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Abstract

With the development of wireless devices and the increase of mobile users, the operator’s focus has shifted from
the construction of the communication network to the operation and maintenance of the network. Operators are
eager to know the behavior of mobile networks and the real-time experience of users, which requires the using of
historical data to accurately predict future network conditions. Big data analysis and computing which is widely
adopted can be used as a solution. However, there are still some challenges in data analysis and prediction for
mobile network optimization, such as the timeliness and accuracy of the prediction. This paper proposes a traffic
analysis and prediction system which is suitable for urban wireless communication networks by combining actual
call detail record (CDR) data analysis and multivariate prediction algorithms. Firstly, a spatial-temporal modeling is
used for historical traffic data extracting. After that, causality analysis is applied to communication data analysis for
the first time. Based on causal analysis, multivariate long short-term memory models are used to predict future data
for CDR data. Finally, the prediction algorithm is used to process real data of different scenes in the city to verify
the performance of the entire system.
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1 Introduction
Communication technologies and devices coincide with
big data analysis and computing technologies are devel-
oping rapidly. Lots of researchers from various domains
begin to use the data from the wireless communication
network, among which, the call detail records (CDR)
data is one of the most measured data sources [1]. The
current application of CDR data analysis is quite exten-
sive, including calling pattern, criminal investigation,
and urban computing. A CDR is an information struc-
ture storing applicable information about a given tele-
phonic activity including a customer of a network
framework. A CDR, as a rule, contains spatial and tem-
poral data [2]. Therefore, it is also very important for
network analysis and optimization. Through the analysis
and modeling of CDR historical data, we can predict the
trend of CDR data in the future, so as it plays a decisive
role in the technical adjustment of resource allocation
and load balancing. This is also the starting point of this

paper. Meanwhile, there are two major challenges in net-
work optimization:

1. Avoiding the dissatisfaction of user experience in
advance, which is also the main concern of
operators.

2. Because the traffic levels of different scenarios in
the city are not same, for example, the traffic
volume of a station is higher than that of a
residential area, which causes the prediction
algorithm to be not very adaptable to the whole
urban communication network.

In this paper, in order to solve these problems, we ex-
tract CDR data through spatial-temporal modeling based
on grids of urban communication network. The ex-
tracted data would be used for further causality analysis.
Causality is mainly reflected in space, which means the
causality of traffic variation trend between predicted area
and surrounding areas. From the perspective of data
analysis, according to the Granger causality test, the data
of surrounding areas leading to traffic changes in the
prediction area are obtained. Then, the extracted traffic
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data of adjacent grids which have strong causality, and
the greatest impact on the prediction area are used for
the final multivariate time series prediction. LSTM is
used for multivariate time series prediction.
For urban wireless communication networks, grid parti-

tioning is a common method of spatial-temporal model-
ing. On this basis, the traffic of each grid is changing in
real time, and the trend of variation is different. Therefore,
the urban network can be regarded as a dynamic
spatial-temporal system. It is the dynamic changes of traf-
fic that the network optimization should be timely ad-
justed to ensure the user’s experience. The purpose of this
method is to forecast the traffic changes in each region
and to provide reference for resource allocation and load
balancing. Accurate and timely adjustment of a resource
allocation strategy and network optimization requires
high-accuracy prediction. The purpose of this paper is to
improve the accuracy of traffic forecasting. A traffic fore-
casting system suitable for urban communication network
is proposed. Moreover, the effectiveness (short-term
prediction with low complexity) and the universality (mul-
ti-scenario of cities) of the algorithm are guaranteed.
To the authors’ knowledge, it is the first time that

causality analysis has been introduced into the analysis
of communication data. In fact, causality is crucial for
time series analysis. Causal analysis has always been an
important part of economics, because economists are
not concerned about how things happen together, but
about how the relationship between things is transmit-
ted. In the prediction of multivariate time series, how to
select multiple time series is the most noticeable prob-
lem in data extraction. Correlation analysis is the most
common method for selecting sequences. From the per-
spective of forecasting, correlation analysis and causality
analysis are all possible, but from the perspective of data
analysis, the results of causality analysis are more con-
vincing and the results of multivariate time series fore-
casting will be more accurate through the combination
with causality analysis. For example, there are two
events, A and B. The results of correlation analysis of
the two events are highly correlated. When A leads to B,
we use B to fit the model based on previous correlation
analysis to predict A. But when A has not happened,
using B to predict A is not actually a prediction of the
future, but an inference of known events. Causality ana-
lysis can make us know which is the cause and which is
the result. We find that B cannot predict A well through
causality analysis, but B can be predicted more accur-
ately through A. Back to our previous question, for
grid-based urban communication networks, changes in
each region of the city are related to a certain extent [3].
So, the causality between grids in this system is very
strong, which is also the reason why the author intro-
duced causality analysis.

The Granger causality test is the most widely used
method in causality analysis, and it has been applied to
reveal interdependence structure in multi-variate time
series [4]. The Granger causality test is also derived from
economics, but it has been gradually used in other fields
and has been popular in recent decades. Whether it is
economics [5], meteorological science [6], or neurosci-
ence [7], it has a wide range of applications. Moreover,
the algorithm has also made some progress on the basis
of the original [8].
According to the results of causality analysis, LSTM

algorithm is used to predict multiple time series. LSTM
algorithm is a special recurrent neural network (RNN)
structure. It has long short-term memory (LSTM) units.
RNN composed of LSTM units is usually called LSTM
network [9]. The difference between LSTM and trad-
itional RNN neural network is that each neuron in
LSTM is a memory cell. LSTM links previous data infor-
mation to the current neuron. Each neuron contains
three gates: input gate, forgetting gate, and output gate,
which are different from RNN. Using these internal
gates, LSTM can solve the problem of long-term data
dependence, especially for the prediction of data in a
communication network, because the prediction of com-
munication network requires high timeliness and low
complexity. Timely fault handling is necessary for net-
work optimization.
According to the characteristics of urban wireless com-

munication network, the authors adopt multivariable pre-
diction based on spatial-temporal model. Multivariable
comes from the causality analysis of different grids in the
spatial-temporal model. Through the causality test of the
previous step, the time series with strong causality is ex-
tracted and used for multivariable LSTM prediction.
Compared to the LSTM algorithm, multivariable LSTM is
embodied in multiple input data, and the output data is
the future value of the main prediction time series. Spe-
cific introduction of LSTM and its application in this
paper will be given in the following chapters. Finally, by
comparing the performance with other algorithms and
non-causal analysis algorithms, the performance of the
prediction system proposed by the author is verified. The
algorithm is simulated in three scenarios in the city, which
verifies the universal applicability of the algorithm in the
urban communication network.
Through the combination of data processing of

spatial-temporal modeling, causal analysis, and multivari-
ate time series prediction algorithms, a prediction system
for urban communication networks can be obtained. The
main contributions of this paper are as follows:

1. A traffic prediction system suitable for urban
communication networks is proposed, and it is
universal for all urban scenes.
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2. Causal analysis for CDR data is proposed for
communication network analysis and to enhance
the accuracy of multivariate time series prediction.

3. Multivariate time series LSTM prediction method
based on spatial-temporal model of communication
networks is proposed.

2 Urban communication network prediction
system
The urban communication network prediction system
proposed by the author is mainly divided into three
modules: data processing module, causality analysis
module, and LSTM prediction module. The overall
framework of the system is shown in Fig. 1. In the data
processing module, the spatial-temporal modeling is
completed, and the corresponding time series are ex-
tracted according to the spatial information. In the caus-
ality analysis module and prediction module, these data
are further analyzed and processed. The flow chart of
the system is shown in Fig. 2. The specific content of
each module will be introduced in the simulation
section.

3 Algorithm simulation
3.1 Data processing
Nowadays, cellular network technology is the most
widely used technology in the world. A communication
system is composed of several base stations. Mobile de-
vices that receive strong enough signals in the base sta-
tion area are connected to the network and thus can be
used for communication [10]. The design of the network
determines the size of each community. The size of
micro-cellular community in urban environment is

Fig. 1 Framework of the system

Fig. 2 Flow chart of the system
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generally 300 m, and some macro-community in rural
environment can reach 30 km [11]. All adjacent cells are
overlapping, allowing a continuous connection to the
network when the mobile equipment is moving. Many
adjacent cells are grouped in zones identified by a local
area code (LAC) [11]. Operators will keep detailed re-
cords of mobile devices in use. These records are called
call detail records. CDR data generally includes time
stamp, cell number, IMEI (International Mobile Equip-
ment Identity), and time type. This information is highly
correlated in spatial-temporal.
The data used in this paper is the CDR data provided

by Telecom Italia. Traffic data in Milan on November 2,
2013, was adopted. The statistical time granularity is 10
min [12]. Geographical grids for data records are de-
fined. The map of the city is divided into 100 × 100
grids. As shown in Fig. 3, each grid has a unique square
ID covering an area of 235 × 235 square meters. The
CDR data format is shown in Fig. 4 [12]. In this paper,
we mainly analyze voice traffic data, so for each sam-
pling point, we add the call-in and call-out data to con-
stitute the current traffic.

In the study of communication networks, urban scenarios
are often divided into four categories: office, station, enter-
tainment, and residential areas [13–15]. In order to improve
the universality of the algorithm, we analyze the entertain-
ment area (Quadrilatro della moda) and the office area
(Politecnico di Milano). In addition, traffic often increases
dramatically in the scenario where major events occur.
Because our causality analysis is based on the causality

between the main prediction area and the adjacent grid,
our data extraction is centered on the prediction area,
and traffic data is also extracted for the four adjacent re-
gions. As shown in Fig. 5, the red area is the selected
three scenes, and the surrounding blue grid are the areas
for joint analysis.
According to the grid information, we get the corre-

sponding traffic data. Figures 6 and 7 show the traffic
changes at the Milan Polytechnic University, San Siro
Stadium, and nearby grids on that day. The abscissa in
the figure is the sampling time point, and the time
granularity is 10 min. Different colors represent different
regions. Among them, the blue-centered area is also the
traffic change trend of the analyzed area.

Fig. 3 Geographical grids for Milan
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3.2 Granger causality test
Causality can be defined by the dependence between
variables, that is, the variable as the result is determined
by the variable as the cause, and the change of the cause
variable causes the change of the result variable. Granger
points out that if one variable X is not helpful in predict-
ing another variable Y, then X is not the cause of Y; on
the contrary, if X is the cause of Y, two conditions must
be satisfied [16]:
Firstly, X should be helpful in predicting Y, that is, in

the regression of Y’s past value, adding X’s past value as
an independent variable should significantly increase the
explanatory power of regression.

Secondly, Y should not be helpful in predicting X. The
reason is that if X is helpful in predicting Y and Y is
helpful in predicting X, there may be one or more other
variables, which are both the cause of X change and the
cause of Y change.
Now, people generally call this causality defined from

the perspective of prediction Granger causality. Specific-
ally speaking, for the data we extracted, let us assume
that X is traffic data in the central area, which is sampled
at different time points {X1, X2, X3,…Xn}. Where n is the
total number of training set samples. Time series Y is
traffic data in one of the adjacent regions, from {Y1,Y2,
Y3,…Yn}. Now, we use the past of X to predict the future

Fig. 4 CDR data format

Fig. 5 Simulation areas
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of X. For example, we use X1~Xn − j (which is the past
value of Y) to predict Xn − j + 1~Xn (which is the past
value of X). In the process of prediction, we produce an
error of δ1 and then regard this error as the first result
we get.
Then, we use the past of X and Y to predict the future

of X, such as {X1~Xn − j| Y1~Yn − j} to predict Xn − j + 1~Xn,
and an error of δ2 is generated in the process of predic-
tion. If δ1 is less than δ2, that is to say, the combined
prediction error of X and Y is less than the prediction

error of X itself, then it must be because Y is helpful to
the prediction of X, so the prediction error is reduced.
In this case, we call Y Granger cause to X [17].
So, whether variable X is the Granger cause of variable

Y is testable. But some processing of data is needed be-
fore testing.
One of the basic conditions of Granger’s test is the sta-

bility of the series, so before the causality test, we first
ensure that these time series are stable, and the time
series in the communication network are often complex

Fig. 6 Traffic changes at San Siro Stadium

Fig. 7 Traffic changes at Milan Polytechnic University
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and non-stationary. This requires some pre-processing
before verification. The arithmetic flow chart of the
causal analysis module in this paper is shown in the
Fig. 8 [18].
The first part is de-trending. The sequence with obvi-

ous trending is non-stationary, so we remove the trend
from the sequence. Granger test requires data to fluctu-
ate around the horizontal axis, so demeaned processing
is needed. After processing in this part, take the data in
stadium area as an example, the processed data is shown
in the Fig. 9.
Subsequently, unit root test is done for time series

data. If the conclusion is that the time series has unit
root, then we can be sure that the sequence must not be
stationary, and then carry out the subsequent differential
processing. On the contrary, subsequent analysis is car-
ried out through AIC criteria.
Our goal is to search lag in the range of 1~n to

minimize the value of AIC. And the lag that makes the
AIC minimum is the order lag we want. The last step is
the normal distribution test and consistency test [18].
Since error obeying normal distribution is a prerequisite
for solving regression problems by least square method,
the purpose of normal distribution test is to detect
whether the residual after regression is obeying normal
distribution. If it is not obeyed, the data does not satisfy

the precondition of using least squares method and the
basis of solving Granger causality.
For consistency test, when the data points of time

series are regressed. It is not possible to determine
whether the theoretical and actual values obtained by re-
gression come from the same distribution. At this time,
consistency test should be adopted. If the conclusion of
the consistency test shows that the gap between theoret-
ical value and actual value is small, the regression results
are good.
So far, we have completed all the processing steps be-

fore causality test. In fact, after such processing and ana-
lysis steps, we can do a Granger causality test which is
somewhat demanding for data for a complex time series
in urban communication network. In causality checking,
we proceed step by step [19].
Step 1: Test the original hypothesis: X is not the

Granger cause of Y. First, we estimate the following two
regression models:

Y t ¼ α0 þ
Xp

i¼1

αiY t−i þ
Xq

i¼1

βiXt−i þ εt ð1Þ

Y t ¼ α0 þ
Xp

i¼1

αiY t−i þ εt ð2Þ

Among them, α0 denotes the constant term, P and Q
are the maximum lags of Y and X, respectively, εt is the
white noise. Then F-statistics are constructed by sum of
residual squares of two regression models which are
RSSu and RSSr.

F ¼
RSSr−RSSuð Þ.

q
RSSu

.
n−p−q−1ð Þ

∼F q; n−p−q−1ð Þ ð3Þ

Among them, n is the number of samples. The original
hypothesis can be tested by function 3. If F ≥ Fɑ (q, n −
p − q − 1), then β1, β2,… βq is significantly not 0. We
should reject the hypothesis that X is not the Granger
cause of Y; on the contrary, we cannot reject this
hypothesis.
Step 2: Exchange the positions of Y and X, and test the

original hypothesis in the same way: “Y is not the
Granger cause of X change”.
Step 3: To reach the conclusion that “X is the Granger

cause of Y,” we must reject the original hypothesis that
“X is not the Granger cause of Y” and accept the original
hypothesis that “Y is not the Granger cause of X.”
We use this method to analyze the traffic sequence of

each region. In this paper, the data are divided into test
set and training set. The training data are traffic data
from 0:00 to 18:00, and the data from 18:00 to 24:00 are

Fig. 8 Flowchart of the causal analysis
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test data. According to the spatial distribution, multiple
time series can be obtained. Causality checking is carried
out among multiple time series to obtain the causality
between traffic in adjacent areas and traffic changes in
central areas. It is equivalent to finding out the “cause”
of traffic change in the main forecast area and combin-
ing the traffic data of the main forecast trend with these
causal data to analyze and forecast the future value of
the main area.

After causality checking, causality diagrams showed
in Fig. 10 can be obtained. Causality diagram is a
topological diagram of causality [20]. Each vertex rep-
resents a different area. In the diagram, the causal
diagram is based on the San Siro Stadium (a major
event scenario). A is the central area, that is, the sta-
dium. It is also the area where we will ultimately pre-
dict the traffic. The arrow represents the impact on
the data of an area. As can be seen from the Fig. 10,
it is the data of B and D regions that affect the data
of central area A. Therefore, the data from these
three regions are used for subsequent multivariate
time series prediction which will be described in de-
tail in the next chapter.

3.3 LSTM prediction algorithms for multivariate time
series
According to the multivariate data obtained from
causal analysis, the traditional linear model is difficult
to solve the multivariate or multi-input problem,
while the neural network such as LSTM is good at
dealing with the problem of multiple variables, which
makes it helpful to solve the problem of time series
prediction. So multivariate LSTM algorithm is used
for prediction.
LSTM is a special form of RNN, which is widely used

in time series analysis, especially for multivariate time
series analysis. The difference between LSTM and RNN
is that every neuron in LSTM is a memory cell. LSTM
stores previous information in current neurons. As

Fig. 9 Processed data after de-trending

AB C

D

E

Fig. 10 Causality topological diagram of San Siro Stadium
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shown in Fig. 11, each neuron contains three gates: in-
put gate, output gate, and forgetting gate. Through these
internal doors, the long-term dependency problem can
be solved [9, 21].
The yellow part of the picture is the forgetting gate

(Eq. 4). The first step in LSTM is to decide what infor-
mation we will discard from the cell state. This decision
is made through a layer called the forgetting gate. The
gate reads ht − 1 and Xt and outputs a value between 0
and 1 to each number in the cell state (Eq. 5). 1 means
“complete reservation” and 0 means “complete abandon-
ment”. σ denotes sigmoid function.

f t ¼ σ W f � ht−1;Xt½ � þ bf
� � ð4Þ

S tð Þ ¼ 1
1þ e−t

ð5Þ

The green part is the input gate, which determines
how much new information is added to the cell state.
There are two steps to achieve this: first, a sigmoid layer
called “input gate layer” determines which information
needs to be updated (Eq. 6) and second, a tanh layer
generates a vector, which is the alternative content for
updating. Cell status is updated by combining these two
parts (Eq. 7).

it ¼ σ Wi � ht−1; xt½ � þ bið Þ ð6Þ
~Ct ¼ tanh WC � ht−1; xt½ � þ bCð Þ ð7Þ

The red part is the output gate. First, we run a sig-
moid layer to determine which part of the cell’s state
will be exported (Eq. 8). Next, we process the cell
state through tanh (to get a value between − 1 and 1)
and multiply it with the output of the sigmoid gate
(Eq. 9). Eventually, we only output the part of the
output we determined [22].

ot ¼ σ Wo � ht−1; xt½ � þ boð Þ ð8Þ

ht ¼ ot � tanh Ctð Þ ð9Þ

The author fits our LSTM model with keras, a deep
learning library [23]. Take the stadium scene data as an
example. The first hidden layer defines a LSTM with 50
neurons and a neuron in the output layer used to predict
contamination. The time step of input data is 1, which
has three characteristics, namely, three input variables,
the data of the central region and the data of the two re-
gions which cause the change of the data of the central
region after causal analysis. The output variable is the
prediction result of traffic volume in the central area.
The data are divided into test set and training set as
mentioned above.

4 Results and discussion
In order to fully verify the performance of the algorithm,
the author compares two other prediction methods, one
is correlation-based multivariate LSTM. In this model,
the data of different grids in the same scene are corre-
lated with the data of the central area through Pearson
correlation coefficient calculation [24]. After that, the
highly correlated data are used for subsequent multivari-
ate time series prediction. Another method is the VAR-
IMA (vector autoregressive integrated moving average)
model [25], which is often used for prediction. When
the VARIMA algorithm is applied, all grid data in the
same region are input data, and the output is the predic-
tion of the future value of the central grid data of the re-
gion. Both the two multivariate time series prediction
algorithms are considered as good choices to improve
prediction accuracy.
As can be seen from Figs. 12, 13, and 14, the LSTM

prediction algorithm based on causal analysis proposed
by the author has higher accuracy than other algorithms.

Fig. 11 Structure of LSTM
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In order to make the perception performance more in-
tuitive, the author calculated RMSE and MAE in three
different scenarios using three prediction methods.
Since the values of RMSE and MAE depend on the

magnitude of the test data and the traffic gap be-
tween different areas in urban communication net-
work is very large, the values of RMSE and MAE in
different areas of the table vary greatly, but from
Table 1, the accuracy of the proposed algorithm is

higher in three areas. In addition, it can be seen from
the table that the use of causality method is obviously
more accurate for stadium scenes, that is, the condi-
tion of the sudden increase in traffic. The VARIMA
algorithm seems not suitable for forecasting, because
this simulation belongs to short-term forecasting,
which is not the advantage of VARIMA. As men-
tioned above, the prediction algorithm with high ac-
curacy and universality is very important for urban

Fig. 12 Prediction results of San Siro Stadium

Fig. 13 Prediction results of Politecnico di Milano
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communication network. The algorithm proposed by
the author can satisfy this condition and be used in
network maintenance and optimization.

5 Conclusion
Urban wireless communication network is a complex
system. To allocate resources reasonably is the key to
network optimization. Accurate prediction algorithm is
the basis of network optimization. In this paper, the au-
thor transformed the problem of network analysis into a
time series model through the method of big data ana-
lysis and made quantitative analysis of urban communi-
cation network while retaining the spatial-temporal
characteristics. Firstly, spatial-temporal modeling was in-
troduced through rasterization, and then data extraction
was carried out according to this model. In the following
data analysis, the Granger causality test was introduced
for the first time. Then, multivariate LSTM algorithm
was used to predict the traffic. From the simulation

results, the addition of causality can improve the accur-
acy of multivariate time series prediction, and this pre-
diction system is generally applicable to communication
networks. Causality analysis can be used to analyze the
dynamic variation of urban wireless communication net-
work more effectively, and more accurate prediction re-
sults can be obtained, which will considerably assist to
the maintenance and management of the network. As
we all know, the most important concern of MNOs (mo-
bile network operators) is the real-time changing of net-
work state. In this paper, the proposed analysis and
prediction system for urban communication network
can not only make operators better understand the
real-time changing of urban network, but also help oper-
ators manage the network primely. The author’s future
work will focus on the specific parameters of the net-
work, which have a large amount of wireless data and
complex data types. But only in this case can each user’s
experience be better concerned in real-time. Hence, it
will be the focus in further studies.

Fig. 14 Prediction results of Quadrilatro della moda

Table 1 Error comparison of each algorithm

Error calculation by RMSE MAE

Algorithm in different areas Quadrilatro Della
Moda (office area)

Politecnico di Milano
(entertainment area)

Stadio San Siro
(stadium
with activities)

Quadrilatro Della
Moda (office area)

Politecnico di Milano
(entertainment area)

Stadio San Siro
(stadium
with activities)

LSTM based on causality 1.7491 9.3764 56.0866 1.4836 6.6944 36.9817

LSTM based on relevance 1.8073 9.5862 72.1137 1.5028 7.6139 51.7222

VARIMA 3.3652 18.7506 128.3342 2.7729 11.9167 72.1137
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