
⎜
⎝

�0 0 . . . 0
0 �1 . . . 0
...

...
. . .

...
0 0 . . . �NS−1

⎞

⎟
⎟
⎟
⎠

(7)

where 0 is Np × (2L − 1) zeros matrix. Furthermore, the
received pilots are gathered in Y ∈ C

NSNp×ND as

Y =

⎛

⎜
⎜
⎜
⎝

y00 y01 . . . y0(ND−1)
y10 y11 . . . y1(ND−1)
...

...
. . .

...
y(NS−1)0 y(NS−1)1 . . . y(NS−1)(ND−1)

⎞

⎟
⎟
⎟
⎠
. (8)

Using the introduced matrices, one can utilize the pro-
posed FBP algorithm to estimateMIMO-OFDM relay sys-
tem channels. One of themain advantages of the proposed
approach is the advantage of the measurement matrix in
designing optimal pilot subcarriers to improve the chan-
nel estimation accuracy which will be discussed in the
following sections.

5 Pilot allocation for compressed channel
estimation

In FBP, jointly sparse channels are estimated altogether.
The space existing between adjacent antennas in MIMO
nodes is close to each other where the sparsity pattern
between transmit-receive pairs is the same. Moreover, the
channel coefficients in each of the non-zero paths are not
the same and are rayleigh random variable since they are
a consequence of the number of normal distributed paths.
Utilizing the FBP, the jointly sparse channels could be
estimated altogether. The measurement matrix which is
represented in (7) could be generated using random pilot
subcarriers and optimized pilot subcarriers. In order to
improve the accuracy of estimated channels, it is manda-
tory to select pilot subcarriers to optimize the estimation
metric. In CS, RIP is used as the key metric in designing
appropriate measurement matrices. But, there is no poly-
nomial time approach to calculate RIP; thus, we have used
mutual coherence to design optimal measurement matrix.
Mutual coherence is defined as

μ{�} = max
λi,λj ;λi �=λj

∣
∣
∣
∣
∣

2L−2∑

l=0
e−j2π(λi−λj)l/N

∣
∣
∣
∣
∣

(9)

where λi and λj are pilot subcarriers among N available
subcarriers. Consequently, mutual coherence is defined as
maximum off-diagonal entries of Gram matrix G{�} =
�H� if � is orthonormal [13, 22]. Accordingly, μ{�} is
related to the positions of pilots λi and λj. Since, they are
positions, the problem can be deduced which is defined as

min
λi,λj

μ{�} (10)

λi �= λj

λi, λj ∈ A
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where A is the set of all the available subcarriers. Obvi-
ously, the selection of subcarriers is a combinatorial opti-
mization. In order to generate optimal pilot sequences, we
have used probability-based approaches which will be dis-
cussed in the following sections. Here, we consider the
measurement matrix �.

Theorem 1 Assuming � as an orthonormal measure-
ment matrix in Eq. (7), then μ{�} could be defined by

max
i∈{1,2,...,NS}

μ{�i,�i} (11)

Considering Gram matrix

G{�} =

⎛

⎜
⎜
⎜
⎝

�H
1 �1 0 . . . 0
0 �H

2 �2 . . . 0

. . . . . .
. . . . . .

0 0 . . . �H
NS

�NS

⎞

⎟
⎟
⎟
⎠

(12)

where G{�} ∈ C
NS(2L−1)×NS(2L−1), we define two con-

cepts. The first one is self-coherence and the other one
is the cross-coherence. � is consist of different sub-
matrices from different antennas called �i for i =
0, 1, . . . ,NS−1.We define self-coherence asμ{�i,�i} and
cross-coherence as μ{�i,�j} where i �= j where

μ{�i,�i} = max
k �=t

φH
ikφit (13)

μ{�i,�j} = max
k �=t

φH
ikφjt (14)

and φik is the kth column of �i. Obviously, according
to (12), the mutual coherence could be defined as the
maximum of self-coherence between all the antennas.�
According to the above, among other jointly sparse esti-

mation, our proposed method and formulation leads to
self-coherence while others lead to self-coherence and
cross-coherence [11, 13]. Consequently, it could decrease
the number of computations since the number of matrix
multiplications is NS, while in other approaches the num-
ber of matrix multiplications isNSND. Hence, the number
of matrix multiplications is outstandingly minimized.
In order to omit the interference of antennas on each

other, we have considered orthogonal pilot sequences
which are demonstrated in [13].

6 Proposed pilot allocation algorithms
Here, we will demonstrate two numerical algorithms to
optimize the mutual coherence of measurement matrix
and defining optimized pilot sequences. The optimization
is performed over the search space S ∈ (N

Np

)
. Hence, the

exhaustive search is intractable and computationally inef-
ficient by increased number of N and Np. Consequently,
the combinatorial optimization problem in Eq. (10) is
solved using pdf sampling by the proposed algorithms.

The sampling is continued until convergence of the pdf.
The steady state is achieved while the pdf consists of zero
or 1/NpNS values. The pdf in each of the iteration is
updated utilizing appropriate population in each genera-
tion. In order to detect the appropriate individuals, we use
the fitness function

max
i∈{1,2,...,NS}

μ{�i,�i} (15)

To decrease the computational complexity in fitness func-
tion, we used self-coherence of different measurement
matrices. Evidently, there are lots of zero elements in
matrix � which are unnecessary to be multiplied. More-
over, the cross-coherence is not used inmutual coherence.
Since, in Eq. (12) only self-coherence is included. Hence,
we used self-coherence in Eq. (13) to optimize the compu-
tations in fitness function evaluation. In each generation,
the updated pdf is utilized to generate the new individuals.

6.1 Sequential cross entropy self-coherence (SCE-SC)
pilot allocation approach

In this approach, there are some definitions which are very
important to understand the approach. Generation (G) is
the set of pilot sequences which are sampled from the
pdf. Each generation is constructed from (I) individuals
which are referred to each of the sample pilot sequence.
Furthermore, each individual consists of N elements. The
probability of each element is represented in a pdf called
P which demonstrates the probability of the element to be
selected as an appropriate selection for the pilot sequence.
Moreover, elite individuals in each generation are J indi-
viduals with best fitness function. Hence, fitness function
is the metric for detecting elite individuals in each genera-
tion which is demonstrated in Eq. (15). The initial state of
the pdf P is the uniform pdf with elements equal to 1/N .
Gradually, during different generations, the pdf is updated
using J elite individuals and its elements converge to the
steady state. Since the generation of individuals consists
of sampling from the probability function, this method
is more robust than other mutation-based approaches in
trapping to local minima.
The step-by-step representation of the SCE-SC algo-

rithm is demonstrated in Algorithm 2. Considering pg(G)

as the pdf vector of gth iteration, we represent the pdf
vector by

pg(G) =[ pg(G1), pg(G2), . . . , pg(GN )]T (16)

where pg(Gi) refers to the probability of obtaining a value
of 1 in the ith element of G. In each generation, the pdf
vector is utilized to generate I individuals. Among these
individuals, J elite individuals are selected. Then, pdf is



Akbarpour-Kasgari and Ardebilipour EURASIP Journal onWireless Communications and Networking         (2019) 2019:75 Page 7 of 13

Algorithm 2 Sequential cross entropy self-coherence
(SCE-SC) pilot allocation
1: Initialize the remaining subcarrier setA =[ 1 : N]
2: for n = 1 to Ns do
3: Initialize the population G0 using I random individ-

uals with length Np from remaining subcarrier set
A

4: while stop criteria not met do
5: Sort the individuals in Gg in ascending order

according to corresponding self-coherence
6: Select J of the individuals in Gg with the best fit-

ness function and establish subset Gg
j:I for j =

1, 2, . . . , J
7: Construct pdf pg+1(G) using Gg

j:I and Eq. (17)
8: Sample the probability function and generate the

new individual without repeat and generate the
new generation Gg+1

9: end while
10: Update the remaining subcarrier setA
11: end for

updated using these elite individuals according to

pg+1(G) = (1 − τ)pg(G) + τ

J

J∑

j=1
Gg
j:M (17)

where Gg
j:I is the jth elite individual in gth generation

and τ is the regulation parameter of the algorithm which
demonstrate the dependency of the update procedure to
the current generation. Furthermore, τ is non-zero posi-
tive lower than 1. According to the previous discussions,
the algorithm is performed till the steady state is met. In
the steady state, the pdf vector is only included for zero or
1/NSNp elements.

6.2 Parallel cross entropy self-coherence (PCE-SC) pilot
allocation algorithm

In the SCE-SC algorithm, the initial condition is set just
one time. Consequently, iteratively the pdf is updated
based on the initial generation. Since the initial genera-
tion is randomly selected, it would be helpful to revise
the algorithm by generating some generations as the ini-
tial generation. Consequently, by selecting different initial
conditions, we are pursuing the optimal point in some par-
allel avenues. Parallelism is helpful as it would decrease
the probability of local minima trapping and the result-
ing sun-optimal point would be more robust and closer to
the optimal point. Hence, in PCE-SC algorithm which is
represented stage-by-stage in Algorithm 3, α initial gen-
eration from the search space S are considered and iter-
atively the pdf of these generations are converged to the
steady state, simultaneously. Considering multiple pdfs at
the same timewill increase the computation burdenwhich

Algorithm 3 Parallel cross entropy self-coherence (PCE-
SC) pilot allocation
1: Initialize the remaining subcarrier setA =[ 1 : N]
2: for n = 1 to NS do
3: Initialize the population G0 using I random individ-

uals with length Np from remaining subcarrier set
A

4: while stop criteria not met do
5: for α = 1 toM do
6: Sort the individuals in Gg

α in ascending order
7: Select J of the individuals in Gg

α with the best
objective value and establish subset Gg

α,j:I for
j = 1, 2, . . . , J

8: Construct pdf pα
g (G) using Gg

α,j:I and Eq. (17)
9: Sample the probability function and generate

the new individual without repeat and gener-
ate the new generation Gα

g+1
10: end for
11: end while
12: Update the remaining subcarrier setA
13: end for

can be handled by the parallel processing units. However,
the proposed method will decrease the local minima trap-
ping more than the SCE-SC approach and increase the
accuracy of the resulted steady state point. Consequently,
utilizing PCE-SC will increase two substantial perspective
of pilot allocation algorithm in channel estimation.

7 Numerical results
Here, we demonstrate the performance of the proposed
algorithms in channel estimation and pilot allocations
called FBP, SCE-SC, and PCE-SC by simulation results.
The simulation parameters are listed in Table 1. Sparse
Reyleigh channel is modeled using finite impulse response
(FIR) filters where non-zero taps (significant taps) are
independently and identically distributed (i.i.d.) utilizing
zero mean and unit variance complex Gaussian vari-
ables. Moreover, Monte Carlo simulations are performed
over 1000 independent runs and the results are averaged
over them.

Table 1 Simulation parameters

Simulation parameter Value

Modulation 16-QAM

Number of subcarriers (N) 512

Number of transmit antenna (NS) 4

Number of receive antenna (ND) 4

Number of relay antenna (NR) 4

Channel taps (L) 30

Channel significant taps (K) 3
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Here, we will consider the applicability of the proposed
algorithm and the obtained pilot sequences utilizing two
main characteristics of channel estimator called NMSE
and BER. NMSE is calculated using

NMSE = 1
NMC

NMC∑

i=1

‖hi − ĥi‖22
‖hi‖22

(18)

where h is the complete channel vector and ĥ is its esti-
mation. Moreover, NMC is the Monte Carlo iterations
which is 1000. BER is evaluated using Monte Carlo sim-
ulation using NMC individual simulation according to the
following equation.

BER =
NMC∑

i=1

Nb(i)
Nt(i)

(19)

where Nb(i) is the number of the correct received bits
in ith Monte Carlo iteration and Nt(i) is the number of
transmitted bits in each Monte Carlo iteration.

7.1 Comparison of channel estimation performance
The results of the proposed channel estimation method
are represented in Fig. 2 considering MSE and BER,
respectively. For comparison, we have utilized BStOMP
algorithm developed in [23] and B-vCoSaMP developed
in [13]. Here, in Fig. 3a, from the NMSE point of view, the

a

b

Fig. 2 Comparison of the proposed FBP-based method, B-vCoSaMP, and BStOMP: aMSE and b BER
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a

b

Fig. 3 The effect of pilot numbers in channel estimation: aMSE and b BER

proposed approach is more efficient than others. More-
over, the comparison of BER is demonstrated and, as
it is shown, the BER of the proposed method is supe-
rior almost 2 dB better than BStOMP approach and 1.8
dB better than B-vCoSaMP. Moreover, using only Np =
45 subcarriers as pilot, we are almost 3 dB away from
the ideal case. This means that more than 65% spectral
efficiency is maintained.

7.2 Comparison of the number of pilots
In order to compare the effect of the number of pilots, we
have considered the proposed method and B-vCoSaMP

developed in [13], since these two methods where per-
formed better than BStOMP. Moreover, the number of
pilots is changed and selected to be 35, 40, and 45. Illus-
tratively, the NMSE and BER comparisons are repre-
sented in Fig. 3. Obviously, in case of 35 pilots, both
methods are irreducible while the proposed FBP-based
approach is irreducible in lower NMSE. By increasing
the number of pilots to 40 and 45, the estimation accu-
racy is getting more applicable. Furthermore, in all the
cases of pilots, the proposed FBP-based approach is supe-
rior than the B-vCoSaMP. This superiority is obvious in
BER, too.
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7.3 Comparison of proposed pilot allocation algorithms
Here, we consider pilot allocation algorithms proposed
in this paper called PCE-SC and SCE-SC. In order to
compare these proposed algorithms, we have considered
NMSE and BER, separately. These figures are represented
in Fig. 4. NMSE is compared in Fig. 4a and BER is com-
pared in Fig. 4b. Obviously, using optimized pilot place-
ment creates approximately 6 dB and 7 dB superiority
than random placement utilizing SCE-based and PCE-
based algorithms, respectively. Moreover, this superiority
is encountered in BER represented in Fig. 4b almost 2 dB
and 3 dB in higher SNRs. The BER gap between PCE-
SC pilot placement using 45 pilots and the ideal case is

approximately 1 dB which represented the superiority of
the proposed approach in terms of bandwidth efficiency.
Among 512 subcarriers, only 100 of them is utilized as
the pilots and others are used as data subcarriers. Hence,
more than 65% of the subcarriers are used as the data
subcarriers which can be used by transmitting antennas.

7.4 Comparison of the proposed pilot allocation
algorithmwith the existing one

In Fig. 5, two different algorithms for pilot allocation are
compared. These two algorithms are defined by proposed
PCE-SC and GA algorithm developed in [18]. To estimate
the channel, we have utilized the proposed FBP-based

a

b

Fig. 4 Comparison of different proposed pilot allocation algorithms utilizing (a) NMSE and (b) BER performance metric



Akbarpour-Kasgari and Ardebilipour EURASIP Journal onWireless Communications and Networking         (2019) 2019:75 Page 11 of 13

a

b

Fig. 5 Performance comparison of proposed method and GA-based pilot allocation algorithm: a NMSE performance metric and b BER performance
metric

channel estimation approach. The number of the pilots for
each of the transmitting antenna is Np = 45. Illustratively,
the results of the NMSE and BER are represented in Fig. 5.
Obviously, NMSE of the proposed method is better than a
GA-based approach approximately 3 dB. Moreover, con-
cerning BER, this superiority is almost 1.5 dB. Evidently,
by utilizingNp = 45 optimized pilots on each antenna, the
performance is almost 1 dB away from the optimal perfor-
mance which could be compensated using other facilities.

Actually, using optimized pilots will lead to 65% spectral
efficiency which is one of the most critical characteristics
of the system.
In Fig. 6, the proposed pilot allocation algorithms are

compared with the optimized least squares (LS)-based
channel estimation as the state-of-the-art approach in
channel estimation of MIMO-OFDM systems in [24].
Obviously, the LS-based channel estimation is performed
using 256 number of pilots where the spectral efficiency



Akbarpour-Kasgari and Ardebilipour EURASIP Journal onWireless Communications and Networking         (2019) 2019:75 Page 12 of 13

a

b

Fig. 6 Performance comparison of proposed method and optimized LS-based pilot allocation algorithm: (a) NMSE performance metric, (b) BER
performance metric

is extremely decreased. The simulation parameters for the
proposed pilot allocation is as before.

8 Results and discussion
In this paper, channel estimation of AF MIMO relay is
considered and CS-based approaches is utilized due to
their spectral efficiency and accuracy improvement. Here,
we have proposed FBP-based channel estimation algo-
rithm for forward selection and backward elimination.
The proposed method benefits from backward elimina-
tion to improve the accuracy of estimation. Moreover,
the measurement matrix is introduced and its Gram
matrix is developed to minimize the mutual coher-
ence. As discussed, mutual coherence is related to the

self-coherence of sub-matrices related to each of the
antennas. Hence, two pilot allocation algorithms are
proposed based on the cross entropy where the num-
ber of multiplications are decreased rather than other
approaches since they utilize cross-coherence and self-
coherence, simultaneously. Accordingly, PCE-SC and
SCE-SC algorithms are proposed for pilot generation
and channel estimation accuracy improvement. They are
compared with other approaches and their superiority
validation is represented using simulation results.
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