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Abstract

As the increase of requirements of accessing and sharing information of people, large social networks have
appeared. The influence maximization over social network has been a popular research topic, whose goal is to
maximize the expected range of influence by selecting seed nodes to sending information and encouraging nodes in
social network to report the messages. On the other side, privacy concerns have became more and more important,
both automated and manual efforts are utilized to protection privacy of users. Under the mechanisms of privacy
protection, the nodes in social network will not act as they did in the setting of no privacy protection. As far as we
know, there are no previous works considering this problem. In this paper, we consider the influence maximization
problem with privacy protection mechanisms in social networks.
One challenge is that how to abstract the relations between users and information to identify which kinds of
information should be protected by the privacy-related mechanisms. A context-based solution is proposed in the
paper to face the challenge above and solve the influence maximization problem. First, a context-based information
diffusion model (IDC for short) is proposed. Then, the corresponding influence maximization problem (IM-IDC for
short) under IDC model is formally defined. Then, the methods about context extraction, influence estimation, and
redundant contexts identification are introduced. The IM-IDC problem is shown to be NP-hard, and an efficient
approximation algorithm based on greedy strategy is proposed and analyzed theoretically. Finally, experimental
results show that our method is efficient.
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1 Introduction
Recently, as the increase of requirements of accessing,
sharing, and sending information of people, social net-
works have appeared. The developments of techniques of
social network have huge increase and rapid populariza-
tion in the whole world. They have changed the communi-
cation ways of people. Typical social network applications
include Friendster, Twitter, Facebook, Sina Weibo, and so
on. As the used of mobile cell phones increase, more and
more people are involved in the social network. Accord-
ing to the reports, until 2015, the size of mobile phones
users in the world has reached 4.45 billion and 42.9% of
them are using smart phones (about 2 billion). With the
reports from China, the size of mobile smart phone users
has reached 0.5 billion in 2014. As the size and power
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increases of smart mobile devices, more and more online
social applications are being used inmobile environments,
social networks become larger and larger.
In the social networks, since the way of diffusing infor-

mation changed, many human activities need to adapt to
such change. A key application is using social networks
for viral marketing as shown in [1]. Different from tradi-
tional methods for marketing, viral marketing can utilize
the “word-of-mouth” advantages of social networks and
diffuse advertising information more efficiently. It has
attracted lots of research interests. During themarket pro-
cedure, people with high influence will be expected to
send the advertising information to. People with higher
influence can affect other people with more chances.
Influence maximization problem is one of the most pop-
ular topics in the area of influence research in social
networks. It has been formally investigated in [2] and
obtained lots of attentions from many researchers (such
as [3–5]). However, there are still important challenges
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not solved in real applications of influence maximization
problem when facing more practical scenarios. One of
them is that the influence ability between nodes in real
world may be affected by privacy protection mechanisms.
Since data privacy has been more and more important,
not only automatic tools but also manual efforts are taken
to protect privacy of users. In that cases, even if one
user is influenced by the information very much, because
of privacy considerations, he may not repost the mes-
sage. In details, essentially, under the privacy protection
mechanisms in social applications, people are allowed to
select what they want to send or what they are saying
about by filtering messages by labels or adding labels to
the message. In these cases, it is more feasible to con-
sider a context-based or label-based privacy protection
and the probability that node u affects v on special con-
text c rather than the probability that u affects v. That
is, the information diffusion procedure is affected by the
privacy protection mechanisms based on contexts essen-
tially. As far as we know, there are only few works that
consider the influence maximization problem under mul-
tiple factors or related problems under privacy, no previ-
ous works focus on the influence maximization problem
under context-based privacy protection mechanisms.
In the general model, a social network is composed of

nodes and edges like general networks. Each node is a
social actor and the edge between two nodes represent
the relations between them (e.g., following, followed-by).
The procedure of information diffusion in general social
networks can be explained by the followings. Assume
that some node A has accepted some information I (e.g.,
A has bought some product introduced by I), A will
have chances to influence some node B within its neigh-
bors. The chance is modeled by an influence probability
between A and B. For example, if the probability between
them is 0.9, B will accept I and transfer I to its neighbors
also in the next step. In this model, the influence maxi-
mization problem is to find a special seed nodes set S such
that the expected number of nodes affected by S can be
maximized. Here, the influence probability is a simple and
clear method to describe the ability of influence between
two nodes, and it is usually assumed to be a constant one
if a special social network is considered. However, in real
applications of social networks, the influence probability
may depend on the context and may be affected by the
privacy considerations.
Let us consider an example in practical applications.

Assume that there is a user x of Twitter, y is a friend of
x. In real life, x is a college teacher for computer science.
At some time, x bought two books, one is about program-
ming and the other one is about literature. Then, x sent
two tweets about the two books with pictures and com-
ments. When y saw the tweet about programming book,
if x did not publish the information about his career, y is

possible to guess that x belongs to computer science area.
Even if x has shared the information of his interests by
adding labels such as computer science, y may guess that
x is doing a job needing lots of knowledge by analyzing
the tweet about literature book. Also, on the other side,
considering that y is a close friend of x, y may decide to
repost the tweet about programming, since y trust x in
computer science area because of themajor of x. But when
y saw the tweet about literature book, the probability that
y reposts the tweet becomes lower because he does not
think x as a professional one for literature. Here, different
from the cases assumed by traditional models for informa-
tion diffusion, privacy protection mechanisms may affect
the information diffusion procedure and the way of affect-
ing influence probability may depend on the categories of
the information. On the other side, even if x and y are close
enough to be insensitive to the private information of each
other, it cannot be expected that y always repostsmessages
from x in the same high probability. It will also depend on
which kind of information is diffusion. Furthermore, if we
can identify those kinds of information protected by pri-
vacy considerations, or interested by other users, we can
refine the model more.
Actually, the examples above show two important chal-

lenges of privacy considerations in the information diffu-
sion model. The first one is how to identify which kinds
of information should be protected or specially inter-
ested by other nodes. The otehr one is how to solve
the influence maximization problem under multiple kinds
considerations.
In this paper, we address the problem of maximiz-

ing influence with privacy considerations in social net-
works. Obviously, because of privacy considerations, not
all affected nodes will try to affect others by reposting
the information, one possible case is that they are influ-
enced but stop to repost the information. The main chal-
lenge is that how to abstract the relations between users
and information to identify which kinds of information
should be protected by the privacy-related mechanisms.
A context-based solution is proposed in the paper to face
the challenge above and solve the influence maximization
problem. To solve the influence maximization problem
efficiently, we study its computational complexities and
design efficient algorithms. The main contributions can
be summarized as follows:

1 We identify the influence maximization problem
under privacy protection mechanisms as new
challenges of information diffusion in social
networks. To overcome them, we propose new
information diffusion models to support
context-based privacy description and formulate the
new influence maximization problem-based on new
model.
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2 We show the hardness for context-based influence
maximization problem. It is achieved by proving that
classic influence maximization problems is a special
case of the new problem.

3 We design efficient approximation algorithms for the
new influence maximization problem. By showing
the monotone and submodular properties of the new
problem, a (1− 1/e) approximation algorithm can be
obtained.

4 The experimental results on real datasets show that
the proposed method can efficiently solve the
information diffusion problem with privacy
considerations in social networks.

The rest of the paper are organized as follows. In
Section 2, some preliminaries and new definitions about
the information diffusion model under privacy considera-
tions will be introduced. Then, in the Section 3, the meth-
ods about context extraction, influence estimation, and
redundant contexts identification are introduced. Then,
in Section 4, theoretical analysis and approximation algo-
rithms for influence maximization problems are intro-
duced. Extensions and optimizations about the algorithms
is shown in Section 5. Experimental results are shown in
Section 6. In Section 8, the related works are discussed.
Finally, Section 9 concludes the paper.

2 Context-based information diffusionmodel
with privacy consideration

In this section, general information diffusion models are
introduced first, then, to consider the effects of privacy
protection, a context-based information diffusion model
is proposed, finally, we give the formal definition of the
corresponding influence maximization problem.

2.1 General information diffusion models
In this paper, information diffusion can be described as
the propagating procedure of information over some net-
work. A network is usually denoted by a graph G(V ,E).
Here, V is the node set where each node represents one
person or entity, and E is the edge set where each edge
represents the relation (cooperation, friends, enemies, and
so on) between two nodes. Each node is associated with
active or inactive state. Intuitively, the active state means
that the node has been affected. The active set of nodes
may affect the nodes in inactive set and the influence
ratio can describe the strength of that affection. If some
inactive node is affected by some active node so much
that the inactive becomes active, such a process is called
activation. Intuitively, for some node v, the more of the
neighbors of v are activated, more likely v will be acti-
vated. After then, vwill affect more nodes further. As such
procedures repeat, more and more nodes will become
active. The procedure of activation cannot be reversed:

one node can transform from inactive state to active state,
but not vice versa. To design proper theoretical model to
describe information diffusion in real world, the key is to
explain how the interactions between nodes work. Next,
we introduce two popular information diffusion models.
Linear threshold model. Given a network G(V ,E), let

N(v) be the set {u|(u, v) ∈ E}. For each (u, v) ∈ E, a
threshold value buv is utilized to represent the degree
of influence from u to v. For each node v, it is satis-
fied that 0 ≤ ∑

u∈N(v) bu,v ≤ 1. During the procedure
of information diffusion, another threshold value θv with
respect to each node v is used to control the diffusion of
information. In detail, at some instant time, let A(v) be
the set of v’s neighbor nodes which have been active. If∑

u∈A(v) bu,v ≥ θv, v will become active. In this model,
when node u tries to activate its neighbor v and fails, the
influence bu,v is remembered and will be accumulated in
the following activating steps. In other words, the influ-
ence from u to v will not be ignored, even if the activation
is failed. As we will see in the following part, the influence
is treated differently in other models. The whole proce-
dure of information diffusion in linear threshold model
can be described as follows. First, an initial active node set
S0 will be activated. Then, in the ith step of information
diffusion, based on the active nodes in Si−1, the influence
for each node in V \ Si−1 will be computed. According
to the influence computed and the θv for each node v, all
nodes satisfying

∑
u∈A(v) bu,v ≥ θv will be put in Si. Repeat

these steps until no more nodes can become active.
Independent cascade model. Independent cascade

model is a probabilistic model. Instead of buv in linear
threshold model, this model uses puv to describe the
probability that u can activate v in a single activation. The
whole procedure of information diffusion under indepen-
dent cascade model can be described as follows. First, an
initial node set S0 will be set to be active. Then, in the ith
step, every node will try to activate their neighbors. In
detail, for each node u ∈ Si−1 and node v ∈ V \ Si−1, if
(u, v) ∈ E, v will be activated once in probability puv. If v
indeed becomes active, it will be added to Si and not be
further considered in current step. Repeat this procedure
until that no new nodes are added. It should be noted
that puv is only determined by u and v and is independent
with other node pairs. In this model, each edge (u, v) will
be considered only one time. Once it fails, this edge will
never be considered. In [2], an extended model in which
puv will be decreased as time goes by.

2.2 Context-based privacy protection mechanism
It has been a huge requirement to protect information
privacy, especially in the area of social network. Without
privacy protection mechanism, sensitive information of
users may be easy to be obtained by illegal applications.
More and more operation systems tend to provide core
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mechanism to protect information privacy when users try
to send out data to the network, the protection mech-
anism is transparent to users. Also, general users learn
more and more knowledge about how to protect their
privacy by sending only insensitive information.
There have been lots of previous works focusing on

the techniques of privacy protection mechanisms, such
as perturbation [6], randomization [7], k-anonymity [8],
and difference privacy [9]. Most of them have one com-
mon feature, that is to hide single user data or answer
from other ones. The main intuitive idea is to let the item
protected seem to be no difference from other items.
In the procedure of information diffusion in social net-

work, the actions of reposting some message may leak
private information of users. In fact, when some user A
receives somemessageM, the actionsA taking will answer
the query “is A interested in M?.” If A decides to repost
M, the answer is yes, otherwise, the answer is no. By col-
lecting such answers, private information (e.g., interests,
majors) of A can be obtained using information tech-
niques. Essentially, during this procedure, to provide the
privacy protection mechanisms, it needs to modify the
answers (the decisions about whether to repost the mes-
sage received) in certain way such that A will not show
obvious difference from other users. Therefore, the pri-
vacy protection mechanisms will affect the probability
that A can activate other users, that is there are cases
A will not repost M to avoid leaking private information
even if A has been activated by M. To describe the pro-
cedure of diffusing information under privacy protection
mechanism, we propose a context -based representation
of privacy protection mechanism first, then the corre-
sponding information diffusionmodel is introduced in the
following part.
Here, a context set C = {c1, c2, . . . , cm} is used to spec-

ify which kind of class the information belongs to. We
consider a privacy protection model as follows. Each user
is attached to several contexts; they can represent his
interests which can be obtained based on tags labeled
by himself. Also, each message is attached with contexts,
which can be obtained by getting the tags labeled by the
produced user or analyzing it by language processing algo-
rithms. Intuitively, when a user A receives some message
M, even if A indeed is interested inM and wishes to share
M with other uses in the network, it is very possible that A
determines not to repostM because of privacy considera-
tions. There are mainly three kinds of such considerations
as follows:

• First, if the context sets of M and A are similar, A
tends to repost M in high probability. In this case,
even if attackers know that A reposts M, since the
interest tags are public information to all users, only
little private information will be leaked. This

protection strategy is that A only gives the answers
which others know A will give.

• Second, if many neighbors of A repost M, A tends to
repost M in high probability. In this case, even if
attackers know that A reposts M, since many other
users also do the same actions, intuitively, only
non-private information will be leaked. This
protection strategy is that A only gives the answers
which other ones will also give.

• Third, if there is some item in the context set of M
which seems to be different from the context set of A,
A will not repost M. This protection strategy is that
A will not give the answers that the potential
attackers do not know A will give.

2.3 Context-based information diffusion with privacy
protection strategies

In this part, to integrate privacy protection strategies with
the procedure of information diffusion, a context-based
information diffusion model (IDC for short) is proposed.
In IDC model, the social network can be represented by
a graph G = (V ,E). Here, V is the node set and E is the
directed edge set which represents the influence relation-
ship between nodes in the network. Intuitively, if there is
an edge (u, v) ∈ E, it says that v can be influenced by u.
That is, if u has been influenced, v also may be influenced
through the edge (u, v).
In the IDC model, a finite context set C =

{c1, c2, . . . , cm} is used to represent the context informa-
tion. Intuitively, to support privacy protection strategies
during information diffusion, the relationships between
users and messages must be identified. However, it is
impossible to build a model for each piece of message,
a better solution is to put messages into different cat-
egories by analyzing their characteristics. The context
information is just used to identify which category the
message belongs to. For example, the contexts of a tweet
like “LeBron James has agreed to a four year, 154 million
dollars contract with Los Angeles Lakers” may be {LeBron
James, Los Angeles Lakers, Basketball}. Also, we use con-
text information to represent what kinds of information
some node is interested in. For example, in real applica-
tions such as tweet, the tags of users can be viewed as the
contexts. Ideally, each item in C should be totally differ-
ent from others, such that we can use a C with minimum
size to import context information to the procedure of
information diffusion. Each node v inV may be associated
with a context set Cv ⊆ C, which represent v is sensitive
or interested those information generated by the contexts
in Cv. In IDC model, also, for each special message M,
different from general information diffusion models, the
informationM should also be specified with a context set
CM ⊆ C, which means that informationM is related with
all context in CM.
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In general information diffusion model, for each edge
(u, v) in the network, a probability or threshold is assigned
to represent the influence, which is usually defined to be
a function p : E �→ [ 0, 1]. Differently, the influence func-
tion p is extended to be a function set P = {p1, . . . , pm},
where each function corresponds to a special context c
and for edge (u, v) the value of pcuv is the measure of influ-
ence of u on v. Therefore, for each two nodes u and v
satisfying (u, v) ∈ E, given special information I, whether
v will be influenced by u is determined by the contexts of
I, the influence probability functions of different contexts
maybe different. For example, suppose A and B are two
tweet users, it is a usual case that A trusts B in IT area but
not inmusic area, so the probability that v is influenced by
some IT information re-tweeted by u is much higher than
by some music-related information.
Context-based information diffusion model. Formally

speaking, in IDC model, an information diffusion model
can be described by a 5-tuple 〈G,C,P,U ,�〉, where U :
V �→ 2C is defined to be the function to compute the con-
text set for each user and � = {θi|1 ≤ i ≤ |V |} satisfying
0 ≤ θi ≤ 1. The procedure of information diffusion in
IDC model can be explained as follows.
In IDCmodel, given a networkG = (V ,E), a context set

C, two functions P and U, a threshold set �, a message I
with context set CI ⊆ C and a seed node set A, the infor-
mation diffusion process working in discrete time can be
explained as follows. Here, we use t0, t1, · · · , tn to repre-
sent the discrete times. For each node v ∈ V , there are
three different states: inactive, active, and progressive.

• Initially, at time t0, all nodes in A will become active
and inserted into the set Z, and all other nodes will be
initialized to be inactive.

• At time ti, each active node u which is just activated
will determine whether to go from active to
progressive in following steps. First, u will continue
with the next step with probability

p1(u, I) = |Cu ∩ CI |
|Cu| ,where Cu = U(u), (1)

otherwise, u will keep in active state later. Then, the
following threshold value will be calculated

f1(u) = |N̂u| + 1
|Nu| + 1

, (2)

where Nu is the set of neighbor node of u and N̂u is
the set of progressive nodes in Nu. If f1(u) ≥ θu, u
will become progressive, otherwise, u will keep in
active later.

• At time ti, after changing the states of some nodes
from active to progressive, all nodes which just
became progressive will try to activate their neighbor
nodes in inactive state. In detail, suppose node u just

became progressive and v is an inactive neighbor
node of u before ti. For each context c ∈ CI , v will be
influenced by u in the probability pcuv. If, for all
contexts in CI , v has been influenced by some node
(maybe by other nodes in previous steps), v will
become active. Then, v will be added to the set Z.

• The procedures above iterate until no new nodes can
be added into Z. Finally, Z will be the influenced set
of A under the IDC model 〈G,C,P,U ,�〉. During the
whole procedure, it should be noted that the node
state can transform from inactive to active, from
active to progressive, but not vice versa.

The intuitive idea of context-based information diffu-
sion model can be explained as follows. There are several
factors affecting the actions of some node on special
information, each factor can be abstracted by the relation-
ship between node and information. The relationship is
abstracted by context, e.g., tag information in real applica-
tions. For special information I, if I is interesting enough
on all related contexts to node u, u will accept I and
become active. If I is “similar” enough with u and there
are enough neighbor users which accept I, u will tend to
become progressive and try to activate other users.
Let us consider an example of IDC model shown on the

top left corner of Fig. 1. Assume that we have an ID model
〈G,C,P,U ,�〉 for some network. The networkG is shown
in Fig. 1, which include five nodes and seven edges. The
context set C is

{basketball, LeBron James, Michael Jordan, . . . }.
We use c1, c2, c3, and so on to represent them. The

function set P = {p1, p2, p3, . . . } can be represented as fol-
lows, without loss of generality, focusing on the first two
contexts in this example, we only describe p1 and p2.

p1AB = 0.6; p2AB = 0.9;

p1AC = 0.7; p2AC = 0.8;
p1CD = 0.1; p2CD = 0.9;
p1BD = 0.9; p2BD = 0.1;
p1BE = 0.8; p2BE = 0.02;

The definition of function U is as follows:

U(A) = U(B) = U(C) = {c1, c2, c3}
U(D) = {c2, c4, c5, c7},U(E) = {c2}

The definition of threshold set � is as follows:

θA = 0.1; θB = θC = 0.5; θD = θE = 0.4

Given {A} as the seed node set, assume that a message
m associated with contexts CI = {c1, c2}, an example of
information diffusion procedure is shown in Fig. 1. In the
first step t0, node A will be initialized to be active. Then,
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Fig. 1 An example of IDC model and the procedure of information diffusion in IDC model

p1(A,m) = |CI∩U(A)|
|U(A)| = 2

3 , A will continue to calculate
f1(A) = 1

3 with probability 2
3 . Suppose A successes to

compute f1(A), since f1(A) > θA = 0.1, A will become
progressive in the next step. In the second step t1, two
edges connected with A will be processed. For the edge
(A,C), since p1AC = 0.7 and p2AC = 0.8, nodeC will be tried
to be activated in two steps. Assume that the first ran-
dom value generated is 0.85, because 0.85 > p1AC = 0.7,
C will be activated in the first context. Also, assume that
C is also activated in the second context. Then, C will
become active. For the edge (A,B), because p1AB = 0.6
and p2AB = 0.9, the node B will be tried to be activated by
two contexts. Assume that the two random values gener-
ated for the two contexts are 0.7 and 0.9, the node B will
become active also. Then, we have

p1(B,m) = |CI ∩ U(B)|
|U(B)| = 2

3
and

p1(C,m) = |CI ∩ U(C)|
|U(C)| = 2

3
.

Assume that B and C are both success in this step. Then,
we have

f1(B) = |{A}| + 1
|{A,C,D,E}| + 1

= 2
5
and

f1(C) = |{A}| + 1
|{A,B,D}| + 1

= 2
4
.

Because f1(B) < θB = 0.5, B will stay in active state, and
C will become progressive observing that f1(C) ≥ θC =
0.5. In the third step t2,C will try to activate the nodeD on
two contexts in the probability p1CD = 0.1 and p2CD = 0.9.
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Assume that D is activated on the second context, but D
will not become active since only one context is activated.
Now, sinceC has been progressive in the last step, we have

f1(B) = |{A,C}| + 1
|{A,C,D,E}| + 1

= 3
5
.

Therefore, B will become progressive. In the forth step
t3, the node B will try to activate D and E. Assume that D
is activated on the first context, thenDwill become active.
Also, since p2BE = 0.02 and p1BE = 0.8, assume that only the
first context of E is activated. In the fifth step t4, assume
that the nodeD fails to continue calculate f1(D),Dwill stay
in the state active in the following steps. Then, E will not
be activated. Finally, the nodes {A,B,C,D} are influenced
by the seed set {A}.

2.4 Influence maximization problem on IDCmodel
The goal of the original influence maximization prob-
lem is to find a node subset S such that the expected
nodes which are influenced by S is maximized. Obviously,
to define the influence, a method measuring the bene-
fit obtained by diffusing information over S should be
given first. Based on the two classical models of informa-
tion diffusion, the corresponding procedures of diffusing
information are probabilistic. Therefore, the influence
maximization problems are usually studied under the
semantics of possible worlds.
The space of all possible worlds corresponding to a given

IDC model can be determined by the following steps. Let
� be the set of all different possible worlds of given IDC
model. As shown in the section above, each possible world
can be defined by a special procedure of information
diffusion. That is, even if almost all steps in the informa-
tion diffusion procedure of IDC model are probabilistic,
once fixed series of steps are given, all operations can be
determined. Therefore, each unique diffusion procedure
is related with a possible world. Then, the probability of
the possible world X ∈ � can be represented by Pr(X).
To be simple, each possible world can be represented by

a deterministic-induced subgraph of the whole network.
According to the information diffusion procedure of IDC
model, all probabilistic choices are indeed the operations
of tossing coins based on p1 and {p1, p2, . . . } for the con-
texts. Then, the probability of each possible induced graph
Ĝ can be calculated by the following formula

∏

e∈S
Pr(e)

∏

e∈S
(1 − Pr(e))

∏

v∈T
U(v)

∏

v∈T
(1 − U(v)) (3)

where S is the set of edges selected in Ĝ, and T is the
set of nodes selected by the probability p1(·) in Ĝ. It can
be verified that there exists efficient algorithms to check
whether the induced graph Ĝ is feasible to obtain in IDC
model. For each feasible induced graph, we can deter-
mine an information diffusion procedure to conduct it.

It should be noted that in IDC model, two different pro-
cesses may reach the same possible world. Therefore, the
probabilities of each single process and possible world are
different. Intuitively, we can define a standard informa-
tion diffusion such that it can be one-to-one mapped to
the induced graphs. As shown in the following part, such
standard procedure can be simulated efficiently, and the
problem can be solved by randomized estimation.
Based on the observations above, we can give the defi-

nition of influence function. Usually, we use the function
δ(·) to represent the influence range of given seed node
set. That is, given seed set A, δ(A) will be the nodes
which become active after diffusing the information based
A. Observing the above procedure of information diffu-
sion, for each single process, we have δ(A) = Z. In fact,
within the example shown above, each possible world Gi
is indeed a deterministic single diffusion procedure, and
the vertex set of Gi is just Z which can be influenced by A.
However, the diffusion process is a probabilistic one, we
need a definition based on possible world semantics.

Definition 1 (Influence function) Given an IDC model
〈G,C,P,U ,�〉, an information context set CI and the seed
node set A, let {G1, . . . ,Gm} be the set of all possible worlds.
The influence function δ can measure the expected value
of influence of A on G. For special A, δ(G,A, θ) is defined
to be

∑
Pr(Gi) · |VGi |and it is also denoted by δ(A) for

simplicity.

Based on the definition of influence function, we can
give the formal definition of influencemaximization prob-
lem on IDC model.

Definition 2 (Influence maximization on IDC model)
Given an IDC model 〈G,C,P,U ,�〉, an information con-
text set CI and an integer k > 0, the question is to find a
subset A satisfying |A| ≤ k and the size δ(A) is maximized.

In the following parts, we will use IM-IDC (influence
maximization for information diffusion with contexts) to
represent the influence maximization problem on IDC
model.

3 Representing the contexts in diffusing
information

In this section, we explain how to use those representa-
tions to describe the procedure of information diffusion.

3.1 Context tags for information and nodes
For each node v in the network, as shown in the section
above, we use Cv to represent the context information of
v. In a practical application, the context information can
be collected by selecting the tags of interested topics. For
example, most of social applications, such as Tweet, and
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Sina Weibo, allow users to select interested tags which
will be used to do the recommendation, indeed the tags
can represent which kind of information will be read and
retransmit. Second, the tags can also be obtained by ana-
lyzing the profiling information of users. For example, the
user profiles in Sina Weibo also contains some important
information of users such as living place and age, and the
profiles also contain tag information which may affect the
information diffusion, one of the key observations is that
people usually are interested in things or topics related
to their local events; by analyzing some more customized
information, such as self-descriptions of users, utilizing
techniques of natural language processing, we can also
identify the tags which represent the factors affecting the
procedure of information diffusion. Finally, the tags for
nodes can also be copied from one node to another one.
The structural information in social networks can be used
to infer the tags of nodes. By finding clusters in the net-
work, we can identify which nodes may contain similar
tags. Intuitively, the nodes within one same cluster tend to
contain similar tags; if the clustering algorithms take the
information related to some special tags into considera-
tion, the clustering result will provide a strong evidence
for predicting the tags for nodes.
For information m in the network, such as one tweet,

we use Cm to represent the contexts related to m. In real
applications, we can obtained the contexts of m by fol-
lowing methods. First, most social platforms allow users
to give the highlights or labels for the information pro-
duced in the network, for example, Sina Weibo allows
users to use special symbols (e.g., #) to add topic labels
for the message created by them. Second, a simple strat-
egy is to use the users’ tag for the information produced by
them. Finally, the tags can also be generated by analyzing
the information by sophisticated synthetic and semantic
processing techniques for natural languages.

3.2 Determining the influence probabilities for contexts
According to the definition of contexts in the above
section, during the procedure of information diffusion,
the influence probability functions are different for differ-
ent contexts. Essentially, general techniques for predicting
influence probabilities in social network without context
considerations can be utilized here to determine the influ-
ence probabilities. Intuitively, for each special context c, it
can be done by using the predicting techniques over infor-
mation diffusing records related to context c. As long as
enough data for diffusing information can be collected,
the influence probabilities can be predicted accurately.
Since the goal of this paper is to design efficient algorithms
for the problem of influencemaximization, without loss of
generality, we assume the influence functions of contexts
are given in advance. In fact, even if only the influence
functions for a special set of tags are given, when new

tags appear, we can still build the influence probabilities
for new tag incrementally by analyzing the procedure of
information diffusion related to the corresponding tags.

4 Approximation algorithm for IM-IDC problem
In this section, first the computational complexity of
IM-IDC problem is studied which indicates that it is
intractable and is not expected to have exact algorithm in
polynomial time. Then, an approximation algorithm for
IM-IDC problem is designed.

4.1 Complexity of IM-IDC problem
Since the influence maximization problem on classic
models are usually NP-hard, we can obtain the follow-
ing result by simply restricting the definition of IM-IDC
problem.

Theorem 1 IM-IDC problem is NP-hard.

Proof The theorem can be proved by observing that
classical influence maximization problems on the IC
model in [2] is a special case of IM-IDC problem. The
detail can be analyzed as follows.
For IM-IDC problem, we can prove that they are NP-

hard by making a direct reduction from the classical
influence maximization problem on IC model in [2].
Given a classical influence maximization instance I =
〈G, p, k〉, we can build an instance of IM-IDC problem
I ′ = 〈G′,P,C,U ,�,CI , k′〉 by the following steps.

• Let G′ in the instance I ′ be same as the network
graph G in I.

• Let C = {c}.
• For each node u ∈ VG′ , let U(u) = {c}, θu = 0.
• Since there is only one context in C, let P′ = {p′},

where for each edge (u, v) let p′
uv = puv.

• Let CI = {c}, k′ = k.

Obviously, the construction of I ′ can be finished in poly-
nomial time, and it is easy to verify that we can find a
subset A such that |A| = k and δ(A) > x if and only if A is
also a solution of IM-IDC satisfying |A| = k′ and δ(A) >

x. That is there are bijective maps between the solutions
of I and I ′. Therefore, IM-IDC problem is NP-hard.

The result above indicates that it is impossible to design
algorithms in polynomial time unless P=NP. Therefore,
we need heuristic algorithms later. In fact, the problem is
much harder than the analysis in Theorem 1. As shown
in [1], the problem of computing δ(·) under classic IC
model has already been �P-hard. That is, to compute
an influence measure in a feasible way (e.g., on possible
worlds semantics) has been already very hard. Of course,
this result is meaningful only when we assume that all
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algorithms solving the IM-IDC problem will invoke a
procedure to solve the subproblem of computing influ-
ence measures. Observing that no existing algorithms
can avoid computing or estimating the influence measure
directly, the result of �P-hard indicates that the IM-IDC
problem is much harder than we think in usual.

4.2 Efficient approximation algorithm
According to Theorem 1, since there are no efficient deter-
ministic algorithms for the IM-IDC problem, therefore, in
this part, an approximation algorithm is given. The main
idea of this part is to design greedy algorithm with per-
formance guarantees. A popular method is to utilize the
monotonicity and submodularity properties of measuring
functions. Given a function δ(·) : 2V → R, δ is called to be
monotone if and only if δ(S1) ≤ δ(S2) for any S1 ⊆ S2, it is
called to be submodular if δ(S1 ∪ x) − δ(S1) ≥ δ(S2 ∪ x) −
δ(S2) for any S1 ⊆ S2. Informally speaking, suppose we
are trying to find an optimal subset S′ ⊆ S, the optimiza-
tion goal is measured by a function f, a greedy algorithm
has performance guarantee if f is monotone and submod-
ular. In practical, for influence maximization problem, as
shown in [2], monotone and submodular properties allow
us to develop greedy algorithms to achieve (1 − 1/e − ε)

approximation ratio.
We proposed an algorithm based on greedy idea which

can produce approximation algorithms with ratio 1 −
1/e as shown by [10]. The algorithm is shown as Algo-
rithm 1. The algorithm APPROIM-IDC takes M = 〈G =
(V ,E),P,C,U ,�〉, an information context setCI , and inte-
ger k > 0 as the input parameters. First, two variables S
and cur are initialized to be an empty set and 0, respec-
tively, where S is a set for storing the optimal seed nodes,
and cur is used to record the influence obtained by the
algorithm during the whole procedure (line 2–3). Then,
algorithm APPROIM-IDC iterates over the integer k. At
each time, APPROIM-IDC selects one node u greedily
(line 4–16). Intuitively, APPROIM-IDC tries to maximize
the benefit obtained locally by selecting u, which may
lose the chance to get the global optimal solution. As
shown by the analysis in the following parts, the solution
of APPROIM-IDC has approximation performance guar-
antees. The variable �v is used to represent the influence
benefit obtained by adding v to S, that is δ(S ∪ v) − δ(S).
The function CALINF is invoked to calculate the influ-
ence (line 8), which will be explained in the following part.
Finally, the set S will be returned by APPROIM-IDC as the
approximation of optimal seed node set (line 17).
The function CALINF is shown in Algorithm 1 also (line

27–64). In the CALINF procedure, the inputs include the
information context set CI , the seed node set S, and the
instance M of IM-IDC model, the task is to compute
the expected influence obtained by diffusing information
from S inM under possible world semantics. As discussed

Algorithm 1 ApproIM-IDC
Input: M = 〈G,P,C,U ,�〉, the information context set CI and a positive

integer k
Output: The seed node set S

1: function APPROIM-IDC(M,CI , k)
2: S ← ∅
3: cur ← 0
4: for i ← 1tok do
5: dinf ← 0
6: u ← null
7: for v ∈ V \ S do
8: �v ← CALINF(S ∪ v,M,CI )−cur
9: if �v > dinf then
10: dinf ← �v
11: u ← v
12: end if
13: end for
14: S ← S ∪ u
15: cur ← cur + dinf
16: end for
17: return S
18: end function

19: function TOSSCOIN(p)
20: coin ← 0
21: r ← getRandom(0,1)
22: if r ≤ p then
23: coin ← 1
24: end if
25: return coin
26: end function

27: function CALINF(S,M,CI )
28: influence ← 0
29: for i ← 1ton do
30: Initialize T, L and R to be empty sets
31: influence ← influence × (

1 − 1
i
)

32: for each node v ∈ V \ S do
33: v.state ← inactive
34: for each context c ∈ CI do
35: v.con[ c] ← false
36: end for
37: end for
38: for each node v ∈ S do
39: v.state ← active
40: T ← T ∪ v
41: R ← R ∪ v
42: L ← L ∪ v
43: end for
44: while L �= ∅ do
45: u ← one node u ∈ L
46: Nu ← neighbors of u in G
47: for each node v ∈ Nu do
48: if v ∈ T then
49: continue
50: end if
51: if TOACTIVE(u, v,M,CI ) then
52: T ← T ∪ {v}
53: if TOPROGRESSIVE(v,M,CI ,R) then
54: L ← L ∪ {v}
55: R ← R ∪ {v}
56: end if
57: end if
58: end for
59: L ← L \ u
60: end while
61: influence ← influence + |T |

i
62: end for
63: return influence
64: end function

before, the problem of computing δ(·) is at least �P-hard;
therefore, we give a randomized algorithm to estimate the
value of δ(·). It is easy to verify that the procedure CALINF
can give an estimation of δ(·) satisfying the requirements
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by allowing multiple runs of the randomized algorithm.
Thus, our idea is to compute the influence by simulating
the information diffusion procedures enough times. First,
the variable influence for storing the final result is initial-
ized to be zero (line 28). Then, the randomized estimation
method will be ran for n times (line 29–62) (the value of
n can be determined according to the method in [2]) and
the averaged value of all result influences will be returned
(line 63). During each iteration, we use three variables
T, L, and R to represent the set which is composed of
the active nodes, the progressive nodes, and progressive
nodes whose influences have not been calculated, respec-
tively (line 30). Then, S is used to initialize all temporary
variables used (line 32–43). Nodes in V are divided into
two parts, S and V \ S, and for each node v the variable
v.state is used to record the node v is inactive, active, or
progressive, and the variable v.con[ c] is used to indicate
whether v has been influenced by the information over a
specified context c. Then, the inactive nodes will be pro-
cessed one by one, and the node may be influenced during
this procedure (line 44–60). The function TOACTIVE is
invoked to determine whether node v will be influenced
by u (line 51). Because of the privacy considerations, even
if v becomes active, it may stop reposting the informa-
tion, therefore, the function TOPROGRESSIVE is invoked
to determine whether v will be progressive (line 54). Dur-
ing the iterations, L is used to maintain the nodes which
should be considered in the computation of influence.
New nodes becoming progressive in the last iteration will
be added into L (line 55), and once one node has been
considered, it will be removed from L(line 59). The two
functions TOPROGRESSIVE and TOACTIVE are shown in
Algorithm 2, which are used to change the state of some
node.

4.3 Analysis of algorithm APPROIM-IDC
In this part, we will show that algorithm APPROIM-IDC
has performance guarantee on time complexity and the
approximation ratio. The main idea is to show the influ-
ence function δ satisfies the properties of monotone and
submodular.
First, based on the observation that the main proce-

dure of algorithm APPROIM-IDC is to iterate among all
nodes, and the CALINF procedure only enumerates every
edge of G, it is easy to verify that algorithm CALINF can
be finished in polynomial time. In the function TOPRO-
GRESSIVE, the time costs can be bounded by O(|C| +
|V |), where C represents the context set usually with
constant size and V is caused by the iteration of N(v).
The time cost of function TOACTIVE can be bounded
by |CI | < |C|. In CALINF, the main time cost comes
from the procedure of processing each progressive node
(line 44–60), it is not hard to verify that the cost can
be bounded by O

(|E|2) · |C|; therefore, the time cost

Algorithm 2 ApproIM-IDC(con.)
Input: M = 〈G,P,C,U ,�〉, the information context set

CI and a positive integer k
Output: The seed node set S

1: function TOPROGRESSIVE(v,M,CI ,R)
2: sizeCu ← |U(v)|
3: p1 ← 0
4: for each context c ∈ U(v) do
5: if c ∈ CI then
6: p1+ = 1

sizeCu
7: end if
8: end for
9: Nv ← neighbor nodes of v in G

10: N̂v ← ∅
11: for each node u ∈ N(v) do
12: if u ∈ R then
13: N̂v = N̂v ∪ {u}
14: end if
15: end for
16: f1 ← |N̂v|+1

|Nv|+1
17: if TOSSCOIN(p1) then
18: if f1 ≥ θv then
19: return true
20: end if
21: end if
22: return false
23: end function

24: function TOACTIVE(u, v,M,CI )
25: flag ← true
26: for each context c ∈ CI do
27: if TOSSCOIN

(
pcuv

)
then

28: v.con[ c] ← true
29: end if
30: flag ← flag ∧ v.con[ c]
31: end for
32: return flag
33: end function

of CALINF can be bounded by O
(
n · |E|2 · |C| + n · |V |).

Combining CALINF with APPROIM-IDC and ignoring the
value |C| by treating it to be a constant, the total time cost
of APPROIM-IDC can be bounded by O(k · n · |V | · |E|2).
Then, we will give an equivalent form of δ, represented

by δ̂, which is based on the general threshold model
defined by [11]. In that model, the influence functions are
defined over node sets but not over nodes. In detail, for a
special node u, an influence function fv is defined by map-
ping the elements in 2{V } to the range [ 0, 1], a necessary
condition is that fv(∅) = 0. A threshold γv is given to con-
trol whether vwill be activated, where vwill become active
when we have fv(S) ≥ γv for which S is the neighbors of v
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active. It is not hard to see that this model can be extended
to the setting of context considerations. We can replace fv
with a set of influence functions {f ϕc

v } where ϕc is a corre-
sponding dimension to a special context in C, and let the
condition that v becomes active be v is influenced by all
contexts, that is we have f ϕc

v (S) ≥ γ
ϕc
v for all contexts.

For the convenience in following this part, we will intro-
duce several useful notations. For an arbitrary active node
set Ŝ, where Ŝ may be different from the input parame-
ter S of the problem since Ŝ will represent the active set
in the network during the whole procedure of information
diffusion, let Hu(S) be the probability that u satisfies the
constraints defined by p1(u, I). Obviously, the condition of
p1 depends on the context sets of information and users, it
is independent from which users have become active. To
be consistent, we still use the parameter S for Hu. For a
special information I, we have Hu(S) = |Cu ∩ CI |/|Cu| =
λu.
For an arbitrary active node set Ŝ and a node u which

has passed the verification of p1 condition, let H ′
u(S) be

the probability that u satisfies the constraints defined by
f1(u). Actually, the probability can be represented by an
indicator function If1(u,S)≥θu(u), which is defined to be 1
if f1(u, S) ≥ θu or 0 if f1(u, S) < θu. Here, f1(u) can be
rewritten with respect to S as f1(u, S) = |Nu∩S|+1

|Nu|+1 , where
the value f1(u, S) only depends on the network structure
and the active set S.
Here, the definition of multi-dimensional threshold

model is introduced first, which is used in [11] to give
general definitions of influence maximization problem
for extending linear threshold and independent cascade
models. Here, for a special dimension ϕ, each node is asso-
ciated with a monotone threshold function f ϕ

v whichmaps
subsets of neighbors of v to a probability value in [ 0, 1],
satisfying f ϕ

v (∅) = 0. Initially, each node v selects a ran-
dom threshold value θ

ϕ
v uniformly. At each step k, a node

v becomes active if and only if for all dimensions the node
v has f ϕ

v (S) ≥ θ
ϕ
v where S is the set of neighbors of v active

in the step k − 1.

Theorem 2 For any instance I = 〈G,C,P,U ,�〉 of
IDC model and an information context set CI , there exists
an equivalent model I ′ = 〈G, F ,�〉 of multi-dimensional
threshold model. That is, for any seed set A, we have
δI(A) = δI′(A).

Proof The proof will consist of two parts, constructing
I ′ for given I and showing δI(A) = δI′(A).
First, we will introduce the method of construction I ′

by assuming that for each node u we have θu > 1
1+|Nu|

which will be eliminated later. Given an instance I =
〈G,C,P,U ,�〉 of IDC model and an information context
set CI , we can build the corresponding multi-dimensional
threshold model I ′ = 〈G, F ,�〉 as follows:

• First, let the network G used in I ′ be the same one in I.
• Second, for each context c ∈ C, construct a

corresponding dimension ϕc ∈ �, and let the set
{ϕc|c ∈ C} be �C . Additionally, build two dimensions
ϕ1 and ϕ2 in �. For each node v ∈ G and each
dimension ϕ ∈ �, there will be a definition of
function f ϕ

v .
• Then, for each context c ∈ CI and its active neighbor

set S, let f ϕc
v (S) = 1 − ∏

u∈S
(
1 − pcuv

)
, and for

context c /∈ CI let f ϕc
v (S) = 1. If S = ∅, let f ϕc

v (S) = 0.
• For the dimension ϕ1, let f ϕ1

v (S) = Hv(S) = λv.
• For the dimension ϕ2, its construction is a little

complex. Essentially, we will build a dimension set for
nodes in G, that is there exist a corresponding
dimension ϕv for each node v ∈ G. The final
dimension ϕ2 is indeed the composition of all ϕv. Let
f ϕv
v (S) = f1(v, S) and f ϕu

v (S) = 1 for all u �= v, and let
f ϕ2
v (S) = f ϕv

v (S). During the information diffusion
procedure, f ϕ2

v (S) will be compared with the random
selected value θϕv .

Next, we will show that the two models are equivalent,
that is given any seed set A, we have δI(A) = δI′(A). The
proof is by induction. The whole procedure of informa-
tion diffusion is divided step by step, where the initial seed
set is step0 and the following steps can be represented by
step1, step2, and so on. Let Ai be the active node set in
stepi. Obviously, A0 = A. Intuitively, since the influence
function δ is defined by the exception value of influ-
enced range, it is sufficient to show that the probability
Pr[ v is active] that each node v will become active during
the information diffusion procedure. Moreover, because
the diffusion steps are relatively independent according to
the definition of IDC model, it will be sufficient to show
that the values of Pr[ v ∈ Ak] are same for the two models.

(1) For the basic, consider A0, it is obvious that
PrI [ v ∈ A0]= PrI′ [ v ∈ A0].

(2) Inductively, assume that for all i ≤ k, we have
PrI [ v ∈ Ai]= PrI′ [ v ∈ Ai]. Then, we will try to show
that for some node v /∈ Ak , the probabilities that v
become active in the next step for the two models are
the same. According to the definition of IDC model,
we have

PrI [ v ∈ Ak+1] (4)

=Hv(Ak) · Pr[H ′
v(Ak) = 1] ·

∏

c∈CI

Hc
v(Ak)

=Hv(Ak) · Pr[ f1(v,Ak) ≥ θv] ·
∏

c∈CI

Hc
v(Ak)

Here, Hc
v(Ak) is the probability that v is influenced by

some factor c and some node in Ak . Since the
influence effects of all nodes in Ak are independent,
we have
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Hc
v(Ak) = 1 −

∏

u∈Ak∩Nv

(
1 − pcuv

)
(5)

According to the definition of I ′, since for each
dimension ϕ the threshold value θϕ is randomly
selected within 0 and 1 in uniform probability, we
have

PrI′ [ v ∈ Ak+1] (6)

=
∏

ϕ∈�

Pr
(
f ϕ
v (Ak) ≥ θϕ

)

=f ϕ1
v (Ak) · Pr [

f ϕ2
v (Ak) ≥ θϕv

] ∏

ϕc∈�C

f ϕc
v (Ak)

Then, according to the construction of I ′, we have
f ϕ1
v (Ak) = Hv(Ak) and

Pr
[
f ϕ2
v (Ak) ≥ θϕv

]
(7)

=
∏

u∈G
Pr

[
f ϕu
v (Ak) ≥ θϕu

]

=
∏

u∈G∧u �=v
Pr

[
f ϕu
v (Ak) ≥ θϕu

] ·

Pr
[
f ϕv
v (Ak) ≥ θϕv

]

=Pr
[
f ϕv
v (Ak) ≥ θϕv

]

=Pr[ f1(v,Ak) ≥ θϕv ]
=f1(v,Ak)

Because all θv in I and all θϕv in I ′ are randomly
selected in uniform way, we have

Pr
[
f ϕ2
v (Ak) ≥ θϕv

] = f1(v,Ak) (8)
= Pr[ f1(v,Ak) ≥ θv]

Moreover, we have
∏

ϕc∈�C

f ϕc
v (Ak) (9)

=
∏

ϕc∈�C∧c/∈CI

f ϕc
v (Ak)

·
∏

ϕc∈�C∧c∈CI

f ϕc
v (Ak)

=
∏

ϕc∈�C∧c∈CI

f ϕc
v (Ak)

=
∏

c∈CI

f ϕc
v (Ak)

=
∏

c∈CI

(1 −
∏

u∈Ak∩Nu

(
1 − pcuv)

)

=
∏

c∈CI

Hc
v(Ak).

Therefore, we have PrI [ v ∈ Ak+1]= PrI′ [ v ∈ Ak+1].

Totally, we will have δI(A) = δI′(A).

Actually, the proof of Theorem 2 still needs the fol-
lowing three theorems to be complete, since we made
an assumption that θu > 1

|Nu|+1 and did not verify the
wellness of definition of I ′.

Theorem 3 For all threshold function f ϕ
v built for I ′, they

are monotone.

Proof Let S ⊆ S′ be two subsets of VG, it can be shown
by verifying the functions. For the dimension ϕc ∈ �C , we
have

f ϕc
v (S′) = 1 −

∏

u∈S′

(
1 − pcuv

)
(10)

= 1 −
∏

u∈S

(
1 − pcuv

) ·
∏

u∈S′\S

(
1 − pcuv

)

≥ 1 −
∏

u∈S

(
1 − pcuv

) ·
∏

u∈S′\S
1

= f ϕc
v (S).

For the dimension ϕ1, we have

f ϕ1
v (S′) = Hv(S′) = |Cv ∩ CI |

|Cv| = f ϕ1
v (S).

For the dimension ϕ2, we have

f1(v, S′) = |Nv ∩ S′| + 1
|Nv| + 1

≥ |Nv ∩ S| + 1
|Nv| + 1

= f1(v, S)

and

f ϕ2
v (S′) = f1(v, S′) ≥ f1(v, S) = f ϕ2

v (S).

Therefore, threshold functions in I ′ are monotone.

Theorem 4 For all threshold function f ϕ
v built for I ′, they

can be extended to a special case satisfying that f ϕ
v (∅) = 0.

Proof It can be finished by f ϕ1
v (∅) = 0. Then, it is easy to

verify that for all threshold functions, we have f ϕ
v (∅) = 0.

The correctness can be verified easily also. Consider the
proof shown in Theorem 2, if S=∅, it means thatA=A0 =
S = ∅. Trivially, we will have δI(A) = δI′(A) = ∅.

Theorem 5 Without the assumption that θu > 1
|Nu|+1 ,

we still have Theorem 2.

Proof Obviously, if the assumption that θu > 1
|Nu|+1

is false, we will have the condition defined by f1 is
trivially satisfied by any non-empty active neighbor set
S. Therefore, in that case, we can let f ϕ2

v (S) = 1
for all S �= ∅ and f ϕ2

v (∅) = 0. Since the diffus-
ing procedure is only meaningful for non-empty neigh-
bor set, the definition will not affect the correctness of
Theorem 2.
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Lemma 1 [11] For the multi-dimensional threshold
model with monotone non-decreasing submodular thresh-
old functions, the expected influence range is a monotone
non-decreasing submodular function with respect to the
seed set.

Theorem 6 AlgorithmAPPROIM-IDC can solve the IM-
IDC problem with (1 − 1/e) approximation ratio.

Proof According to the result in [2], a possible way to
prove the theorem above is to show that δ is monotone
and submodular. Then, the greedy-based approximation
algorithm will induce a (1 − 1/e) approximation ratio.
To show that the influence measure function δ ismono-

tone, it can be obtained by analyzing the following factors
in the information diffusion procedure.

• The first selection is sourced from the privacy
consideration about that users only repost those
information related to their public information.
Intuitively, all users are relatively independent in this
selection; if more users are added into the seed set,
there will be more users in the next selection step.
Therefore, this factor will not decrease the influence.

• The second selection is about f1, which is sourced
from the privacy consideration that the users tend to
hidden themselves in other neighbor nodes.
Intuitively, if more seed nodes are added, for each
special node v, when calculating f1, it is only possible
that more neighbors become progressive, therefore, v
will be more likely to be progressive in the following
steps. Thus, this factor will not decrease the influence
neither.

• The last selection in the IM-IDC problem is the
activate operations. Intuitively, if more seeds are
added, for each special node v, the only possible
change is that more nodes will be used to activate v,
which will also increase the probability that v become
active. Therefore, in the view of this factor, the
influence measure function is monotone also.

To show the submodularity, we can use the result in
[11] and give a representation of δ in the general thresh-
old model. According to Theorem 2, for a given instance
I = 〈G,C,P,U ,�〉 of IDC model and an information con-
text set CI , there exists an equivalent model I ′ = 〈G, F ,�〉
of multi-dimensional threshold model, such that we have
δI(A) = δI′(A) for any seed setA. Since our goal is to prove
δ = δI is submodular with respect to A, it is sufficient
to show that δI′ is submodular. According to Lemma 1, if
we can show for the multi-dimensional threshold model
I ′ all threshold functions are monotone non-decreasing
submodular, the expected value δI′ will be a monotone
non-decreasing submodular function with respect to the

seed set. Therefore, it is sufficient to show that all f ϕ
v for

ϕ ∈ � are monotone non-decreasing and submodular.
Obviously, because of Theorem 3, we only need to show

all f ϕ
v functions are submodular. Recall that, assuming a

function f is defined on all subsets of a set S, f is submod-
ular if and only if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for
any A,B ⊆ S.

• First, f ϕ1
v is submodular. If neither of A and B is

empty, we have
f ϕ1
v (A) + f ϕ1

v (B) = 2λv = f ϕ1
v (A ∪ B) + f ϕ1

v (A ∩ B). If
one of them is empty, we have
f ϕ1
v (A) + f ϕ1

v (B) = λv = f ϕ1
v (A ∪ B) + f ϕ1

v (A ∩ B). If
A = B = ∅, we have
f ϕ1
v (A) + f ϕ1

v (B) = 0 = f ϕ1
v (A ∪ B) + f ϕ1

v (A ∩ B).
• Second, f ϕu

v is submodular. If u �= v, we have
f ϕu
v (A) + f ϕu

v (B) = 2 = f ϕu
v (A ∪ B) + f ϕu

v (A ∩ B);
otherwise, we have
f ϕv
v (A)+f ϕv

v (B) = f1(v,A)+f1(v,B) = 2+|Nv∩A|+|Nv∩B|
|Nv|+1

and f ϕv
v (A∪B)+f ϕv

v (A∩B) = 2+|Nv∩(A∩B)|+|Nv∩(A∪B)|
|Nv|+1 .

Since for arbitrary set S, we have
|Nv ∩ S| = ∑

u∈Nv |u ∩ S|, consider the nodes in Nv
by three disjoint parts, we can easily show the
submodularity. Let u be a node in Nv. If u /∈ A ∪ B,
we have |u ∩ A| = |u ∩ B| = |u ∩ (A ∩ B)| =
|u∩(A∪B)| = |∅| = 0; if u ∈ A ∩ B, we have |u∩A| =
|u∩ B| = |u∩ (A∩ B)| = |u∩ (A∪ B)| = |{u}| = 1; if
u ∈ A ∪ B and u /∈ A ∩ B, we have |u∩A| + |u∩B| =
|u ∩ (A ∩ B)| + |u ∩ (A ∪ B)| = |{u}| = 1. Totally, we
have f ϕu

v (A) + f ϕu
v (B) ≥ f ϕu

v (A ∪ B) + f ϕu
v (A ∩ B).

• Finally, f ϕc
v is submodular. According to the

definition of f ϕc
v , we have

f ϕc
v (A) + f ϕc

v (B)

= 2 −
∏

u∈A

(
1 − pcuv

) −
∏

u∈B

(
1 − pcuv

)

and

f ϕc
v (A ∩ B) + f ϕc

v (A ∪ B)

= 2 −
∏

u∈A∩B

(
1 − pcuv

) −
∏

u∈A∪B

(
1 − pcuv

)
.

Since
⎛

⎝1 −
∏

u∈A\B

(
1 − pcuv

)
⎞

⎠

⎛

⎝1 −
∏

u∈B\A

(
1 − pcuv

)
⎞

⎠ ≥ 0,

we have

1 +
∏

u∈(A\B)∪(B\A)

(
1 − pcuv

)
(11)

≥
∏

u∈A\B

(
1 − pcuv

) +
∏

u∈B\A

(
1 − pcuv

)
.
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Then, we have
∏

u∈A∩B

(
1 − pcuv

) +
∏

u∈A∪B

(
1 − pcuv

)
(12)

≥
∏

u∈A

(
1 − pcuv

) +
∏

u∈B

(
1 − pcuv

)
.

In total, we have
f ϕc
v (A) + f ϕc

v (B) ≥ f ϕc
v (A ∩ B) + f ϕc

v (A ∪ B).

Finally, since the influence measure function δ is mono-
tone and submodular, the greedy algorithm APPROIM-
IDC has a (1 − 1/e) approximation ratio. Here, it should
be noted that the approximation ratio result obtained by
submodularity property is independent from the classical
influence maximization problem, although we change the
way of defining threshold functions in IDC model, we can
still obtain the ratio 1 − 1/e.

5 Extensions and optimizations
5.1 Extension for general influence maximization
The results obtained in previous part are based on careful
analysis about the process of diffusing special information
denoted by CI over IDC model. Theorem 2 only works
for the case that a special information has been given and
the context set CI can be obtained in advance. Essen-
tially, given a network G and settings for IDC model, the
APPROIM-IDC algorithm shown in Fig. 1 can only output
a seed set A which can maximize the expected influence
of given information with context set CI . A more general
case is that the context set of some information is ran-
domly selected within a given domain, and it is expected
that the APPROIM-IDC algorithm can be simply extended
to solve the related influence maximization problem.
First, assume that the information context setCI is taken

from the global context set C, where each context in C is
selected by probability α.

Theorem 7 For any instance I = 〈G,C,P,U ,�〉 of IDC
model, there exists an equivalent model I ′ = 〈G, F ,�〉
of multi-dimensional threshold model. That is, for any
seed set A, suppose the information context set CI is taken
from the global context set C satisfying that each context
is selected uniformly in probability α, we have δ̂I(A) =
ExpCI δI(A) = δI′(A).

Proof According to the proof of Theorem 2, we know
that the influence function δI(A) can be explained as fol-
lows. The whole procedure of information diffusion is
divided step by step, where the initial seed set is step0
and the following steps can be represented by step1, step2,
and so on. The construct of I ′ only needs a small fix,
where for the dimension ϕ1, let f ϕ1

v (S) = α. Obviously, the
instance I ′ is still well defined, and we only need to show

the equivalence. It is sufficient to show that the proba-
bility Pr[v is active] that each node v will become active
during the information diffusion procedure.Moreover, for
each random selected information, because the diffusion
steps are still independent according to the definition of
IDC model, it will be sufficient to show that the values of
Pr[v ∈ Ak] are the same for the two models. Considering
the formula shown in Theorem 2, we have

PrI [ v ∈ Ak+1] (13)

=Hv(Ak) · Pr[ f1(v,Ak) ≥ θv] ·
∏

c∈CI

Hc
v(Ak).

Obviously, for each special information CI and each
node v, the value Hv(Ak) is independent from Ak . Let us
consider another instance I ′′ which is a variant of I such
that the verification of p1 is ignored, let δI′′(A) be the
expected influence value of A. It can be found that δI′′(A)

is independent from CI since I ′′ does not consider the
constraint of p1. Then, we have δ̂I(A) = ExpCI δI(A) =
ExpHv(S) · δI′′(A). According to the definition of p1, we
have ExpHv(S) = Exp|Cv ∩ CI |/|Cv| = α. Thus, we have
δ̂I(A) = α · δI′′(A). According to the definition of I ′ and I ′′,
it is easy to check that δI′(A) = α · δI′′(A) = δ̂I(A).

It is not hard to check that δ̂I(A) also satisfies the sub-
modular property, then, by replacing the procedure of
verifying p1 with checking the value of random variable
generated by probability α, the APPROIM-IDC algorithm
can be extended to solve the influence maximization
problem for general information in IDCmodel, which also
guarantees that the approximation ratio is 1 − 1/e.
For more, assume that the random information has only

context set with fixed size b. Utilizing similar techniques,
we can construct the corresponding instance I ′ by letting

f ϕ1
v (S) = b

|C| . Since E(Hu(S)) = Cb−1
|C|−1
Cb

|C|
= b

|C| , we can

obtain similar result.

Theorem 8 For any instance I = 〈G,C,P,U ,�〉 of IDC
model, suppose the information context set CI is taken
from the global context set C satisfying that each context
is selected uniformly and the context size is b, there exists
an equivalent model I ′ = 〈G, F ,�〉 of multi-dimensional
threshold model, satisfying that ExpCI δI(A) = δI′(A).

Still, the corresponding influence maximization prob-
lem can be solved approximately with ratio 1 − 1/e.

5.2 Optimizations by preprocessing
Compared with classical information diffusion model, the
IDC model is more complex, which is mainly caused by
the verification of information relativeness and privacy.
It appears to have two drawbacks, the first one is we
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need more computation cost to simulate the procedure
of diffusing information in IDC model, the second one is
that most of the previous work on optimizing the influ-
ence maximization algorithms do not work again since
the distributions of active nodes become very different. In
general case, it seems that nothing can be done to fix this,
since IDC model is more expressive and the drawbacks
are the side effects of expressibility. In this part, some spe-
cial cases are considered, and optimization methods are
introduced.
Suppose we know that many information with the same

context set CI is often used to generate the seed set with
maximum expected influence. Given an instance I =
〈G,C,P,U ,�〉 of IDC model, we can simplify G and the
procedure of diffusing information by preprocessing I to
generate another equivalent instance I ′. First, given CI ,
obviously, we can eliminate the function set P to PCI which
only includes the functions related to contexts appearing
inCI . Then, for each node v satisfying thatCv∩CI = ∅, the
out edges of v can be removed from G. Intuitively, even if
v becomes active, it will not try to trigger other nodes fur-
ther, according to the definition of IDC model. For more,
the seed setA can only be considered to be selected within
VG \ v, except for some trivial cases like |VG| ≤ k. When
the values in � have been given, if some node v satisfies
that 1

|Nv|+1 ≥ θv, the verification of the second constraint
defined by f1 can be removed.

5.3 Optimization by removing redundant contexts
In the definition of IDC model, we did not discuss the
problem of redundant contexts which are usually viewed
in real applications. Obviously, the computation cost of
simulating information diffusion procedure will increase
much, even if only one extra context is added. There-
fore, less contexts will produce efficient algorithms for
influence maximization problem.
Redundant contexts need to be identified, which is

helpful to improve the efficiency and fill the missing con-
text information using similar ones. To be simple, it is
assumed that there is a matrix which contains the infor-
mation about similarity values between each two contexts.
In practical applications, such a matrix can be obtained
by learning methods such as embedding algorithms [12]
or ranking algorithms such as simrank [13]. Intuitively,
since the matrix contains similarity values of every pair
of contexts, while the ideal structure we need is actu-
ally a clique-based matrix, efficient algorithms are needed
to resolve this problem. As shown in algorithm 3, the
main idea is a bottom-up method. Two parameters ε1
and ε2, are used to preprocess the similarity matrix to
eliminate the noises as much as possible. Then, P is ini-
tialized to be the most refined partition of all contexts.
For each two partitions in P, every time REDUNCON-
TEXT considers to merge the partitions to build a bigger

Algorithm 3 REDUNCONTEXT
Input: The context set C, the similarity matrix D, 0 ≤

ε1 < ε2 ≤ 1, and 0 < α ≤ 1
Output: A partition P of context C

1: function REDUNCONTEXT(C,D, ε1, ε2)
2: P ← {{c}|c ∈ C}
3: for each value D[ i] [ j] in D do
4: if D[ i] [ j]< ε1 then
5: D[ i] [ j] ← 0
6: end if
7: if D[ i] [ j]> ε2 then
8: Let ci(cj) be the set in P containing i(j)
9: P ← P \ {ci, cj}

10: P ← P ∪ ci ∪ cj
11: end if
12: end for
13: while true do
14: flag ← false
15: for each pair p and p′ in P do

16: factor ←
(∑

ci ,cj∈p∪p′(D[i][j])
) 1
2

|p|+|p′|
17: if factor ≥ α then
18: P ← P \ {p, p′}
19: P ← P ∪ p ∪ p′
20: flag ← true
21: break;
22: end if
23: end for
24: if ! flag then
25: break;
26: end if
27: end while
28: return P
29: end function

partition by calculating a value which can be used to mea-
sure the closeness of the two partitions (line 15–23). If
the two partitions are close enough, they will be merged
into one. If there are no partitions, it can be merged fur-
ther, REDUNCONTEXT stops, and outputs P as the final
result. Intuitively, if two contexts are put into the same
partition in P, they will be treated as redundant contexts
latter.

5.4 Obtaining the influence probabilities by learning
In this part, one possible solution for obtaining the influ-
ence probabilities by learning methods is introduced,
which is based on word2vec, a powerful method for learn-
ing compressed representations. Word2vec is a group of
learning models that are used to produce word embed-
dings which are usually used to reconstruct linguistic
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contexts of words, whose detail can be found in [12]. The
main idea of word2vec is to take the inputs of a large cor-
pus of text and compute a vector space, where each unique
word in the corpus is represented by a corresponding vec-
tor in the space. There are two models often utilized,
CBOW (continuous Bag-of-Words) and Skip-gram (con-
tinuous Skip Gram). A common framework of CBOW
is shown in Fig. 2, it is widely used. There are usually
three layers: input layer, hidden layer, and output layer.
Intuitively, the word2vec method can be used to con-
struct condensed representations for a set of keys. The
co-occurrence relationships of keys are considered, which
means that those keys appearing at the same time when
we try to search the keys within information we take. If we
treat the keys as input of the word2vecmethod, the hidden
layer will maintain a matrix which can be used to explain
the relations between different keys. The matrix can help
us to know which keys are similar, which keys have co-
occurrence relations, and so on. Usually, the output will be
a key which has highest possibility to appear with all given
keys together.
Therefore, one possible solution for determining the

influence probabilities for the contexts can be summa-
rized as follows. For each information sequence, suppose
that the same techniques are utilized to extract contexts
from both users and messages and a bag-of-word model
Q is built to learn the probabilities, the sequence will be

Fig. 2 A continuous bag-of-word model commonly used

transformed into a context set sequence. Here, each con-
text set is obtained from the corresponding users in the
information sequence. Then, by analyzing the message,
another special context set for the message can be pro-
duced, and the context set sequence will be associated
with each item in the message context set. After that,
for each context c, the associated context set sequence
will be sent to the model Q, where each context set
can be reduced to one unique item, since we do not
consider the similarity relation between contexts here.
When estimating the influence probability between two
nodes u and v on special context c, a certain number
of prefix sequences can be generated and concatenated
with u. Using the whole sequence as the input of Q,
the appearing probability of v after this sequence can
be obtained in the output layer. Finally, the influence
probability can be estimated efficiently by running the
model multiple times and taking the average probability
values.

6 Experiments
In this part, experiments on real datasets are conducted
to evaluate the efficiency and performance of the approx-
imation influence maximization algorithm on IM-IDC
problem. The aims of our experiments are to illustrate
the effects of different parameters of the algorithm on the
influence obtained by the algorithm.

6.1 Experiment setting
We ran our experiments on two real datasets, DBLP
and LiveJournal, which are collected from the SNAP
project of Stanford University1. The DBLP dataset is a
large network of research collaboration maintained by
Michael Ley. In the network of DBLP, the nodes rep-
resent the authors of academic papers, and there exist
one edge between two nodes if and only if the two cor-
responding authors have collaborations. For DBLP, we
use the coauthor relationships to compute the influ-
ence probability between two authors. The LiveJournal
dataset is a free online community with almost 10 mil-
lion members, a significant fraction of these members
are highly active. (For example, according to the statis-
tics of the SNAP project, roughly 300,000 update their
content in any given 24-h period.) The members use
LiveJournal to maintain information about journals, indi-
vidual, and group blogs. Also, LiveJournal allows people
to declare which other members are their friends they
belong, which provides us the social relation between
users.
The algorithm APPROIM-IDC is implemented and exe-

cuted on PCs with 3.40 GHz Intel Core i7 CPU and 32 GB
of DDR3 RAM, running Ubuntu 16.04. All experiments
about running times were ran five times, and the average
values are reported.
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6.2 Experimental results and discussions
In the experiments, the effects of contexts considerations
and the performances of the algorithms are evaluated.
The algorithm proposed in the paper is ran over different
datasets, by choosing different parameters, we focus on
the influence effects, the running time costs, and so on.
One key parameter of the APPROIM-IDC algorithm is

the context set C, which actually can be treated to be a
constant set in the experiments, since in real applications
(e.g., DBLP) the number of contexts is limited. Although
the two datasets we used have different properties, the
contexts are similar, since both of them are about publi-
cations and authors. Therefore, We generated the context
sets by first extract contexts from DBLP and LiveJournal
by calculating the frequencies of different items, and then
combing the two contexts together.
For the two other important parameters U and �, the

following methods are adopted to generate the parame-
ters. Since not all contexts are equivalent in the aspect of
appearing frequencies, we did not obtain the information-
related data; therefore, when generating the context sets,
we consider the frequencies of contexts in current datasets
and try to generate data by similar distributions. For the
nodes in the network, besides the context information col-
lected by analyzing the item frequencies, we also generate
the contexts based on the context distribution obtained
from the data in special probability (0.1 in the experi-
ments), and mix the two sets of contexts together. We
do not use the real message in the experiments, since
the information diffusion procedure only focuses the con-
text information indeed, random context sets with low,
medium, and high cardinalities are generated to represent
the real message. For the parameter �, in general exper-
iments, it is randomly selected for each node, while it
is randomly generated according to the Poisson distribu-
tion when the effects of � are evaluated. According to the
parameter λ = 0.1, 0.3, 0.5, the corresponding cases can
be identified to be IM-IDC-A, IM-IDC-B, and IM-IDC-C,
respectively.
Effects of seed set size. The effects of given seed set can

be evaluated by the influenced nodes size, that is to verify
how many nodes are expected to be influenced in average
setting. On the two datasets, we compare the APPROIM-
IDC algorithm on different parameters settings of U to
distinguish different kinds of information. For each special
setting, the seed node set size is changed from low to high,
the influence sizes are recorded. The results are shown in
Figs. 3 and 4. It can be observed that as the size of seed
nodes set increases, the size of influenced nodes increases
almost in linear speed. The result is expected since in a
network all enough large nodes tend to perform uniformly
during the information diffusion. Especially, as discussed
in the previous parts, the IDC model has similar repre-
sentations with the general one which can be obtained by

Fig. 3 The No. of influence set size on DBLP data while increasing the
size of seed nodes, where IM-IDC-L, IM-IDC-M, and IM-IDC-H are
APPROIM-IDC with low,medium, and high context cardinalities

treating each set as the basic considerations of influence
sets.
Also, it can be found that when increasing the value of

U, that is when we change the context set of users from
low to high, the size of influenced nodes set gets smaller.
Essentially, when we increase the size of values of U(·),
there aremainly two factors which will affect the influence
set size. The first is that the probability that each node
become progressive from active gets higher; however, in
practical, it depends on the tossing coin results not just
the probability. Also, the second step about computing
f1 lets the effects of this factor not so obvious. The sec-
ond factor is that the probability that one user gets active
becomes lower. Actually, in real applications, this factor
shows the main effect since it causes a main decrease
of the influence probabilities, especially when the size of
U(·) is relatively small. As shown by the results, when

Fig. 4 The No. of influence set size on LiveJournal data while
increasing the size of seed nodes, where IM-IDC-L, IM-IDC-M, and
IM-IDC-H are APPROIM-IDC with low,medium, and high context
cardinalities
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increasing the size of value of U(·), the entire trend of the
influence set size shows to get lower and lower. Also, the
difference between IM-IDC-H and IM-IDC-M is smaller
than the one between IM-IDC-L and IM-IDC-M.
Effects of �. As discussed above, the parameter set � is

a key factor affecting the procedure of information diffu-
sion. In this part, the effect of� is evaluated by comparing
the influence set size for seed node sets with different sizes
on the two datasets. When increasing the seed node size
from 1 to 50, we ran APPROIM-IDC on the two datasets
for three different λ values for the Poisson distribution
generator, the influence sizes are reported. The result is
shown in Figs. 5 and 6. It can be observed that as the
value of seed node size increases, the size of influenced
nodes increases, which are expected and observed in the
experiments above also. Comparing the results for IM-
IDC-A, IM-IDC-B, and IM-IDC-C, it can be observed that
as the increase of the parameter λ, the influence set size
decreases when the sizes of seed nodes are the same. As
shown in the APPROIM-IDCmethod, it can be known that
the value of λwill determine the values of θ of most nodes.
The higher the value is, the larger the corresponding θ

value is. Then, during the procedure of information diffu-
sion, it will be harder for the node to become progressive,
since it needs more progressive neighbor nodes in that
case.
Running time. For the real applications, one key chal-

lenge of solving the influence maximization problems
is the time cost. That is just the reason that we need
approximation algorithms whose performance on run-
ning time is better than deterministic algorithms. For the
two datasets, we ran the APPROIM-IDC algorithm pro-
posed by this paper on different parameters of seed node
size. For the parameters of APPROIM-IDC, we picked

Fig. 5 The No. of influence set size on DBLP data while increasing the
size of seed nodes, where IM-IDC-A, IM-IDC-B, and IM-IDC-C are
APPROIM-IDC with low,medium, and high Poisson distribution
parameters

Fig. 6 The No. of influence set size on LiveJournal data while
increasing the size of seed nodes, where IM-IDC-A, IM-IDC-B, and
IM-IDC-C are APPROIM-IDC with low,medium, and high Poisson
distribution parameters

six combinations which may represent most settings of
APPROIM-IDC and give us an illustration about the per-
formances of APPROIM-IDC under different application
settings. The running time results are shown in Fig. 7. It
can be found that as the size of seeds set increases the
running time cost also increases, when seed node size
becomes larger the increase speed of running time cost
becomes slow. Also, we can find that the parameters such
as context cardinalities and � have important affections
on the performance of APPROIM-IDC on running time
costs. Generally speaking, the higher the context cardinal-
ities are, the more effcient the running time performance
is, and the higher the values in � are, the running time
performances of APPROIM-IDC become much better.

Fig. 7 The running time costs of APPROIM-IDC on LiveJournal data
while increasing the size of seed nodes
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7 Methods
An approximation algorithm based on greedy strategies is
proposed for the influence maximization problem under
privacy consideration in social networks. The proposed
algorithm utilizes the monotone and submodularity prop-
erties of the influence maximization problem. A method
for building information diffusion model under privacy
protection is proposed. Extension and optimizing meth-
ods based on preprocessing and learning are introduced
to improve the performance of given algorithms.

8 Related work
The influence maximization is an important and classical
problem in the research area of online social networking,
which has many applications such as viral marketing and
computational advertising. It is firstly studied by Domingo
and Richardson [14, 15], and the formalized definitions
and comprehensive theoretical analysis are given in [2].
The standard formal definition of influence maximization
can be explained as follows, given the constraint that at
most k nodes can be selected, the input is a graph which
represents the “influence” relationships between nodes,
the problem is to compute a set of k nodes such that the
number of nodes influenced by the k nodes is maximum.
Essentially, the key question is what the network looks
like and how the information is diffused. Different mod-
els have been formally defined to simulate the information
propagation processes with different characteristics; the
two most popular models are the independent cascade (IC
for short) and linear threshold (LT for short) models. In
[2], the influence maximization problems under both IC
and LT models are shown to be NP-hard problems, and
the problem of computing the exact influence of given
nodes set is shown to be �P-hard problem in [1].
After the problem is proposed, many research efforts

have been made to find the node set with maximum
influence. Kempe et al. [2] proposed an algorithm for
influence maximization based on greedy ideas which has
constant approximation ratio (1 − 1/e). The time com-
plexity of the greedy approximation algorithm of influ-
ence maximization is O(n2(m + n)), which is based on
the assumption that influence can be simulated effi-
ciently, but the time cost is still too high in large-scale
social networks. To overcome the shortcomings of greedy-
based algorithms, [16] proposed CELF (cost-effective
lazy-forward) algorithm. CELF can improve the perfor-
mance of greedy-based algorithms for influence maxi-
mization by reducing the times of evaluations of influence
set of given seed set; however, its performance on large-
scale data is still not satisfying. Using the similar ideas,
CELF++ is proposed to improve the performance of algo-
rithms for solving influence maximization by [17]. In
[3], degree-discount algorithm is proposed to improve
the performance of greedy-based influence maximization

algorithms. By assuming all influence probabilities are
the same in IC models, [3] reduces the complexities of
influence maximization problems and gives better algo-
rithms based on the new models. Utilizing the struc-
tural properties of communities in social networks, [18]
proposed new algorithms by merging similar nodes and
reduce the cost of computing influence set. Goyal et al.
[19] proposed SIMPATH algorithm in LT model which
improves the performance of greedy-based influence
maximization algorithm in LT model. Jiang et al. [20] pro-
posed simulated annealing-based influence maximization
algorithms.
There are also many research efforts focusing on the

influence maximization over new information diffusion
models. For example, [21] proposed new information dif-
fusion models utilizing the idea of finding shortest paths,
which assume that although the network structure is com-
plex, the diffusion of information is always processed
along the shortest paths. The paper also designs heuristic
algorithms for the corresponding influence maximiza-
tion problem. Using this model, [1] proposed heuristic
algorithms based on maximum broadcast paths, which
assumes that the information propagated on the network
is not transfered by shortest path but maximum broad-
cast paths. Intuitively, the broadcast paths can be used to
estimate the influence range, since the information flow
is similar. Therefore, based on the influence probabilities
between nodes, a tree structure which reflects the maxi-
mum broadcast information transferring way can be built
efficiently. Then, by assigning threshold for each node, the
tree structure can be used to control which nodes will be
important during the information diffusion and by focus-
ing the important nodes, the size of nodes related to the
computation of expected influence is reduced. Also, [1]
proved the submodularity of influence functions defined
based onmaximum broadcast paths and designed approx-
imation algorithms with 1 − 1/e approximation ratio. In
[22], timeliness networks with opportunistic selection are
investigated and the information maximization model is
extended to those applications. In [23], maximal time
bound is considered to limit the abilities of diffusing
information in social networks and efficient algorithms
for influence maximization problem for computing max-
imal time bounded positive influence set is proposed.
In [18], similarities of nodes of communities in social
networks are utilized to reduce the number of nodes
involved in the influence computation, and [24] proposed
efficient influence maximization algorithms in parallel-
computing environments. Cai et al. [25] tries to extend
the information maximization models to the applications
of crowd-sourced data-based social networks. Han et al.
[26] considers the communities in social networks and
studies the influence maximization problem over such
networks.
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There are also many works which try to extend the
classic influence maximization methods to other appli-
cation settings. There has been some work focusing on
the problem of influence maximization under location-
based social networks. When locations are considered,
the influence action will be processed by judging whether
two nodes are near enough, and [27] and [28] focus on
the problem of finding k users which can influence max-
imum users in the location-based social network. Topics
are important for the information diffusion, [29] and [30]
study the problem of influence maximization based on
topic-aware considerations. For sensitive information pro-
tection considertion, [31] uses the idea of information dif-
fusion to prevent sensitive information in social networks.
More related work of applications in social networks can
be found in [32, 33].

9 Conclusion
In this paper, based on the privacy considerations of infor-
mation diffusion process on social networks, the IDC
model for diffusing information under privacy protec-
tion mechanisms is proposed. By theoretical analysis, we
determine the complexities of solving influence maxi-
mization on the new model and design efficient algo-
rithms with approximation performance guarantee. By
experiments over real dataset, the performances of IDC
model and the algorithms proposed are verified. One pos-
sible further question is how to provide sophisticated
and accurate influence probability predicting algorithms
for social networks. Another important question is what
is the lower bound of influence maximization problem
under privacy consideration? Essentially, it focuses on the
optimal approximation ratio for heuristic algorithms of
influence maximization problem, which is one direction
of our further study.

Endnote
1 http://snap.stanford.edu/
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