
RESEARCH Open Access

Unstructured mesh generation based on
Parallel Virtual Machine in cyber-physical
system
Hao Dong1, Haiqing Si2* , Huiying Zong3 and Xiaozhu Liu4

Abstract

A parallel unstructured mesh generation technique is proposed based on the built-in cyber-physical system (CPS) of
Parallel Virtual Machine context. A static load-balancing strategy for computational domain decomposition is firstly
presented in the paper. After dividing the whole computational domain into several sub-domains, unstructured
grids are separately generated in each sub-domain using the advancing-front grid generation technique. Besides,
for a dynamic load-balancing strategy, Lohner’s advancing front domain-splitting algorithm is improved to make
the sub-grids and their boundaries more favorable for the grid generation. Moreover, a new optimization strategy
of sub-domain’s boundary is simultaneously presented to smooth the boundaries and improve the quality of grids.
Finally, conditions of receiving new points and elements are also developed during the grid generation in the sub-
domain. Meanwhile, a new strategy of receiving new elements and refusing new points during the interface grid
generation is proposed, which can save computational cost. A new parallel Laplacian smoother technique is
implemented to generate high-quality mesh. Meshes for NACA0012 airfoil, cylinder, and multi-element airfoil are
generated by the improved parallel algorithm using the static and dynamic load-balancing strategies. Some
comparisons of parallel calculations are also made using the different number of processors in the tables.

Keywords: Cyber-physical system, Advancing-front method, Unstructured grid, Parallel algorithm, Domain-splitting,
Parallel Virtual Machine

1 Introduction
The development of computer and network technology
has brought great convenience to human life [1, 2].
However, with the advances of the hardware product per-
formance and the rapid development of network commu-
nication technology, computer system and intelligence
information for all kinds of engineering systems are highly
expected to improve the data processing ability. Comput-
ing devices have not only confined to the system function
expansion but also focused on the reasonable and effective
system resources allocation efficiency and system
performance optimization and personalized service and
customer satisfaction. Under the guidance of these de-
mands, a cyber-physical system (CPS) emerges as a new
intelligent system and has attracted great attention from

governments, academic researches, and business applica-
tions [3, 4]. Cyber-physical system (CPS) is an integration
of computation, networking, and physical processes. Em-
bedded computers and networks control and monitor the
physical processes, with feedback loops where physical
processes affect computations and vice versa. The eco-
nomic and societal potential of such systems is vastly
greater than what has been realized, and major invest-
ments are being made worldwide to develop the technol-
ogy. The technology builds on the older (but still very
young) discipline of embedded systems, computers, and
software embedded in devices whose principal mission is
not computation, such as cars, toys, medical devices, and
scientific instruments. CPS integrates the dynamics of the
physical processes with those of the software and network-
ing, providing abstractions and modeling, design, and ana-
lysis techniques for the integrated whole.
Since CPS was first proposed by the US National Sci-

ence Foundation in 2006, it has been viewed as the next

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: haiqingshi18@163.com
2College of Civil Aviation and Flight, Nanjing University of Aeronautics and
Astronautics, Nanjing, China
Full list of author information is available at the end of the article

Dong et al. EURASIP Journal on Wireless Communications and Networking
 (2019) 2019:62
https://doi.org/10.1186/s13638-019-1390-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-019-1390-8&domain=pdf
http://orcid.org/0000-0002-9362-6787
http://creativecommons.org/licenses/by/4.0/
mailto:haiqingshi18@163.com

generation intelligent system with the advantage of flexi-
bility, high efficiency, and intelligence [5, 6]. Thus, it has
the potential to serve as the interconnection and collab-
oration of virtual world and physical world. Besides, CPS
can be described as a thematic subject rather than a dis-
ciplinary topic. Multidisciplinary areas such as mecha-
tronics, robotics, and CPS often begin with themes and
eventually evolve into subject areas. CPS has become an
important direction for academic research and industrial
application, such as in computer science, communica-
tion, control, and transportation [7, 8]. Therefore, the
development of CPS has been supported by many gov-
ernments. Specifically, applications of CPS include auto-
motive systems, manufacturing, medical equipment,
military systems, assisted living, traffic control and
safety, process control, power generation and distribu-
tion, energy conservation, HVAC (heating, ventilation,
and air conditioning), aircraft, instrumentation, water
management systems, train, physical security (access
control and monitoring), asset management, and distrib-
uted robotics (remote presentation, telemedicine) [9, 10].
Furthermore, CPS can be developed in the aspect of
managing data and leveraging the interconnectivity of
machines to achieve the goal of intelligent, resilient, and
self-adaptable machines [11].
As for computational fluid dynamics (CFD), the calcula-

tion of flow fields is commonly divided into many correla-
tive mesh parts. Usually, we handle both parts themselves
and their connections independently to acquire the whole
flow filed data, which is quite time-consuming. In this
work, we introduce the idea of CPS into the mesh gener-
ation and parallelly process the different mesh parts to en-
hance the computing efficiency [12, 13].
Great progress in CFD using unstructured mesh

method has been achieved over the recent years. How-
ever, conventional unstructured grid generation is quite
time-consuming; for example, the generation of grids
with more than 107 elements probably needs several
hours. Therefore, a study on improving the efficiency for
unstructured grids generation is of great significance for
flow field calculations [14].
Despite that there are a large variety of grid generation

schemes, the technique of parallel mesh generation is still
not well addressed. Important attempts on parallel mesh
generation have been made by Lohner [15] and Okusanya
[16]. Lohner provided wave-front domain-splitting algo-
rithm so that grids in the sub-domain and their boundar-
ies are more favorable for grid generation. However, there
exist several aspects to be improved in Lohner’s methods,
such as optimization of sub-domain boundary and grid
smoothness; at the same time, there are too many com-
munication overheads [17–19] in the method of Okusa-
nya’s Delaunay triangulation. Hence, it is necessary to
further improve the parallel grid generation technique

[20–22] to solve flow problem with complex geometries
[23–25]. It is well known that CFD is becoming increas-
ingly sophisticated: grids define highly complex geom-
etries and flows are simulated involving very different
length and time scales [26, 27]. The number of grid
points, and thereby the number of degrees of free-
dom, is increasing as the memory of supercomputers
is growing. CPS integrates computing, communica-
tion, and storage capabilities and can reliably, safely,
stably, and efficiently run in real time [28]. Due to
the demand for the mutual communication during
the parallel grid generation, CPS can provide a good
bridge for parallel calculations and can improve the
performance of parallel mesh generation [29, 30].
This paper focuses on the efficient parallel mesh gen-

eration in CPS. Load balancing is a technique in which
the workload is evenly assigned to every slaver processor
as much as possible, which includes static and dynamic
load balancing. To save computational cost, a static and
dynamic load-balancing strategy for the domain decom-
position technology is developed in the paper. For some
applications, the workload on per processor can be esti-
mated or even analytically determined in a preprocessing
step before the simulation is started, so a static
load-balancing method can be adopted. If the workload
does not change during the course of the computation,
static load balancing is sufficient. However, the majority
of applications in computational science and engineering
show a more complex runtime behavior, necessitating
some kind of dynamic load balancing to provide the
same workload on each processor at all times. The goal
of a dynamic load balancing can be stated as follows:
given a collection of tasks performing a computation
and a set of processors on which these tasks are to be
executed, find the mapping of tasks to processors that
minimizes the run time.
After the whole computational domain is divided into

sub-domains, advancing-front grid generation technique
is used to generate unstructured grids in each sub-do-
main separately. Laplacian smoother is implemented on
a parallel machine. Based on the 2D parallel algorithm
presented by Lohner, a new simple algorithm which can
decrease communication overheads is provided and im-
plemented on the Parallel Virtual Machine (PVM) con-
text. PVM is a software system that enables a collection
of heterogeneous computers to be used as a coherent
and flexible concurrent computational resource. The in-
dividual computers may be shared- or local-memory
multiprocessors, vector supercomputers, specialized
graphics engines, or scalar workstations, which may be
interconnected by a variety of networks, such as Ether-
net. Parallel efficiency of generating grid and grids qual-
ity is desirable, which demonstrates high effectiveness of
the proposed algorithms in the paper.

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 2 of 11

The remainder of this paper is organized as follows:
Section 2 presents the proposed mesh generation
scheme, Section 3 shows the numerical results and, fi-
nally, Section 4 concludes this paper.

2 The proposed parallel algorithm of mesh
generation
In this section, an efficient mesh generation algorithm is
proposed, which is easy to be coded, and it can decrease
communication overheads and also enhance parallel effi-
ciency. It mainly includes the following steps:

1. Inner and outer boundary points of the whole flow
field domain should be defined firstly.

2. Background mesh is then generated by triangulating
boundary points using Delaunay algorithm, and
scales at boundary points are also calculated.

3. Computational domain of flow field is decomposed
using the static or dynamic load balance strategy
based on the number of boundary points.

4. Virtual boundary is determined by connecting the
common boundary points from both neighboring
sub-domains and then virtual points are inserted
into the virtual boundary by background meshes.

5. Data of common boundary from sub-domains are
sent to slaver processor by master processor, then
mesh generation in the sub-domain is implemented
using the wave-front domain-splitting algorithm on
every slaver processor, separately.

6. Parallel Laplace smoother in the CPS. Mesh points
inner the sub-domains are firstly smoothed except
common virtual boundary points; secondly, virtual
boundary points are smoothed independently due
to the fact that the smoother for these points need
mesh point information from neighboring sub-
domains, where data information is mutually sent
among slaver processors.

7. Information of the smoothed mesh points on every
slaver processor is sent to master processor and
stored in the CPS.

The present algorithm needs mutual communication
only when mesh points are smoothed, which can de-
crease communication overheads. Using the present al-
gorithm, not only high quality meshes are generated, but
also computational time decreases.
Load balancing is to assign every slaver processor even

workload as much as possible, including static and dy-
namic load balancing. For some applications, the work-
load on per processor can be estimated or even
analytically determined in a preprocessing step before
the simulation is started, so a static load-balancing
method can be chosen. However, if the majority of appli-
cations in computational science and engineering show

a more complex runtime behavior, a kind of dynamic
load balancing should be adopted to provide the same
workload on each processor at all times. Next, a static
and dynamic load balancing strategy is introduced in the
paper, separately.

2.1 Domain-splitting technique with a static load-
balancing strategy
As a result of the domain decomposition procedure on a
parallel platform of N processors, having N sub-domains
means that there is one task only to carry out per
worker; it is denoted as a static load balancing. Some-
times, there is no communication necessary between the
workers, i.e., each sub-domain is generated independ-
ently, sub-dividing the domain into M sub-domains
where M >N makes it possible to carry out more than
one task per processor (dynamic load balancing).
The standard of splitting flow field domain is to

minimize communication overheads among slaver pro-
cessors during the parallel calculations. A static load bal-
ancing technique is firstly adopted in the paper. Flow
field domain is divided into several sub-domains accord-
ing to the number of boundary points and processors in
order that the number of boundary points assigned to
every slaver processor is almost the same. Parallel mesh
generation is implemented for the flow field domain of
NACA0012 airfoil in order to validate the efficiency of
the present static load balancing.
Common boundary points among neighboring

sub-domains should be firstly determined, and these
points are connected, then their scales δ can be calcu-
lated by the interpolation of background mesh. The
point with the distance δ far away from the outer
boundary point is denoted as the first virtual point. Scale
δ1 of the first one is interpolated by background mesh,
then the second virtual point can be determined by the
similar method where the distance between the first and
second virtual point is δ1. The search is stopped until
the scale of the virtual point is larger than one of the
inner boundary point. In order to better understand the
insertion of the virtual point, the simple case of two
points is shown next. Suppose that A and B are common
boundary points from neighboring sub-domains, where
A is outer boundary point and B is inner boundary
point. The detailed steps are as following:

Step 1: Scales of A and B are calculated using
background mesh, and they are denoted as SIZE(A)
and SIZE(B), separately
Step 2: Triangle elements which C belongs to should be
firstly found in the background mesh and its scale can
be calculated using scales of three nodes of the present
triangle

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 3 of 11

Step 3: The search is not stopped until SIZE(C) is
larger than SIZE(B); otherwise, Step 2 is executed
again.

Statistics of mesh elements of four sub-domains can
be found in Table 1, and it is clearly seen that elements
in every sub-domain are almost the same. Figure 1
shows the background mesh of airfoil using Delaunay al-
gorithm. Figure 2 reveals the smoothed meshes using a
wave-front domain-splitting algorithm in the serial
context.

2.2 Wave-front domain-splitting algorithm with a
dynamic load-balancing strategy
Wave-front domain-splitting algorithm was presented by
Lohner, which is fit for the parallel unstructured mesh
generation as shown in Fig. 2. However, there exist some
flaws in the algorithm. Its disadvantages are as follows:
(1) neighboring domains are too many; (2) common
boundaries among neighbors are also many; and (3) add-
itionally, it is very difficult to search for the common
boundaries. They make it inconvenient for generating
sub-grids and coding programs in the parallel context.
The amount of interfaces should be consistent with that
of neighboring sub-domains. According to their existing
weakness, the algorithm should be improved in order to
save computational cost using a dynamic load balancing
technique.
Given the background grid of the field domain, the glo-

bal domain can be divided into sub-domains with smooth
boundaries using the improved algorithm. Grid up each
sub-domain separately by the advancing front technique,
then slots that are interfaces between neighbors are made,
and finally, we grid up the inter-sub-domain regions by
mutual communication of processors. However, the ad-
vancing front technique in the parallel context differs
from that in the serial context.
In contrast to Lohner’s methods, advantages of the

parallel generation method in the paper are as follows:

(1) we improve the conditions of receiving new points
and elements in generating sub-grids; (2) concepts of the
transient inactive face and the perpetual inactive face are
presented in the paper, which helps to understand the
grid generation algorithm; and (3) steps of the grid gen-
eration in the inter-subdomain regions are included
here. A new strategy of just receiving new element and
refusing new point is presented in generating the inter-
face grids, which can spare much central processing unit
(CPU) time.
Given the sub-domains, there are two possible par-

allel grid generation strategies: (1) in-out and (2)

Table 1 Elements and nodes for four sub-domains

Sub-domain Number of elements Number of nodes

1st one 2213 1169

2nd one 2212 1167

3rd one 2210 1164

4th one 2215 1171 Fig. 2 Smoothed meshes

Fig. 1 Background meshes

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 4 of 11

out-in. The first approach is implemented in the
paper due to its convenience. According to the im-
proved algorithm, there are at most two neighbors for
every sub-domain, which can avoid the generation of
corners; therefore, the third step in the strategy of
in-out can be omitted.

2.2.1 Generation of sub-domain grids
In each sub-domain, the advancing front technique is
used to generate an unstructured grid. Compared to
the steps, the required modification is the fourth
step. In order to understand the generation algorithm
better, the classification of edges and the concept of
transient and perpetual inactive faces are defined
below.
Active faces on the front can be used to form faces of

elements. The transient inactive face is not the active
face in generating sub-domain grids, but the active one
during the course of generating interface grids. The per-
petual inactive face is not the active face in generating
sub-domain grids or interface grids. In a word, faces in-
clude active and inactive ones, while inactive faces con-
stitute transient and perpetual ones.
The step F.4 in reference [15] is on how to determine

new points and elements. The modified steps in the
paper are as follows:

Step 1: The line segment joining the new point with
the midpoint of the selected front edge cannot intersect
any other fronts.
Step 2: New point and sub-domain boundary point
cannot coincide.
Step 3: New element cannot include any boundary
point of the front.
Step 4: New element cannot intersect boundaries of the
sub-domain.
Step 5: New element cannot cross any transient
inactive faces (including coincidence).
Step 6: New element cannot incorporate points of the
transient inactive faces.

New point or element can be received if all the above
six items must be satisfied; otherwise, the selected front
face is denoted as a transient inactive face.

2.2.2 Generation of the interface grids
In generating the interface grids, a new strategy of only re-
ceiving new element and rejecting new point is presented
here, according to the geometry features of the slots be-
tween sub-domains. The following steps should be added
in the generation of interface grids.

1. Receive the information of the transient inactive
faces from the neighbors in the present
processor.

2. Find the coincident points of the transient
inactive faces from the receiving processor and
the present processor, then start with the
coincident points and merge all the transient
inactive faces upon each other into the closed
sequential fronts.

3. Call the advancing front technique program (serial
program) and generate meshes.

4. Assemble the results and store them.

Fig. 3 Meshes using wave-front domain-splitting algorithm

Table 2 Comparison between wave-front algorithm and its
improvement

Grids of NACA0012 Wave-front algorithm The improved algorithm

NCB 950 924

ANND 4.1 1.75

MAND 5 2

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 5 of 11

Advantages of the algorithm improved are as follows:
(1) the number of neighboring domains decreases very
much, which is generally at most 2; (2) the amount of
common boundaries also declines accordingly; (3) this
cuts down the complexity of compiling parallel codes;
(4) furthermore, it is very easy to search for common
boundaries; (5) complex interfaces are avoided after each
sub-domain is gridded up separately; 6) the third step
can be omitted, which attempts to grid up the corners in
parallel grid generation strategies.

2.3 Parallel smoother of mesh
In order to enhance the quality of the whole mesh, grid
needs to be smoothed, and simple Laplace iteration is
adopted in the proposed scheme:

xnþ1
i ¼ xni þ

ω
m

Xm

k¼1

xnk−x
n
i

� � ð1Þ

ynþ1
i ¼ yni þ

ω
m

Xm

k¼1

ynk−y
n
i

� � ð2Þ

where m is denoted as the number of points which

share the common edge with the point i, n is defined
as iteration time and it is chosen to be the range
from 50 to 100, and ω is the relaxation factor and it
is 0.2 normally.
Due to the fact that virtual boundary points still be-

long to inner ones in the whole flow field domain,
they should be smoothed independently; otherwise, it
will affect the quality of whole grids. Therefore, mu-
tual communication from neighboring sub-domains is
needed when virtual boundary points are smoothed.
The detailed steps are as following:

1. Mesh is firstly smoothed independently in the
sub-domain excluding virtual boundary points.

2. Triangle elements to which virtual point belongs
are gathered by slaver processors.

3. Send the information of triangle elements to
neighboring slaver processors.

4. Virtual points are then smoothed when information
is received in the slaver processor.

5. Send the update coordinates of mesh to master
processor.

Fig. 4 Inserted virtual points and parallel meshes in sub-domains

Fig. 5 Meshes for four sub-domains

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 6 of 11

What outlined above is successfully implemented on a
workstation with many processors. Parallel unstructured
grid generator is ported to a multiple instruction mul-
tiple data (MIMD) PVM context [18] in the CPS. PVM
is a software system that enables a collection of hetero-
geneous computers to be used as a coherent and flexible
concurrent computational resource. The individual com-
puters may be shared- or local-memory multiprocessors,
vector supercomputers, specialized graphics engines, or
scalar workstations, which may be interconnected by a
variety of networks in the CPS. PVM software executes
on each machine in a user-configurable pool and pre-
sents a unified, general, and powerful computational en-
vironment of concurrent applications. User programs
written in C or Fortran are provided access to PVM
through the use of calls to PVM library routines for

functions such as process initiation, message transmis-
sion and reception, and synchronization via barriers or
rendezvous. Users may optionally control the execution
location of specific application components. The PVM
system transparently handles message routing, data con-
version for incompatible architectures, and other tasks
that are necessary for operation in a heterogeneous, net-
work environment in the CPS.
Table 2 lists the statistics of the number of common

boundaries (NCB), the average number of neighboring
domains (ANND), and the maximum amount of neigh-
bor domains (MAND) in order to compare wave-front
algorithm with the improved one. They show that the
value of three parameters decrease after the algorithm is
done in the paper, especially for the third one, which
contributes to the grid generation. Figure 3 shows the
meshes using the wave-front algorithm and the im-
proved one, respectively.

3 Experimental results and parallel efficiency
3.1 Numerical validation for a static load-balancing
strategy
The NACA airfoils are airfoil shapes for aircraft wings
developed by the National Advisory Committee for
Aeronautics (NACA). In order to validate the effective-
ness of the proposed parallel algorithm, meshes for

Fig. 7 Mesh using four sub-domains for cylinder

Table 3 Computational time, speedup, and parallel efficiency
for airfoil meshes

1 CPU 2 CPUs 4 CPUs

Computational time(s) 168.3 89.67 48.0

Speedup 1.0 1.82 3.4

Parallel efficiency 100% 91% 85%

Fig. 6 Smoothed grids for airfoil

Fig. 8 Smoothed grids for cylinder

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 7 of 11

NACA0012 airfoil and five cylinders are generated in
the paper, where NACA 0012 airfoil is symmetrical, the
00 indicating that it has no camber, and the 12 indicates
that the airfoil has a 12% thickness to chord length ratio:
it is 12% as thick as its length. Figures 4, 5, and 6 reveal
meshes of NACA0012 airfoil.
Figure 4 shows that the NACA0012 airfoil flow field

domain is decomposed into two sub-domains, where 88
virtual boundary points are inserted into the present
computational domain. As depicted in Fig. 5, computa-
tional domain is split into four sub-domains, where 166
virtual boundary points are inserted in the common
boundary of sub-domains. The high resolution of the
local grid around the NACA0012 airfoil has to be also
displayed clearly in Fig. 5. Figure 6 shows the smoothed
meshes of the airfoil, and it is clearly seen that mesh
quality is better than the initial meshes. Mesh for five
cylinders can be found in Figs. 7 and 8, where the com-
putation domain is divided into four sub-domains and
132 virtual points are inserted into the common bound-
ary of sub-domains.
The quality of a parallel implementation is often mea-

sured by the speed up or parallel efficiency.

Sp ¼ t1
tp

ð3Þ

Ep ¼ Sp
p

ð4Þ

where Sp and Ep denote speedup and parallel efficiency
separately; t1 and tp denote the execution time of the al-
gorithm on one and P processors, respectively. Tables 3
and 4 show the speedup ratio and parallel efficiency of
mesh generation for airfoil and cylinder.

Table 4 Computational time, speedup, and parallel efficiency
for airfoil meshes

1 CPU 2 CPUs 4 CPUs

Computational time(s) 49.128 26.41 13.8

Speedup 1.0 1.86 3.56

Parallel efficiency 100% 93% 89%

Fig. 9 Double airfoils: gridded subdomains

Fig. 10 Double airfoils: interface grids

Fig. 11 Double airfoils: smoothed grids

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 8 of 11

From the tables, it clearly reveals the comparisons of
computational time, speedup, and parallel efficiency
using the different number of slaver processors. The fol-
lowing conclusions can be drawn from Tables 3 and 4:

1. Computing time decreases very much, and the aim
of quickly generating unstructured grids is attained.

2. Parallel efficiency of two processors is much
higher than that of four processors. The reason
why parallel efficiency is on the decline is that
mutual communication overheads between

neighbor processors accordingly increase with
the number of sub-domains during the course of
parallel smoothing.

3.2 Numerical validations for a dynamic load-balancing
strategy
If the majority of applications in computational science
and engineering show a more complex runtime behavior,
a kind of dynamic load balancing to provide the same
workload on each processor at all times should be
adopted. Next, a dynamic load balancing is validated in
the paper.
What outlined above is successfully implemented on a

workstation with many processors. Parallel unstructured
grid generator is ported to a MIMD PVM context. Nu-
merical examples show the success of the improved

Fig. 12 Multi-element airfoil: gridded subdomains

Fig. 13 Multi-element airfoil: interface grid

Fig. 14 Multi-element airfoil: smoothed grids

Fig. 15 Local meshes for multi-element airfoil

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 9 of 11

parallel unstructured grid generation algorithm. Fig-
ures 9, 10, and 11 depict sub-grids, interface grids, and
smoothed whole grids for double airfoils, separately.
Figures 12, 13, and 14 show sub-grids, interface grids,

and smoothed grids for complex multi-element airfoil,
separately. They demonstrate that the quality of parallel
grids is satisfactory for flow field calculation and the
improved parallel grid generation technique is feasible.
Figure 15 reveals the local grid around multi-element
airfoil.
Table 5 displayed the comparison of time, speed up,

and parallel efficiency using the different number of pro-
cessors. As stated from the above Tables 3 and 4, the
similar conclusions can be also drawn from Table 5. Due
to the limited computer resources, four PCs are optimal
and used in the course of the calculations. Speedup and
parallel efficiency demonstrate that the effectiveness of a
dynamic load balancing developed by us is enough for
fast calculation of flow field, especially for the complex
bodies.

4 Conclusions
Based on Lohner’s algorithm, a parallel unstructured
grid generation technique is studied and developed in
CPS to improve the performance. For some applications,
the workload per processor can be estimated or even
analytically determined in a preprocessing step before
the simulation is started, so a static load-balancing
method can be recommended. However, if the majority
of applications in computational science and engineering
show a more complex runtime behavior, a kind of dy-
namic load balancing to provide the same workload on
each processor at all times should be adopted. A static
and dynamic load-balancing strategy for the domain de-
composition has been proposed, where communication
overhead can decrease greatly. A new parallel smoother
technique is also provided in order to enhance mesh
quality in CPS. Based on the PVM context, mesh for the
NACA0012 airfoil and cylinder is generated on PC clus-
ters. By comparison, parallel efficiency can be enhanced
as the number of processors used in the calculations.

Abbreviations
ANND: Average number of neighboring domains; CFD: Computational fluid
dynamics; CPS: Cyber-physical system; CPU: Central processing unit;
HVAC: Heating, ventilation and air conditioning; MAND: Maximum amount of

neighbor domains; MIMD: Multiple instruction multiple data; NCB: Number of
common boundaries; PVM: Parallel Virtual Machine

Funding
This work was supported by Special Foundation of China Postdoctoral
Science (Grant No. 201104565) and National Natural Science Foundation
of China (Grant No. 11272151, Grant No. 61103019).

Availability of data and materials
The data will be shared if request received.

Authors’ contributions
HD and HS contributed to the conception and algorithm design of the study.
HZ contributed to the acquisition of simulation. XL and HD contributed to the
analysis of simulation data and approved the final manuscript. All authors read
and approved the final manuscript.

Authors’ information
Hao Dong received the B. S. in Aircraft Design from Northwestern Polytechnical
University in 2005, and his Ph. D. degree in Fluid Mechanics from Nanjing
University of Aeronautics and Astronautics in 2010. Dr. Dong is an associate
professor at college of Aerospace Engineering, Nanjing University of
Aeronautics and Astronautics, and is the deputy director of the department of
aerodynamics. He has published more than 20 journal articles in the areas of
computational fluid dynamics, and mesh generation in CPS.
Haiqing Si received the B.S., M.S. and Ph.D. degrees in College of Aerospace
Engineering from Nanjing University of Aeronautics and Astronautics, China,
in 1999, 2004 and 2007, respectively. His research interests include parallel
computing, numerical method in computational fluid dynamics. He has
published over 40 papers in international journals and conferences in the
areas of parallel computing, parallel generation technology of calculation
meshes.
Huiying Zong is pursuing her M.S. degree in the science college from
Nanjing University of Aeronautics and Astronautics, China. Her research
interests include CPS, parallel computation in numerical simulation.
Xiaozhu Liu is an associate professor in the school of automation, Wuhan
University of Technology, China. She received the Ph. D. in Computer
Software and Theory, Wuhan University, in 2011. Her research interests
include CPS, mobile computing, and numerical simulation.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1College of Aerospace Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing 210016, China. 2College of Civil Aviation and Flight,
Nanjing University of Aeronautics and Astronautics, Nanjing, China. 3College
of Science, Nanjing University of Aeronautics and Astronautics, Nanjing,
China. 4School of Automation, Wuhan University of Technology, Wuhan,
China.

Received: 2 November 2018 Accepted: 28 February 2019

References
1. R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: The next

computing revolution. 47th ACM/IEEE Design Automation Conference (DAC)
(2010), pp. 731–736.

2. X. Liu, R. Zhu, B. Jalaian, Y. Sun, Dynamic spectrum access algorithm based
on game theory in cognitive radio networks. Mob. Netw. Appl. 20(6), 817–
827 (2015).

3. R. Zhu, X. Zhang, X. Liu, W. Shu, T. Mao, B. Jalaeian, ERDT: Energy-efficient
reliable decision transmission for cooperative spectrum sensing in industrial
IoT. IEEE Access 3, 2366–2378 (2015).

4. B. Jalaeian, R. Zhu, H. Samani, M. Motani, An optimal cross-layer framework
for cognitive radio network under interference temperature model. IEEE
Syst. J. 10(1), 293–301 (2016).

Table 5 Computational time, speedup, and parallel efficiency
for airfoil meshes

1 CPU 2 CPUs 4 CPUs

Computational time(s) 168.75 92.805 56.626

Speedup 1.0 1.818 2.98

Parallel efficiency 100% 90.9% 74.5%

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 10 of 11

5. E.A. Lee, Cyber physical systems: Design challenges, 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing (ISORC) (2008), pp. 363–369.

6. J. Du, X. Liu, L. Rao, Proactive Doppler shift compensation in vehicular cyber-
physical systems. IEEE/ACM Trans. Networking 26(2), 807–818 (April 2018).

7. K. Gai, M. Qiu, H. Zhao, X. Sun, Resource management in sustainable cyber-
physical systems using heterogeneous cloud computing. IEEE Trans. Sustain.
Comp. 3(2), 60–72 (April-June 2018).

8. S. Cai, V.K.N. Lau, Zero MAC latency sensor networking for cyber-physical
systems. IEEE Trans. Signal Process. 66(14), 3814–3823 (July 15 2018).

9. X. Lu, B. Chen, C. Chen, J. Wang, Coupled cyber and physical systems:
Embracing smart cities with multistream data flow. IEEE Electrification Mag.
6(2), 73–83 (June 2018).

10. C. Lu, IoT-enabled adaptive context-aware and playful cyber-physical system
for everyday energy savings. IEEE Trans. Hum. Mach. Syst. 48(4), 380–391
(August 2018).

11. B.H. Krogh, Cyber physical systems: the need for new models and design
paradigms (Carnegie Mellon University), pp. 1–31.

12. H.Q. Si, T.G. Wang, J. Cheng, Domain decompositions and parallel
algorithms to solve Euler equations on the unstructured grid. Acta
Aerodynamica Sinica 24(1), 102–108 (2006).

13. Y.P. Chien, F. Carpenter, A. Ecer, H.U. Akay, Load-balancing for parallel
computation of fluid dynamics problems. Comput. Methods Appl. Mech.
Eng. 120, 119–130 (1995).

14. P.A. Cavallo, N. Sinha, G.M. Feldman, Parallel unstructured mesh adaptation for
transient moving body and aero-propulsive applications, AIAA 2004-1057 (2004).

15. R. Lohner, Parallel unstructured grid generation. Comput. Methods Appl.
Mech. Eng. 95, 343–357 (1992).

16. T. Okusanya, J. Peraire, Parallel unstructured mesh generation, 5th
International Conference on Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields (1996), pp. 719–729.

17. Y.P. Chien, A. Ecer, H.U. Akay, S. Secer, R. Blech, Communication cost
estimation for parallel CFD using variable time-stepping algorithms.
Comput. Methods Appl. Mech. Eng. 190, 1379–1389 (2000).

18. R.U. Payli, E. Yilmaz, A. Ecer, H.U. Akay, S. Chien, DLB-A dynamic load
balancing tool for grid computing, Parallel CFD conference, May 24-27 (2004).

19. H.Q. Si, T.G. Wang, Load balancing strategy for parallel calculation and time cost
estimation. Acta Aeronautica et Astronautica Sinica 28(Sup), S57–S61 (2007).

20. R. Löhner, Recent advances in parallel advancing front grid generation.
Arch. Comput. Meth. Eng. 21(2), 127–140 (2014).

21. A. Lintermann, S. Schlimpert, J.H. Grimmen, et al., Massively parallel grid generation
on HPC systems. Comput. Meth. Appl. Mech. Eng. 277(2), 131–153 (2014).

22. A. Bihlo, R.D. Haynes, Parallel stochastic methods for PDE based grid
generation. Comput. Math. Appl. 68(8), 804–820 (2014).

23. R. Haynes, F. Kwok, Discrete analysis of domain decomposition approaches
for mesh generation via the equidistribution principle. Math. Comput. 86,
303, pp. 233–273 (2017).

24. G.J. Page, Rapid, parallel CFD grid generation using octrees. Aeronaut. J.
117(1188), 133–146 (2013).

25. E.A. Hereth, K. Sreenivas, L.K. Taylor, D.S. Nichols. An automatic parallel
octree grid generation software with an extensible solver framework and a
focus on urban simulation, 55th AIAA Aerospace Sciences Meeting, AIAA
SciTech Forum, (2017).

26. O. Meister, K. Rahnema, M. Bader, Parallel memory-efficient adaptive mesh
refinement on structured triangular meshes with billions of grid cells. ACM
Trans. Math. Softw. 43(3), 19 (2016).

27. O. Meister, M. Bader, 2D adaptivity for 3D problems: Parallel SPE10 reservoir
simulation on dynamically adaptive prism grids. J. Comput. Sci. 9, 101–106 (2015).

28. C.F. JanãŸEn, N. Koliha, T. Rung, A fast and rigorously parallel surface
voxelization technique for GPU-accelerated CFD simulations. Commun.
Comput. Phys. 17(5), 1246–1270 (2015).

29. M. O’Connell, S.L. Karman, Advances in parallelization for large scale Oct-tree 681
mesh generation. AIAA Science and Technology forum and exposition, (2015).

30. I. Fejtek, T. Barfoot, G. Lo, Turboprop nacelle optimization using automated
surface and grid generation and coarse-grain parallelization. J. Aircr. 33(6),
1166–1173 (2015).

Dong et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:62 Page 11 of 11

	Abstract
	Introduction
	The proposed parallel algorithm of mesh generation
	Domain-splitting technique with a static load-balancing strategy
	Wave-front domain-splitting algorithm with a dynamic load-balancing strategy
	Generation of sub-domain grids
	Generation of the interface grids

	Parallel smoother of mesh

	Experimental results and parallel efficiency
	Numerical validation for a static load-balancing strategy
	Numerical validations for a dynamic load-balancing strategy

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	Author details
	References

