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Abstract

To use the existing Automatic Identification System (AIS) shore stations for positioning so that the AIS can be used as an
additional land-based positioning system for coastal vessels is a cutting-edge research topic, responding to the call of
the International Maritime Organization (IMO). In order to use the ship-borne AIS for positioning function, a holographic
detection of AIS real-time signal based on sparse representation is presented in this paper. Considering the working
environment and the requirement of AIS real-time signal processing, a novel fast noise resistance Orthogonal Matching
Pursuit (OMP) algorithm is presented. Furthermore, the choice and detection of the timestamp of the reconstructed
signal is analyzed and carried out which will be used in the ranging system. The experiment results indicate that the
proposed fast noise resistance OMP algorithm can greatly reduce the processing time, and the difference in processing
time increases with the number of iterations. The improvement in noise immunity is also obvious, and the error rate
reduces at about 9% under the same SNR. The timestamp of the reconstructed signals can be detected successfully. It
shows that the holographic detection of AIS real-time signal is achieved satisfactorily.

Keywords: Automatic Identification System (AIS), Real-time signal processing, Orthogonal Matching Pursuit (OMP), Noise
resistance, Timestamp detection

1 Introduction
Positioning, navigation, and timing (PNT) is a key tech-
nology to describe time and space. With the develop-
ment of technology, the dependence on PNT will
become bigger and bigger. PNT users may double every
2 years in the next 5–10 years due to the robotic tech-
nology and PNT requirements for other mobile carriers
[1]. Nowadays, most PNT users rely on the global
navigation satellite systems (GNSS). However, there are
certain risks if the GNSS is the only source of PNT
information for maritime navigation. The GNSS signal is
vulnerable to interferences which may cause signal
failure, signal deception, and so on [2–4]. It is a great
potential safety hazard. IMO has become aware of the
risks and required that all vessels should mandatorily
equip land-based backup navigation systems besides the
GNSS according to its e-navigation strategy [5–8]. Since
the Automatic Identification System (AIS) is the most
widely used system in maritime communication field,

using the existing AIS as a backup positioning system
will save a lot of cost as it has a feasible market appli-
cation value. Some countries are interested in using the
existing AIS shore stations for positioning, with a related
new technique called the AIS range (AIS-R) mode. In
the European Union, the AIS-R mode is a part of the
ACCessibility for Shipping, Efficiency Advantages and
Sustainability (ACCSEAS) project which is now mainly
operated in the North Sea Region. It concentrates on the
feasibility study of AIS-R mode using a combination of
DGNSS, AIS, and eLoran which includes the potential
signals, geometry, signal strength, and so on [9, 10].
In China, the related research has been conducted by
the Navigation Institute of Dalian Maritime University
since 2012 [11–19].
Since the AIS was designed to use as a communication

system initially, there are some technical problems that
need to be solved before using AIS as a backup position-
ing system; one of them is the carrier measurement. The
carriers in a normal positioning system are dual-phase
modulated with the same frequency. However, the carrier
of the AIS signal is dual-frequency Gaussian-filtered mini-
mum shift keying (GMSK) modulated according to the
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demands of communication, which is much more compli-
cated. In order to solve the problem of AIS signal carrier
measurement, the sparse representation theory was intro-
duced into AIS [18, 19]. The cogitation of signal sparse
representation on a redundant dictionary was proposed by
Mallat and Zhang in 1993 [20]. The redundant dictionary
is one over-complete base functions library. When the
signal is represented on the redundant dictionary, only
a few base functions have large non-zero coefficients.
Thus, the main features of the original signal can be
expressed by a few base functions which are also called
atoms. The sparse representation can be divided into
two parts, the construction of redundant dictionary and
the pursuit algorithms. Nowadays, the sparse represen-
tation is widely used in image processing which is quite
different from real-time processing. We have combined
the related research in both fields. The real-time sys-
tems have a high requirement for signal processing
time, take the AIS as an example, the processing time
must be within 1 slot (26.7 ms).
The AIS-R mode is a ranging system, which is essen-

tially a transmission delay measurement system [21].
Therefore, the ultimate goal is to obtain the time of
arrival (TOA) values. The base of a TOA system is to
choose the proper timestamps that contain the emission
timing information and design the detection method.

2 Methods
In this present study, through mathematical formulas
transformation of OMP target function and analysis, we
improved the OMP algorithm in both noise resistance
and processing time. Then two timestamp detection
methods of AIS signals were analyzed. As for the simula-
tions, after using the new pursuit algorithm to obtain
the sparse representation based on K-SVD to obtain the
information of AIS signal within a certain time interval,
we presented the timestamp detection of the signal using
the differential peak detection and zero-crossing de-
tection. All the simulations were conducted using the
MATLAB. This whole process is called the holographic
detection of AIS real-time signal. The system block
diagram is shown in Fig. 1.
The remainder of this paper is organized as follows.

Section 3 introduces the improvements of the OMP
algorithm, including the improvement in noise resistance

and the improvement in processing time. Section 4 intro-
duces the principle of timestamp and analyzes the detec-
tion methods of timestamps. Section 5 provides and
discusses the experimental results. Section 6 concludes
this paper.

3 Improved OMP algorithm in AIS
OMP is a typical greedy algorithm, the basic idea of the
algorithm is to select an atom from the dictionary that
best matches the signal, construct a sparse approxi-
mation, and calculate the residual. Then, continue to
select the atoms that best match the signal residual
iteratively until the residual is small enough to be negli-
gible. The most important step is to orthogonalize the
selected atoms during each iteration. At last, the sig-
nal can be represented by the linear combination of
these atoms.

3.1 Principle of OMP
Assume that the matrix Y represents the signal, D repre-
sents the dictionary, and X is the coefficient. The aim of
OMP is to find the solution of the following equation

x̂ ¼ Argmin
x

xk k0 s:t: y−Dxk k22≤ε ð1Þ

in which ε represents the error, thus the ky−Dxk22≤ε is
the error constraint. If we turn the error constraint to
sparsity constraint, Eq. 1 will be

x̂ ¼ Argmin
x

y−Dxk k22 s:t: xk k0≤K ð2Þ

in which K is the sparsity and ‖x‖0 ≤ K is the sparsity
constraint.
The specific steps of sparsity constraint OMP algo-

rithm are shown as follows:
Input: Dictionary D, signal y, and target sparsity K.
Output: Sparse representation x so that y ≈Dx.
Initialization: Index set I = ∅, residual r = y, and

x = 0.

1. Calculate the product of the current residual r
and the column vector of the dictionary dT, find
the subscript corresponding to the maximum
product, that is

Fig. 1 System block diagram: the simple system block diagram of holographic detection of AIS real-time signals
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k
∧
¼ Argmax

k
dT
k r

�� �� ð3Þ

Note that we assume that the columns of D are
normalized to unit l2-length for simplicity.

2. Update the index set

I ¼ I; k
∧

� �
ð4Þ

3. Use the least square, we can get

x ¼ Argmin
xI

y−DIxIk k2 ð5Þ

that is

xI ¼ DIð Þþy ð6Þ

4. Update the residual

r ¼ y−DIxI ð7Þ
The OMP selects the column of D with the highest

correlation to the current residual at the first step. Once
the column is selected, the signal is orthogonally projected
to the selected column at the third step. The residual is
recomputed at the fourth step, and the process repeats
until the stopping criterion is met.

3.2 Improvement in noise resistance
The accuracy of the sparse representation of the AIS
signal has a direct impact on the following timestamp
detection which is the most important part to obtain
the PNT. Considering the working environment of AIS,
the noise resistance of the OMP algorithm is really
important, and with a better noise resistance means the
devices can adapt to harsher environments.
Assume an ideal signal y, a white Gaussian noise v,

with standard deviation σ. The signal with noise z is

z ¼ yþ v: ð8Þ
Then, Eq. (1) will be

x̂ ¼ Argmin
x

xk k0 s:t: z−Dxk k22≤ ε̂ ð9Þ

where ε̂ is dictated by ε and σ. If we turn the constraint

kz−Dxk22≤ ε̂ to a penalty item, then

x̂ ¼ Argmin
x

z−Dxk k22 þ μ xk k0 ð10Þ

where μ‖x‖0 is the added penalty item. The two equations
are equivalent for a proper choice of μ. This equation can
also be used as a mathematical model of the pursuit algo-
rithm; although it seems hard to solve, the matching
pursuit and basis pursuit algorithms can be used effect-
ively to get approximation solutions [22–24]. To raise
the noise resistance is equivalent to reducing the noise
v, the simplest and most efficient method is to reduce
the value of kz−yk22 . If we split the signal into segments
and assume that every segment belongs to the model
shown by Eq. (10), then a natural generalization of the
model will be

x̂ij; Ŷ
� � ¼ Arg min

xij;Z
λ Z−Yk k22 þ

X
ij

μij xij
�� ��

0

þ
X
ij

Dxij−RijY
�� ��2

2: ð11Þ

In this equation, the first item acts as the global force
that demands the proximity between z and y which means
to minimize the noise, λ is the Lagrange multiplier. The
second and the third items make sure that every segment
xij has a sparse representation with error constraint. Rij in
the third item is the matrix that extracts segments, similar
conversion has been practiced in [25].
In Eq. (11), we assume that the dictionary D is known,

then there are two unknown variables: the sparse repre-
sentation x̂ij for every segment and the overall output Y.
In order to solve these, we initialize with Y = Z and then
seek the optimal x̂ij . Thus, the whole task is decoupled;
the form of every segment is

x̂ij ¼ Arg min
x

μij xk k0 þ Dx−yij
��� ���2

2
: ð12Þ

Note that this is the same form as Eq. (10) which
means it can be easily solved by OMP. The second
penalty item can be turned into a constraint, then the
choice of μij is handled implicitly. When all x̂ij are
known, return to Eq. (11),

Ŷ ¼ Arg min
y

λ Z−Yk k22 þ
X
ij

Dx̂ij−RijY
�� ��2

2 ð13Þ

needs to be solved. This is a quadratic term that has a
closed-form solution of the form
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Ŷ ¼ λI þ
X
ij

RT
ij Rij

 !−1

λY þ
X
ij

RT
ijDx̂ij

 !
ð14Þ

in which the matrix to invert is a diagonal matrix, and
this calculation can be also done on an atom-to-atom
basis [26].
Therefore, by splitting the noisy signals into segments

and changing the penalty items, the noise resistance of
the OMP is improved.

3.3 Improvement in processing time
The AIS is a real-time system, the signal processing time
has strict requirements. According to the recommenda-
tion proposed by the International Telecommunication
Union (ITU), the processing time must be limited in one
slot, that is 26.7 ms [27]. Since we add one more proced-
ure in the previous section to improve the noise resist-
ance of OMP which will definitely increase the
processing time, a novel fast OMP processing method is
proposed in this section.
From Section 2, we can get that during the greedy se-

lection at each iteration, there is no need to know r or x
explicitly, but only DTr. Therefore, a lower cost compu-
tation of DTr can be used instead of the explicit compu-
tation of r. Assume β =DTr, β0 =DTx and T =DTD, then
combine with Eq. (6) and (7), we can get

β ¼ DT y−DI DIð Þþy� 	 ¼ β0−TI DIð Þþy
¼ β0−TI TI;I

� 	−1
β0I : ð15Þ

It means that β can be obtained during each iteration
without explicit computation of r, if β0 and T are
pre-computed. Also, the matrix TI is used instead of
applying the complete dictionary D. Both of the
pre-compute operations will dramatically reduce the
processing time.
In summary, by combining the two improvements in

noise resistance and processing time, we propose a novel
fast noise resistance OMP algorithm. The simulation re-
sults will be shown and discussed in Section 4.

4 Timestamp detection of AIS real-time signals
The basic principle of a ranging system is to compute
the distance d by measuring the signal transmission
delay τ

d ¼ cτ ¼ c tr−teð Þ: ð16Þ
te is the emission time and tr is the receiving time.

This is known as the TOA method. In practical appli-
cation, it is impossible that the receiver knows the
emission time accurately, there is always a system clock
error in Eq. (16), so the computed distance d is called
the pseudorange.

4.1 Principle of timestamp
In TOA system, a symbol that contains the emission
time information is called timestamp. Detecting time-
stamps is the key technique in the system. The carriers
currently used in TOA system are all dual-phase modu-
lated, so the timestamps can be detected in an arbitrary
carrier phase or code phase. However, according to the
demands of communication, the carrier of AIS was
designed to be dual-frequency GMSK modulated. It is
impossible to measure an arbitrary code phase, thus the
timestamp in AIS must have some easily detected
features. Dr. Johanson has proposed a correlation time-
stamp detection method based on a fixed message for-
mat [10], however, its disadvantage is that the bandwidth
resource which is very limited in the AIS is wasted.
Since the time division multiple address (TDMA) net-
working technology is used in the AIS which means that
the initial transmission time of each frame can be deter-
mined. So the launch time of every bit-0-phase in a
frame can be calculated [17]. The bit-0-phase cor-
responds to the hopping edge as shown in Fig. 2 which
are easy to detect, so the bit-0-phase can be regarded as
the timestamps in AIS.
Since the reproductive signal in the receiver will

change the Gaussian baseband waveform as shown in
Fig. 2 before it obtains the binary sequence by bit
decision algorithm which only focuses on the bit error
rate not the emission time information of bit-0-phase,
the research subject should be the Gaussian baseband
waveform. The characteristics of the Gaussian base-
band waveform are determined by the Gaussian filter
and the unit impulse response of the Gaussian filter is
expressed as

h tð Þ ¼ kffiffiffi
π

p exp −k2t2
� 	 ð17Þ

where k ¼
ffiffiffiffiffiffiffi
2
ln2

q
πB is a parameter related to the Gaussian

filter 3-dB bandwidth B. The product of B and the input
symbol width T are usually considered as the main para-
meter for designing a Gaussian filter, denoted as BT . The
unit step response of the Gaussian filter is

s tð Þ ¼
Z t

−∞
h xð Þdx ¼ 1

2
1þ erf ktð Þ½ � ð18Þ

In [17], we have discussed in details that the median
point of the Gaussian baseband waveform corresponds to
the binary sequence bit-0-phase which can be regarded as
the timestamp.

4.2 Timestamps detection method
Since the amplitude midpoint corresponds to the digital
message sequence bit-0-phase, the amplitude of baseband
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waveform determines the threshold. In AIS, the binary
message sequence can be expressed as

i tð Þ ¼ 2u tð Þ−1 ð19Þ

where u(t) represents the unit step signal. From Eq. (18)
and (19), we can get the corresponding output as

o tð Þ ¼ 2s tð Þ−1 ¼ erf ktð Þ: ð20Þ

As shown in Fig. 3, the midpoint of the Gaussian error
function is zero. Thus, in an ideal case, the threshold of
the detected timestamp is set to be zero. This timestamp
detection method is called zero-crossing detection.
The ideal Gaussian baseband waveform rising edge

function is defined by the Gaussian error function with
the expression of

Fig. 2 AIS binary sequence and Gaussian baseband waveform: The upper subfigure is the AIS binary sequence and the bottom subfigure is the
Gaussian baseband waveform. The x-axis denotes the time in milliseconds, and the y-axis is the normalized amplitude. The figure shows that the
hopping edge in the binary sequence corresponds to the bit-0-phase in the Gaussian baseband waveform

Fig. 3 Gaussian error function waveform: the waveform of Gaussian error function whose midpoint is zero
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erf ktð Þ ¼ 2ffiffiffi
π

p
Z kt

0
e−η

2
dη: ð21Þ

Its derivative is expressed as

f tð Þ ¼ d
dt

erf ktð Þ ¼ kffiffiffi
π

p e−k
2t2 : ð22Þ

According to the definition of the derivative, the
differential peak point of it corresponds to the bit-0-phase
of the digital sequence. Therefore, this timestamp detec-
tion method is called differential peak detection.

5 Results and discussion
In this section, first, we assess the performance of the im-
proved OMP algorithm in AIS via numerical simulations.
According to [27], the data part of the default trans-
mission packet is 168 bits. Considering this, 64 data
signals with the dimension of 168 are used as training
signals in the simulation. The hardware specifications
used in this study are Intel Core i7-6700 CPU at 3.40 GHz
with 16-GB memory.
Figure 4 compares the time performances of three

algorithms: the initial algorithm, the processing speed-
improved algorithm, and both the processing speed and
noise resistance-improved algorithm. Due to the require-
ments of real-time, the processing time must be within
one slot. The black dash line corresponds to the time of
one slot in AIS that is 26.7 ms. From the figure, we
can see that both of the improved algorithms greatly

improve the processing speed. Despite the added de-
noising process, the processing time of the improved
algorithm is still much less than the original one.
Furthermore, the slopes of the two lines that represent the
two improved algorithms are nearly the same, which
means that the time consumption of de-noising process is
basically fixed, it does not increase with the increase of
iteration. In fact, only when the number of iteration
reaches 50, the processing time of the improved algorithm
is about the time of one slot. However, according to [18],
the increase in the number of iterations does not improve
the accuracy significantly; there is no need to set a big
number of iteration.
Setting the number of iterations to 6, the error rates of

three methods are shown in Table 1. The simulation was
repeated 500 times for each condition. In the condition
of the same SNR, the error rate of the time improved
algorithm is a little bigger than that of the original
algorithm. However, once the de-noising process was
added, the error rate reduced greatly. For the three algo-
rithms, when the SNR reaches about 15 dB, the error
rates come to a threshold.
In Fig. 5, when the number of iteration is the same, the

error rate of the time and noise resistance-improved algo-
rithm is far smaller than that of the original algorithm.
The error rate of the improved algorithm reduces around
9% under the same SNR compared to the original algo-
rithm. For the improved algorithm, the number of
iterations does not have a great impact on the error rate.
The threshold of the error rate of the improved algorithm

Fig. 4 Time performances of three algorithms: the time performances of the original algorithm (represented by the blue dashed line), the
processing time-improved algorithm (represented by the red dashed line), and the processing time and noise resistance-improved algorithm
(represented by the green dashed line). The x-axis is the number of iterations and the y-axis denotes the time in milliseconds
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is about 1%. This time and noise resistance-improved
sparse decomposition algorithm is called fast noise resist-
ance OMP algorithm.
The results of timestamp detection are shown in Fig. 6.

Due to the noise interference in the Gaussian baseband
waveform, it is necessary to filter out the noises before
performing the timestamp detection. The noise super-
imposed on the Gaussian baseband waveform is consis-
tent with the characteristics of white Gaussian noise.
The SNR is set to be 10 dB, and the noises are filtered
by using a Gaussian filter with the parameter BT set to

be 0.6. Figure 6a is the timestamp detection result of
zero-crossing detection, the true values and the detected
results are exactly the same. Figure 6b is the results of
differential peak detection for the same Gaussian base-
band waveform. The green circles represent the outliers
whose amplitudes are related to the SNR. There are out-
liers because the differential detection is more sensitive
to the signal jitter than zero-crossing detection. In prac-
tical applications, the outliers can be retained, ignored,
corrected, or replaced, depending on the circumstance.
The two timestamp detection methods are compared in

Table 1 Error rate comparison

SNR/
dB

Error rate

Original algorithm Time-improved algorithm Time and noise resistance-improved algorithm

0 11.5% 12.3% 4.2%

5 9.4% 10.5% 1.2%

10 7.8% 9.2% 1.0%

15 7.2% 8.8% 1.0%

20 6.9% 7.9% 0.9%

25 7.6% 8.1% 1.0%

30 7.1% 8.2% 1.0%

35 7.5% 8.0% 0.9%

40 7.2% 8.1% 1.0%

Fig. 5 Error rate under different SNR: the error rate performances of the original algorithm and the processing time and noise resistance-
improved algorithm under different SNRs. The x-axis is the number of iterations and the y-axis denotes the error rate. The SNR changes from 0 dB
to 20 dB and the step is 5 dB
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Fig. 6c. We can see that the error jitter range of the
differential peak detection is bigger than that of the
zero-crossing detection.
Based on the above discussions and results, we propose

a holographic detection of AIS real-time signals based on
the sparse representation. The specific system block
diagram is shown in Fig. 7.

6 Conclusions
In this paper, the OMP algorithm was improved in both
processing speed and noise resistance and applied on
the sparse representation of AIS real-time signals. Based
on the mathematical analysis and formulas

transformation of the OMP target function, we achieved
the improvement in the noise resistance of OMP by
splitting the noisy signals into segments and changing
the penalty items. In addition, the processing speed was
accelerated greatly by pre-computing two key parame-
ters. The proposed algorithm was named the fast noise
resistance OMP algorithm. The experiment results indi-
cated that the proposed fast noise resistance OMP algo-
rithm can greatly improve both the noise immunity and
the processing speed at the same time. The difference in
processing time increases with the number of iteration
and the error rate reduces around 9% under the same
SNR compared to the original algorithm.

Fig. 6 Timestamp detection (a), zero-crossing detection (b), and differential peak detection (c). Error distribution: a The detection results of the
zero-crossing method. b The detection results of the differential peak method. Both the x-axes denote the time in milliseconds and the y-axes are
the normalized amplitude. c The comparison of the two methods. The x-axis denotes the time in milliseconds and the y-axis is the
normalized error

Fig. 7 Holographic detection of AIS real-time signals: the detailed system block diagram of holographic detection of AIS real-time signals
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Considering the GMSK modulation of the AIS signals,
the carrier phase cannot be measured like other TOA
systems. Through the analysis of the characteristics of
AIS, the bit-0-phase was regarded as the timestamp. On
the base of Gaussian baseband waveform analysis, two
timestamp detection methods, the zero-crossing detec-
tion and differential peak detection, were proposed and
simulated.
Based on the theoretical analysis and simulated verifi-

cation of the above two parts, the idea of holographic
detection of AIS real-time signals was presented.
The current work is an important part of realizing the

positioning function of AIS. For further work, the results
of holographic detection can be used in the pseudorange
measurement in AIS-R mode. The proposed algorithm
will be embedded in the ship-borne AIS equipment to
do field tests to be verified and optimized. The theory
proposed in the paper provides a reference for real-time
signal processing system.
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