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Abstract

The trust model is widely used in the opportunistic social network to solve the problem of malicious nodes and
information flooding. The previous method judges whether the node is a cooperative node through the identity
authentication, forwarding capability, or common social attribute of the destination node. In real applications, this
information does not have integrity and does not take into account the characteristics and dynamic adaptability of
nodes, network structures, and the transitivity of social relationships between nodes. Therefore, it may not be
effective in solving node non-cooperation problems and improving transmission success rate. To address this
problem, the proposed node social features relationship evaluation algorithm (NSFRE) establishes a fuzzy similarity
matrix based on various features of nodes. Each node continuously and iteratively deletes the filtered feature
attributes to form a multidimensional similarity matrix according to the confidence level and determines the
weights under different feature attributes. Then, the social relations of nodes are further quantified. The
experimental results show that, compared with the traditional routing algorithm, NSFRE algorithm can effectively
improve the transmission success rate, reduce transmission delay, ensure the safe and reliable transmission of
information in the network, and require low buffer space and computing capacity.

Keywords: Opportunistic social network, Malicious nodes, Information flooding, Cooperative node, Feature attributes,
Social relationship

1 Introduction
In recent years, as wireless networks have penetrated
into our daily lives, the application scale of the network
has been increasing. As a new type of self-organizing
network, it has attracted the attention of researchers at
home and abroad [1, 2]. In order to get rid of the restric-
tion of establishing the end-to-end communication path
to achieve network communication, the concept of the
opportunistic social network is proposed. This concept
has been widely used in animal tracking, vehicle net-
work, and other fields [3, 4]. Opportunistic social net-
works belong to intermittent connectivity networks.
Opportunistic social network nodes are characterized by
typical mobility, openness, and sparseness. Nodes have
low encounter rates and lack fixed and secure connecti-
vity links. Generally, the “Storage-Carrying-Forwarding”

mechanism [5] relies on the opportunity brought by
node mobility to realize routing. This model requires
that all nodes cooperate to forward the routing messages
of other nodes in a coordinated manner and realize
communication hop by hop through the chances of
encounters caused by node movement.
Due to the limitations of energy, computational cap-

acity, network bandwidth, and buffer space of the nodes in
the opportunistic network [6, 7], as well as the instability
and uncertainty of node connections, existing trust mod-
eling schemes are difficult to directly applied to the oppor-
tunistic social networks. These may lead to the following
problems: (1) It is difficult to collect the evidence of direct
trust accurately and timely. Because of the dynamic nature
of the node, it is possible to leave the connected domain
after delivering the message to the next hop node. There-
fore, the evidence of successful forwarding cannot be col-
lected by using neighbor node monitoring methods, and
there is no credible authorization center. (2) The node’s
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uncooperative behavior results in the inability of a trusted
authority to verify whether the next-hop node is a trusted
node. Because in the process of transmitting information,
the node may mask or not forward the received message
for some reason. If the message is passed to more unco-
operative nodes, the node’s transmission success rate will
be reduced. (3) The computational power and cache space
of the nodes are limited. Existing trust modeling schemes
[7] need to spend a lot of money on trust relationship ac-
quisition, trust relationship maintenance and evaluation,
and cache space. If they are forwarded to all nodes uncon-
ditionally, they will consume network resources [6–8].
Therefore, nodes in the resource-constrained opportunis-
tic social network need to pay as little cost as possible to
realize reliable message delivery.
In this paper, to address the challenges above, we

propose a secure routing method named Node Social
Features Relationship Evaluation (NSFRE) algorithm for
screening trusted nodes based on social relations. To
prevent the packet forwarding performance caused by
packet forwarding in a flooding manner and thus causing
network congestion, we introduce the relevant eigenvalues
in the routing algorithm. NSFRE uses interaction records
to establish feature information and network structure
information of mobile nodes such as the number of
connections, geographical location, and transitivity of
relationships. NSFRE also establishes a fuzzy similarity
matrix based on fuzzy feature vectors of nodes, and
then iteratively computes social relationship values
between nodes. According to the calculation results,
the trusted nodes are selected, and it is considered
that the same threshold is a trusted node, and a method is
provided for a message source node to select a next-hop
node with higher trustworthiness. This forwarding
method easily finds the best path to the destination node.
In this paper, through in-depth study of the internal
relations between node activity rules and social re-
lations, a trust routing table for node message forwarding
is established, and the cooperative nodes that can forward
the messages to the destination node are discovered and
selected. Finally, it solves the problem of information flood-
ing and node non-cooperation in the opportunistic social
network and improves the real-time and reliability of infor-
mation transfer between nodes. The algorithm performs
experiments on real data sets and uses Stanford University’s
road structure as a network topology for simulation experi-
ments. The experimental results show that our algorithm is
superior to the four classic routing algorithms.
Specifically, the main contribution of this paper can be

summarized as the following three aspects:

1. This paper studies the application of trust
mechanism based on social relations in the
network. In the network of opportunities, we

proposed a method for filtering information by
computing trust scores based on the value of social
relations. This promotes that data packets in the
network are always transmitted along trusted nodes,
which reduces the blindness of information
transmitted by other routing methods. The method
minimizes the negative impact of uncooperative
nodes on the network and improves the overall
network performance

2. In the calculation of the value of a node’s social
relations, we are no longer only aimed at a single
social attribute or adopting a subjective method
such as the average weight method. In this paper,
we calculate the value of social relations by first
screening out the available nodes according to the
characteristics of nodes, calculating feature weights
according to the characteristics of node
characteristics and social relations transitivity.
Then, the social relationship values of the filtered
nodes are calculated by the weight of each feature
and the nodes that satisfy the characteristics. It
reduces the subjective elements that give weights to
features and increases the feasibility of screening
mobile nodes for transmitting information.

3. In calculating the value of social relations, we
consider that social relations change dynamically
with time and increase the flexibility of social
relations. In the new round of message information
transmission process, according to the dynamic
changes of social relations at different times, we will
regenerate a new routing table, so that the social
relationship calculation model has sufficient
adaptability to the dynamic changes of the network
and improve the accuracy of the model.

2 Related works
In order to reduce the harm of uncooperative nodes to
the network, there have been many researches on the
trust-based mechanism in the network at home and
abroad, but the research on the trust mechanism in the
opportunistic social network is still in its infancy. In the
network, it is difficult to establish an end-to-end com-
munication path between source and destination. There-
fore, ad hoc routing protocols cannot be directly applied
to opportunistic social networks. Instead, it uses a
store-and-forward mechanism to communicate. However,
selfish nodes will delete some data obtained from other
nodes and thus seriously affect network performance.
People have designed a trust-based routing protocol [9]
(TRP) that combines various practical algorithms to
reduce the negative impact of malicious nodes.
For many uncooperative nodes in the opportunistic

social network, the uncooperative nodes are mainly
divided into two types: (1) The received information is
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not forwarded. (2) The information is rejected and not
forwarded. These uncooperative nodes have been able to
detect packet loss behavior through some uncooperative
node detection algorithms such as LARS [10]. However,
the uncooperative nodes could use more concealed
uncooperative behaviors to conceal themselves. For
example, the probability of losing packets is controlled to
be less than the threshold so as to avoid being punished.
Therefore, many researchers propose to reduce the impact
of uncooperative nodes on network resources based on
the social trust model. Among them, a social trust model
is proposed for secure routing in the opportunistic net-
work [11]. This algorithm uses the node state forwarding
capabilities and common attributes to evaluate social
trust values.
For malicious nodes, in the harsh environment where

node density is sparse, slow-moving nodes do not have
the opportunity to join network routes because they
cannot effectively use the opportunities encountered to
achieve self-organized authentication. There is no need
to establish a complete mutual authentication for each
dialog. People are aware of the inadequacy of the idea of
“authenticating” nodes to determine trust relationships.
Therefore, people proposed a new trust management
scheme based on behavior feedback information [12]. By
using a certificate chain based on social attributes, the
mobile node gradually establishes a local certificate
graph and implements an “identity authentication” trust
relationship.
For the network based on model trust proposed by

people, you first need to use the proposed method to
detect malicious nodes. When quantifying the trust of
node, most existing methods rely on the number of final
ACK messages received by the node. If the final ACK
message cannot be reliably received, it will affect the
reliability of the malicious node’s judgment. Therefore, the
researchers proposed a “double-hop feedback method”
[13] to design a dynamic trust framework. It promotes the
node to obtain the trust value of another node based on
the behavior of the latter node to detect the selfish
malicious node.
Furthermore, people apply social relations to net-

works. The analysis of social relationships is generally
based on the structure obtained by social networks
and uses the user’s information flow to analyze the
strength of the user’s relationship, and then uses the
weights on the edges of the graph [7] to establish
trust model. In the opportunistic network, it has been
proven that the user’s social profiles are useful for
finding suitable forwarding nodes in a delay tolerant
network. A Social Relationship Opportunistic Routing
Algorithm (SROR) [14] was proposed for mobile so-
cial networks. Social relations and profiles between
nodes were used as the key indicators for calculating

the optimal forwarding node in the route to maximize
the packet transmission probability.
In addition to using social relationships to select the opti-

mal forwarding node, people also propose a method
extracting information from people’s social interactions to
quantify the trust relationship between nodes. Some
researchers believe that acquiring trust from real-world
social interactions can play an important role in under-
standing social behavior. Therefore, an opportunistic
sensing system [15] is proposed, which can detect social
interactions based on the real world and acquire and quan-
tify trust relationships among people through smartphones.
Through the above analysis, we can see that the

existing work is mainly focused on the limited
communication radius and the nodes can be trusted.
The information is transmitted accurately through
multiple hops. The working method is similar to the
WSN, except that the original static node is ex-
tended to the dynamic mobile node. As long as the
communication between nodes is reachable, the data
can be transmitted, but without considering the trust
relationship delivery between nodes. There have been
social relations calculations that start from a real
scenario to analyze a specific attribute, or treat so-
cial relationships between nodes as static, without
taking into account the dynamic changes in node so-
cial relations, and the decision feature that affects
the quantification of social relationships is not
enough considered. Therefore, this paper uses the
research results of trust model and social computing
in social networks to determine the trust relationship
between nodes based on the dynamic characteristics
and social relationships of mobile nodes based on
social network theory. Through analyzing the charac-
teristics of the social network of mobile nodes in the
opportunistic social network, the corresponding fea-
ture information such as interactive quality feature
Q, position feature P, trust quality characteristics T,
and social relation feedback feature S are extracted
to study the social relationships among mobile
nodes. Then, based on the theory of information en-
tropy, rough set, and so on, a mobile node social re-
lations computing model is proposed. The model is
used as the quantification of social relations between
nodes and the weight distribution of decision fea-
tures, so that the trustworthiness between nodes can
be calculated to filter out the next hop node set for
information forwarding.

3 Social characteristics analysis of nodes
In the opportunistic social network scene, cognition of
social relationships is through the use of various sensing
devices (mobile phones, PDAs, etc.) attached to mo-
bile nodes [4]. The real-time information such as the
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activity rules and interaction records of the nodes can
be obtained in real time to analyze the key feature in-
fluencing the social relations and explore the internal
relations among them [16, 17]. Quantifying social re-
lations can more objectively and accurately reflect the
changes in the relationship between mobile nodes.
Through the analysis of social networks, it shows that
the social relations between mobile nodes have the
following characteristics:

(1) Diversity: The information transmission of
opportunistic social networks mainly relies on
mobile nodes. Social relationship is the tie of the
mobile node and also affects the activity rule of the
mobile node. Due to the spatiotemporal
characteristics of the mobile node, the calculation
of the relationship involves many factors such as
behavior and environment, and it is difficult to
accurately quantify and predict [3].

(2) Inconsistencies: It refers to the directionality of
social relationships in the interaction process of
mobile nodes. This directionality causes the relative
social relationships between the two parties to differ
due to their internal and external factors [4, 6],
namely the different perceptions of the same event
and information. For example, the social relations
between nodes u and v are M(u, v) = 0.8, whereas
the relations between v and u may be M(v, u) = 0.6.

(3) Mobility: The value of social relations is a variable
over time. With the change of decision features
such as the law of activity and degree of interaction
between each other, the social relations change
dynamically. For example, the social relationship
between nodes u and v may be M(u, v) = 0.6 for a
period of time, and M(u, v) may be 0.3 at the next
moment as various network features change.

(4) Transitivity: When calculating social relations
among mobile agents indirectly through judgments
made by other nodes or environmental information
rather than based on direct contact with each other,
we call this process the transitivity of social
relations. For example, nodes u and v, v, and w have
social relations, then nodes u and w can establish
social relations through v under certain conditions.

(5) Sociality: In the scene, the node behavior is not
disordered, but is influenced by the characteristics
[18] of individual consciousness, social role,
demand, etc., and has certain social characteristics.
For example, the daily activities of office workers
are driven by events such as scheduling.

Through the above analysis, it can be seen that so-
cial relations are inherent manifestations of different
modes of interaction among nodes and involve a

variety of factors. Considering the complex and di-
verse characteristics [16, 17, 19] of the interaction
patterns among nodes in the information delivery ser-
vice for opportunistic social networks, we introduce
various types of decision features to describe the
spatial and temporal characteristics of social relations
of nodes. Through the collection, analysis of the his-
tory record of connections between nodes and calcu-
lating interactive quality feature Q between each
other, the interaction rules between each other are
found out. Position feature P reflects the trajectory
characteristics of nodes in the time period. It statisti-
cally analyzes the trajectory characteristics of nodes
based on different geographical position and studies
the frequency of different mobile nodes reaching the
same sensing area within a certain period of time.
The defined trust quality characteristics T represent
the mobile node’s evaluation of historical interaction
information records, which reflects the satisfaction of
service requesters with service providers in former in-
formation interactions. Similarly, the social relation
feedback feature S is defined to reflect the transitivity
of social relations between nodes [17, 19] and further
improve the accuracy of quantitative social relations.
It can be seen that the social relationship cognitive

model building process includes the following features:

(1) Real-time perception of mobile node information.

Mobile node through its own terminal equipment
can obtain various behavior information of the user
in real time [20–22], such as location information,
network information, current status of the active
node, etc. Through the classification and preprocess-
ing of the original information of the nodes, the
perceived service center extracts the trajectory infor-
mation [22–24], connection records, and historical in-
formation interaction records of the nodes to provide
data support for the next decision feature calculation
and social relations quantification.

(2) Calculation of mobile node decision feature.

In the opportunistic social network, the forwarding
of message is based on the social relations between
nodes. The dynamic changes of social relations are
determined by both space and time. Therefore, we
introduce Q, P, T and S to describe the dynamic social
relations of nodes.

(3) Mobile node decision feature weight assignment.

Social relationships of mobile nodes change over time,
and at different times, states are interrelated. In this
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paper, the decision feature knowledge base is obtained
by using rough set theory. Based on the information en-
tropy, the decision feature is dynamically and rationally
weighted. Finally, the nodes’ next-hop nodes are
screened by its social relation quantification algorithm
to form a node forwarding domain, which provides the
decision-making basis for the realization of the oppor-
tunistic social network information transmission.
From the above analysis, we can see that the quan-

titative modeling of social relations of mobile nodes
is of great significance for expanding the scope of
information transmission, reducing transmission de-
lays and improving the quality of information trans-
mission in opportunistic social networks. It is
embodied in (1) using the main perceptive devices of
the network to form a virtual social network, analyz-
ing and calculating the social relations. In addition, a
new intelligent network of object-matter, human-ob-
ject, and human-human interaction is truly realized
[19], so that when the next hop node is filtered by
the source node, we can better integrate the dynamic
characteristics of the network (2) in the social rela-
tion calculation, giving full consideration to the
characteristics of the mobile node attributes and net-
work structure characteristics. From different per-
spectives for feature analysis and node screening
modeling, social relationship calculation is more
comprehensive, objective, and reasonable; (3) social
relations is the basis of this node to choose the next
hop node to transfer information, and the follow-up
work is based on this expands.

4 Quantitative model of social relations
In this paper, we consider various features that affect
social relations and introduce decision features such
as P, Q, T and S to describe the complexity, transitiv-
ity, and uncertainty of social relations from different
perspectives.

4.1 Multi-dimensional decision feature of node calculation
Definition 1 The quantified value of social relations
M(u, v) between node u and v is:

M u; vð Þ ¼
Xm
i¼1

wi f i u; vð Þ
s:t: 0≤wi≤1Xm
i¼1

wi ¼ 1

u; v∈N

ð1Þ

where fi represents different types of decision feature
and ωi represents the weights of different decision fea-
ture; m is decision characteristic number, and N is the

set of nodes in the network. When M(u, v) = 0, there is
no social relationship between nodes u and v. On the
other hand, when M(u, v) = 1, u and v are the same
nodes, that is, u = v.
As mobile smart terminals accelerate people’s infor-

mation exchange and the evolution of their social re-
lationships, analyzing the model of connection
between mobile nodes can reflect the social relations
and interaction rules among different nodes. For ex-
ample, the interaction model between friends may be
different to strangers.
Definition 2 The total time for the mobile node u to

establish a connection in the period and the total num-
ber of connections are denoted as TK

u and NK
u , respect-

ively. The connection time and the number of
connections between nodes u and v are denoted as TK

u;v

and NK
u;v , then the interactive quality feature Q(u, v) of

nodes u and v can be expressed as:

Q u; vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k∈ req;resf g

Tk
u;v

Tk
u

� N
k
u;v

Nk
u

 !vuut ð2Þ

where k ∈ {req, res} represents the request and response
record.
We can divide the sensing area into areas of different

radius according to the different types of services per-
ceived by the mobile terminal. There may be a deviation
in the final stop position of the mobile node entering the
same area multiple times. Therefore, by clustering the
staying positions in the trajectory of the node, the
staying positions of the same area are divided into
the same cluster. In this way, the trace of the mobile
node can be expressed as a time sequence reaching
different areas.
Definition 3 The trajectory information of mobile

node u in the time period is expressed as L = {U(qi, ci, pi,
γ)}, where qi, ci are the time sets when the node arrives
and leaves the region respectively, pi is position infor-
mation of the sensing area of the ith track information,
and γ is the time threshold, which is used to control the
time interval between different nodes reaching the target
area. Then, the location feature P(u, v) of nodes u and v
are expressed as:

P u; vð Þ ¼

Xn
i¼1

B Liu; L
i
v

� �

T
ð3Þ

In the above formula, T is the time period, BðLiu; LivÞ is
a similarity function between mobile nodes u and v in
position pi, which reflects the duration of the encounter
between different nodes at the same location by the
result which can be calculated by Eq. (4). Among them,
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n is the total number of trajectory information in the T
time period, and γ is the time threshold used to control
the time interval between different nodes reaching the
target area.

B Liu; L
i
v

� � ¼ max qiu; q
i
v

� �
− min ciu; c

i
v

� �
s:t: qiu−q

i
v

�� ��≤γ ð4Þ

In the process of information transmission of nodes,
the evaluation of the quality of connections estab-
lished between nodes indicates the degree of stability
of the information transmitted from the requesting
connector to the receiver. Therefore, establishing the
connection between the two parties to the stable
evaluation of information transmission will change
the social relationship between each other, while the
trust quality factor reflects the property that the so-
cial relationship dynamically changes with the change
of node connection stability.
Definition 4 Assume that the evaluation of mobile

node u for v in the last n connections is recorded as Rðu
; vÞ ¼ ft1u;v; t2u;v;…; tnu;vg , 0≤ tiu;v≤1; i∈½1; n� , where the
elements are arranged according to the historical inter-
action time, n is the historical interaction record thresh-
old. The quality of trust characteristics between nodes can
be expressed as

T u; vð Þ ¼
Xn
i¼1

tiu;v � σ ið Þ
n

; n≠0

0; n ¼ 0

8<
: ð5Þ

In the formula above, σ(i) is the attenuation func-
tion used to weight the interaction feedback evalu-
ation that occurs at different times. Note that we give
a higher weight to the latest interaction records
evaluation. The attenuation function σ(i) is calculated
as:

σ ið Þ ¼ 1; i ¼ n
σ i−1ð Þ ¼ σ ið Þ−1=n; 1≤ i≤n

�
ð6Þ

In calculating the social relations between nodes u and
v, we should considering the transitivity of social re-
lations; in addition to directly calculating the social
relations between u and v, u can indirectly obtain the
social relations values about v from other nodes. As
shown in Fig. 1, nodes A and D are indirectly connected,
and the social relations among them can be transmitted
through other peers in the path. Therefore, we can use
the feedback aggregation process which calculates the
social relationship values of different information feed-
back nodes to the target node according to the transitiv-
ity between social relations. Due to different relationship
information feedbacks having different number of hops
from the source node, the reliability of the feedback in-
formation is different, and so, a simple arithmetic aver-
age calculation cannot be adopted. This paper uses the
aggregation algorithm [25, 26] to calculate the social re-
lation feedback feature between different mobile nodes.
Definition 5 Suppose the node that receives the in-

formation and feedback set as {b1, b2, … , bn} and
M(bi, v) represents the social relationship value be-
tween the ith information feedback and the mobile
node v. Then, u and v (u, v ∈N) social relation feed-
back feature is:

S u; vð Þ ¼

Xn
i¼1

w bið Þ �M bi;Vð Þð Þ
Xn
i¼1

w bið Þ
; n≠0

0; n ¼ 0

8>>>>><
>>>>>:

ð7Þ

In the above formula, n is the number of relationship
information feedback nodes, and S(u, v) = 0 and w(bi) are

Fig. 1 Transitivity of social relations
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the feedback weighting functions when there are no
feedback nodes providing information in the opportunis-
tic social network.

w bið Þ ¼
Yl−1
i¼0

M ai; anextð Þ; l > 1

1; l ¼ 1

8><
>: ð8Þ

Among them, M(ai, anext) represents the social rela-
tionship value between the node ai and its next node in
the social relation transfer path from the source node
u to the destination node v. And l represents the dis-
tance between the information feedback node and the
source node.

4.2 Decision feature weight distribution
In the process of quantification of social relations,
the size of weight reflects the status of each attri-
bute index in the quantification of social relations
decision-making, which directly affects the quality
of service of the subsequent node information deliv-
ery. Therefore, an important precondition for solving
the quantitative problem of social relations is de-
signed—a reasonable and effective weight distribution
method.
Rough set theory is a tool to deal with the uncer-

tainty of knowledge, and the information entropy
[26] is often used to describe the knowledge
uncertainty.
Definition 6 The system uncertainty can be expressed

as entropy [26] E(X∗), which is

E X�ð Þ ¼ −
Xn
i¼1

P Aið Þ logP Aið Þ
2 ð9Þ

where X∗ is the partition of X on domain U, X∗ =U/X
= {A1, A2, … , An}.
Definition 7 Let Y be another kind of equivalence re-

lation on domain U, Y∗ = {B1, B2,…Bm}, then X∗ is known,
the conditional entropy of Y∗ is:

E Y �jX�ð Þ ¼ −
Xn
i¼1

P Aið Þ
Xm
j¼1

P Bj

��Ai
� �

log
P B jjAið Þ
2

ð10Þ

Definition 8 The amount of mutual information of
knowledge reflects the amount of information that Y

∗

gets from X

∗

and can be expressed as

I X�;Y �ð Þ ¼ E Y �ð Þ− E Y �jX�ð Þ ¼ E X�ð Þ−H X�jY �ð Þ
ð11Þ

4.3 Node social features relationship evaluation algorithm
The quantitative model of social relations in the
process of information transmission of opportunistic
network nodes is based on the analysis of social char-
acteristics of nodes and calculate decision feature that
affects the change of node relationships. The decision
feature and the entropy theory are combined to deter-
mine the weight distribution of different decision fea-
ture. Finally, for the social relationship between
mobile nodes to make a reasonable quantification, the
following is given the overall realization of this model
process.
Algorithm 1 Node Social Features Relationship

Evaluation Algorithm (NSFRE).
Input: characteristic information of node N
STEPS:
1. First of all, input the characteristic information

of the node, including the location information, con-
nection information, interaction information, feed-
back information, time information, and other
features, and then select the nodes that contain the
relevant features in turn, and remove the nodes with
less features.
2. Calculate the characteristic attribute of mobile node

according to Eqs. (2)–(8).
3. There are n sample objects, each of which has m

feature vectors due to a total of m decision features.
Then some sample objects can be expressed in matrix
as:

A ¼
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

2
664

3
775

4. We establishing a fuzzy similarity matrix [26] be-
tween objects and object R = (λij)n × n. The method is as
follows:

λij ¼
Xm
k¼1

aki∧akj
� �

=
Xm
k¼1

aki∨akj
� � ð12Þ

5. We find its transitive closure matrix by fuzzy simi-
larity matrix, that is

t Rð Þ ¼ R2k←⋯←R4←R2R2k ¼ R2
k
2 ∘R2

k
2 ð13Þ

We can classify by fuzzy similarity matrix. Similar
classes on similar relations can be merged into equiva-
lence classes about their transitive closures. Mergers cor-
responding to high-threshold equivalence classes can
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directly obtain equivalence classes corresponding to low
thresholds, so the principle of merging is: If λij = δ, the
equivalence class [ai]t(R) is merged with [aj]t(R), where
[ai]t(R) represents the equivalence class containing the
element ai ∈U in the transitive closure relation t(R), and
δ is the threshold. In this way, we can choose the thresh-
old δ from large to small and realize the classification of
different needs.
6. Sort λij from large to small as the basis for selecting

threshold δ.
7. Select the maximum value δ1, and take ai and

ajsatisfying λij = δ1 as a class. If λij = 1, then ai and aj
satisfying λij = δ1 at this time are exactly the ele-
ments in the same equivalence class in the rough
set.
8. Taking the second largest value δ2 in λij, directly

find the element pair (ai, aj) whose similarity is equal
to δ2 from (λij)nxn, and correspondingly [ai]t(R) and
[aj]t(R) merge.
9. Repeat step (7) until the selected value is less than

the predetermined threshold δ0.
10. The last merge will be undone and form the final

classification Ci(i = 1, 2, … , ζ).
We classify the domain U by sorting λij, the

classification results are recorded as Ci(i = 1, 2, … , ζ);
ζ is the classification number. Second, after deleting
each attribute from all attributes in turn, repeat
steps 4–9 to determine the number of categories
within the same threshold range, denoted as Cj, and
the like, examining the impact of each attribute on
the classification and storing the result into the de-
cision feature classification knowledge base.
11. Calculate the amount of mutual information Ci, j

of nodes that have been selected as feature factors of
screening condition within the same threshold range
by Ci, Cj, and Eqs. (9)–(11), and calculate the trust-
worthiness of nodes under different characteristic
attributes by the following formula:

θ j ¼
X 1

γ
Ci; j i; j∈ 1; ζ½ �j� � ð14Þ

12. Calculate the weight of each characteristic attribute
according to the value of the trustworthiness of the
characteristic attribute. The weight distribution formula
of the decision feature is as follows:

wj ¼ θ jXn
j¼1

θ j

; j ¼ 1; 2;⋯;mð Þ ð15Þ

13. According to Eq. (1) to calculate the mobile node
social relations quantitative value V, and finally output
social relations value.

14. Output social relations value, the end.
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5 Experiment analysis
In this paper, The One Simulator is used to simulate the
proposed algorithm, and some opportunistic network
classical routing algorithms are compared. The perform-
ance of the NSFRE algorithm is evaluated from the as-
pects of transmission success rate, routing overhead, and
transmission delay.

5.1 Simulation tools and scenes
In the experiment, the Stanford University Topology
was used as a simulation scenario. The simulation sce-
nario is set as follows (Fig. 2):
The data we use in the simulation scenario is a real

data set of Stanford University. We design different

numbers of pedestrians, cars, and electric tracks to
simulate the effect of the number of nodes, simulation
time, and node caching on simulation results. Among
them, the experimental parameters are set as follows:
We choose Stanford University real map area is 1070
m × 810m. The simulation time is from 1 to 12 h. The
simulation node is set to 120–900, and the node cache is
set to 5–40M. The speeds of pedestrians, cars, and
trams are 5 km/h, 100 km/h, and 60 km/h, respectively,
the channel bandwidth is 250 kb/s, and the bandwidth of
high-speed transmission interfaces is 10 m/s. In addition,
the node’s mobility model is Shortest Path Map Based
Movement [1]. The node’s transmission mode is a social
model. The default number of nodes is 300. Each node’s

Fig. 2 Simulation scene diagram
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cache is 8M. The maximum transmission area of each
node is 10 m2. The frequency ranges from 25 to 35 HZ
and the packet type is a random array. The topology of
the simulation experiment is shown in Fig. 3.
In the model simulation experiment proposed in this

paper, we simulate the real data set in The One, in
which the wired connection node is the trusted node se-
lected by the source node. It can be seen that the trust
node is filtered by the model. With the increase of time,
the transmission connection established between the
nodes is reduced, which means that the number of co-
operative nodes is reduced by the model selection, and
the nodes that can cooperate are changed from high

density to low density. The screening of trusted nodes is
more and more accurate. It not only avoids the insecur-
ity of data flooding, but also improves the transmission
efficiency of the network, reduces the probability of net-
work congestion, and enhances the robustness of the
network structure.

5.2 Experimental results
The experiment mainly analyzes the algorithm’s perform-
ance in transmission success rate, transmission delay, and
routing cost by adjusting parameters. The model is mainly
evaluated from two aspects: (1) effectiveness analysis: ex-
periments were conducted to compare the difference

Fig. 3 Simulation experiment topology
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between the model and other existing models in optimiz-
ing the network structure and increasing the success rate
of information transmission and (2) adaptability analysis:
through the process of dynamic changes in various uncer-
tainties, the trusted nodes are selected to send data, which
reduces the amount of information on the network and
improves information transmission capabilities. Because
our information transmission concept is still the classic
way of probabilistic routing. The difference is that we
form a quantitative probability value based on the social
characteristics of the node, and the nodes are filtered by
this value. Furthermore, we have made great improve-
ments to the method of filtering nodes of the Prophet al-
gorithm. Therefore, by comparing with other classical
transmission methods applied in opportunistic social net-
works, we demonstrate the advantages and importance of
node social characteristics and probabilistic transmission.
As a reference, the algorithm of this paper is compared
with Epidemic [27], Spray and wait [28], First Contact
[29], and MaxProp [30] routing algorithm to analyze and
compare the characteristics of each algorithm. It is proved
that the proposed algorithm is more effective.
Figure 4 shows the relationship between the transmis-

sion success rate and simulation time. We can see that
the algorithm’s transmission success rate gradually in-
creases as the simulation time increases. First Contact
and Epidemic routing algorithm have the lowest trans-
mission success rates, only 0.2 and 0.18, respectively.
The reason is that Epidemic algorithm uses flooding to
transmit information in nodes. Each node has too many
message information. When the node cache is small, it is
easy to cause a large amount of information data to be

lost. However, First Contact is based on the forwarding
strategy. It does not duplicate the information in the
node and only transmits one copy of the message in the
network. Therefore, the transmission success rate is low.
Spray and wait routing algorithm improves information
transmission success rate while reducing the number of
information copies. However, the node of the MaxProp
algorithm maintains a packet queue according to the
transmission cost to the target node and determines the
replication order according to the priority of the packet,
which not only avoids network congestion, but also
avoids waste of resources by blindly copying message in-
formation between nodes. Therefore, the transmission
success rate of the spray and wait routing algorithm is
lower than that of the MaxProp algorithm. The NSFRE
algorithm has the highest transmission success rate,
reaching 0.68. Precisely, it uses a combination of features
to calculate the social network trust relationship to se-
lect trusted nodes, which reduces network congestion
and information replication and improves the efficiency
of the selected node and the reachability of the destin-
ation node. It also effectively improves the algorithm’s
transmission success rate.
Figure 5 shows the relationship between routing over-

head and time. From the figure, we can see that the
routing overhead of the NSFRE algorithm is not affected
by the time. In the early stage, like the MaxProp routing
algorithm, the routing overhead has a sharp downward
trend, and the cost of the later routing is maintained be-
tween 12 and 26. The reason is that, as time increases,
the number of nodes filtered by the algorithm will grad-
ually decrease. Because the selection of nodes for

Fig. 4 The relationship between transmission success rate and simulation time
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information transmission will be more accurate and the
number of nodes sharing information transmission tends
to be stable, the routing overhead can be kept stable.
Spray and wait routing algorithm is similar to the algo-
rithm in this paper. Compared with other algorithms,
the routing overhead is relatively small, and as the time
increases, the routing overhead decreases. This is be-
cause the Spray and wait routing algorithm reduces the
amount of data transmission in the network and has
good scalability. However, the route overhead of the

Epidemic routing algorithm is relatively large, and the
fluctuation is relatively large. This is because the algo-
rithm maximizes the success rate of packet transmission.
Each node carries a copied packet, and a large number
of packet copies exist in the network. The network per-
formance is degraded and the network structure is
unstable.
Figure 6 shows the relationship between the average

transmission. From the figure, the MaxProp algorithm
determines the packet priority based on the transmission

Fig. 5 The relationship between routing overhead and time

Fig. 6 The relationship between average transmission delay and time
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cost, and the transmission cost is an estimate of the
probability that the packet is successfully transmitted to
the target node, which is estimated by the incremental
averaging method. Because each transmission message
must be calculated, the algorithm has the highest trans-
mission delay. Because the First Contact algorithm only
sends a copy of the message to the node that met for the
first time, and the probability of the first node meeting
with the destination node is very small, the algorithm
has a higher propagation delay. The Epidemic routing al-
gorithm uses flooding to deliver packets. As time in-
creases, more and more packets are transmitted on the
network. The resources in the network are consumed in
large amounts. It is easy to cause network congestion,
resulting in a high transmission delay. The average delay
of the Epidemic algorithm reaches 4000. The NSFRE al-
gorithm’s delay is similar to the Spray and wait routing
algorithm. This is because the algorithm uses resources
to filter the nodes according to different factors, causing
delays. However, as the NSFRE algorithm increases with
time, the transmission delay tends to be flat, which
proves that the algorithm has good stability and the in-
formation transmission delay does not increase expo-
nentially with time.
Figure 7 shows the relationship between the transmis-

sion success rate and the number of nodes. We can see
that the transmission success rates of the First Contact
routing algorithm and the Epidemic routing algorithm
are the lowest. With the increase in the number of
nodes, the success rate of these two algorithms does not

change much, only 0.24 and 0.18, respectively. The rea-
son is that the Epidemic routing algorithm uses the form
of flooding to carry out the information transmission to
the nodes, causing a great deal of information data loss.
The First Contact routing algorithm only transmits one
replication message. With the increase of the number of
nodes, the transmission success rate is stable at 0.24.
The Spray and wait routing algorithm copies a certain
amount of information for each message. With the in-
crease of the number of nodes, the number of nodes re-
ceiving the copied message information increases, and
the probability of encountering the node and the target
node also increases, so the transmission success rate has
increased, reaching 0.8. The transmission success rate of
the MaxProp routing algorithm and the NSFRE algo-
rithm is high, exceeding 50%. The MaxProp routing al-
gorithm sends packets based on the calculated routing
overhead, which improves the transmission and recep-
tion of valid information. Therefore, the transmission
success rate reaches 0.51–0.82. The NSFRE algorithm
has the highest transmission success rate, reaching 0.53–
0.93. This is because the NSFRE algorithm takes into ac-
count the reachability of the destination node to calcu-
late and filter the transmission of trusted mobile nodes.
With the increase of nodes, the nodes are more closely
connected and the reachability between nodes is higher,
which effectively improves the transmission success rate
of the algorithm.
Figure 8 shows the routing overhead and the number of

nodes. In the figure, the routing overhead of the NSFRE

Fig. 7 The relationship between transmission success rate and number of nodes
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and Spray and Wait algorithms is basically independent of
node density. For the NSFRE algorithm, as the number of
nodes increases, the connections between different com-
munities will become closer. The energy consumption of
the nodes filtered by the algorithm will not affect the infor-
mation transmission overhead of the entire network, and
the algorithm has good stability. For the other three algo-
rithms, the routing overhead increases sharply when the
node density reaches a certain level, which will lead to a sig-
nificant increase in node energy consumption, thus limiting
the scope of application of these routing algorithms.
Among them, based on the flooding method of the Epi-
demic routing algorithm, as the number of nodes increases,
the routing overhead approaches exponential growth, indi-
cating that the Epidemic algorithm consumes network re-
sources as the number of nodes increases, so the routing
overhead of this algorithm is the largest. For First Contact
algorithm and MaxProp algorithm, as the number of nodes
increases, the number of hops the node takes to reach the
destination node also increases. Therefore, the increase in
the number of nodes increases the routing overhead of the
network, but the increase is not significant.
Figure 9 shows the relationship between the average

transmission delay and the number of nodes. We can
see that the transmission delay of the NSFRE algorithm
is low, and the trend of the relationship between the
transmission delay of the algorithm and the node density
is obviously different from other algorithms. As with the
propagation delay trend of the MaxProp algorithm, it
does not increase significantly with the increase in the
density of nodes but decrease. This is because the
NSFRE algorithm is not limited to a single social

relationship. As the number of nodes increases, the
number of social relationships existing between nodes
increases. Therefore, the increase of social relations will
make the calculation of trust values between nodes more
accurate. Consequently, as the number of nodes in-
creases, the transmission delay tends to decrease.
Among them, the First Contact routing algorithm has
the highest transmission delay. Because the number of
nodes increases, the number of nodes from the source
node to the target node increases. The Spray and wait
routing algorithm has a low transmission delay. The ini-
tial phase is similar to the NSFRE. However, as the num-
ber of nodes increases, the reachability of randomly
dispersed packets to the destination node decreases, and
the transmission delay increases. The main reason why
the NSFRE algorithm is superior to other algorithms is
that the nodes that transmit the message information
are filtered, which can reduce some nodes with low co-
operation, reduce the network overhead, improve the
reachability of the destination node, and reduce the
transmission delay.
Figure 10 shows the relationship between the trans-

mission success rate and the node cache. Node cache
has different effects on the transmission success rate of
each routing algorithm, and the effect is relatively sig-
nificant when the node cache is relatively small. From
the trend point of view, increasing the node cache can
improve the transmission success rate. As can be seen in
the figure, the NSFRE routing algorithm has the highest
transmission success rate. When the number of nodes is
set to 210 and the node cache reaches 8, the transmis-
sion success rate is gradually stable. The trend of the

Fig. 8 The routing overhead and the number of nodes
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algorithm curve is the same as Spray and wait and Max-
Prop routing algorithm. This is because the feature con-
sidered by the nodes selected by the NSFRE algorithm is
the characteristic information between the nodes and
the nodes themselves, regardless of the node cache size.
When the node cache reaches a certain value, it will not
have a great impact on the transmission success rate.
The Epidemic algorithm uses a large amount of cache
for the flooded message information. As node caching
increases, more information can be delivered. Therefore,
as the node cache increases, the transmission success

rate increases. The First Contact algorithm’s transmis-
sion success rate is still small, and the node cache is
stable at 15. Because only the information is passed to
the node that meets the first time, the encounter node
has randomness, which will reduce the reachability of
the destination node. Therefore, the increase in node
cache does not significantly increase the transmission
success rate.
Figure 11 shows the relationship between routing

overhead and node caching. In the figure, the node
cache has a large impact on the routing overhead of the

Fig. 10 The relationship between transmission success rate and the node cache

Fig. 9 The relationship between the average transmission delay and the number of nodes
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epidemic routing algorithm. The impact on each routing
algorithm is relatively significant when the node cache is
relatively small. From a trend point of view, increasing
the node cache can reduce the routing overhead. When
the node cache is small, the epidemic algorithm has the
highest routing overhead. With the increase of node
caches, the information that can be carried by a node in-
creases, which makes it difficult to cause network con-
gestion and information loss. Therefore, the routing
overhead is significantly reduced. Because the First Con-
tact algorithm only transmits one copy of the message at
a time in the network, the routing overhead increases
with the node cache and decreases significantly when
there is less node cache. After that, the routing overhead
does not change much, and it ranges between 40 and 57.
As can be seen from the figure, the routing overhead of
the NSFRE algorithm is larger when the node cache is
smaller. As with the Spray and wait routing algorithm,
as the node cache is increased, the routing overhead is
gradually reduced, and finally, it becomes stable. The
NSFRE algorithm’s routing overhead is stable in the 11–
13 range. This is because both algorithms are copying
information to a part of the node, so the trends of the
two algorithms are the same. However, because the
NSFRE algorithm filters out some cooperating nodes to
send message information according to the feature infor-
mation, there is a certain consumption in the screening
process, and the expenditure in the process of informa-
tion transmission is small. Therefore, the routing over-
head of the NSFRE algorithm is much less than that of
the Spray and wait routing algorithm.

Figure 12 shows the relationship between the average
transmission delay and the node cache. In the figure, in
addition to the MaxProp algorithm, increasing the cache
of other nodes to a certain extent will increase the trans-
mission delay, especially when the cache is relatively
small. It can be seen in the figure that the first contact
algorithm is still the highest transmission delay. When
the node cache is small, the propagation delay of the
NSFRE algorithm and the Spray and wait routing algo-
rithm is relatively small. With the increase of node
cache, the trend of the curve tends to be stable, and the
transmission delay of the NSFRE algorithm is still min-
imal. This is because the nodes selected to transmit in-
formation are filtered out according to the network
structure and node characteristics, and the access to the
destination node is more accessible than the random fil-
tering of nodes by the spray and wait routing algorithm.
Therefore, in this process, the transmission delay is
smaller. The Epidemic algorithm has a smaller transmis-
sion delay when the node cache is small. With the in-
crease of node cache, the amount of information in the
network increases dramatically, which makes the trans-
mission delay increase exponentially. Therefore, there is
still not much advantage under other algorithms.
The relationship between the three indicators and the

time, the node cache, and the number of nodes can be
concluded. The NSFRE algorithm is superior to other al-
gorithms in terms of transmission success rate, transmis-
sion delay, and energy consumption. And it has less
advantage in routing overhead than the Spray and wait
routing algorithm. In the real environment, NSFRE

Fig. 11 The relationship between routing overhead and node caching
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algorithm is superior to other algorithms for long time
information transmission.

6 Conclusions
In this paper, a decision-making method of opportunistic
social network routing based on trust mechanism social
relations is proposed, NSFRE. The algorithm calculates
the trust degree of the forwarding node according to the
forwarding path of trust message and message delay
time collected by the destination node. Firstly, it ana-
lyzes the social elements of the impact of mobile node
social relations and the characteristics of nodes and
combine the features of network structure to extract lo-
cation characteristics, interaction quality characteristics,
trust quality characteristics, and social relationship feed-
back characteristics as the decision feature of social rela-
tions quantified. Secondly, through the introduction of
rough set and information entropy theory, the different
attributes of the mobile node are deeply studied, and the
law of social attribute changes is excavated to dynamic-
ally and adaptively allocate the weights of different attri-
butes. Finally, experimental verification of the proposed
social relationship quantification model to screen trusted
nodes as the next-hop nodes for data transmission has
good results. The model allows data to be transmitted
along the trusted cooperative nodes in the network, and
at the same time, the uncooperative nodes gradually ac-
tive participate in the data forwarding in the network. In
the process of information transmission, the model has
better dynamic adaptability, higher transmission success
rate, and lower average transmission delay, so that the
negative effect of uncooperative nodes on the network is

minimized and the overall performance of the network
is improved.
In the future, we will conduct in-depth research on

the node’s trusted interactions based on the characteris-
tics of nodes through machine learning. According to
the selected nodes build trust routing tables, the time-
stamp mechanism is used to prevent the routing table
from being tampered with by malicious nodes in the
feedback process, thereby further improving the stability
and security of information transmission.
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