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Abstract

Reinforcement learning (RL) has the advantage of interaction with an environment over time, which is helpful in
cognitive jamming research, especially in an electronic warfare-type scenario, in which the communication parameters
and jamming effect are unknown to a jammer. In this paper, an algorithm for a jamming strategy using orthogonal
matching pursuit (OMP) and multi-armed bandit (MAB) is proposed. We construct a dictionary in which each atom
represents a symbol error rate (SER) curve and can be obtained with known noise distribution and deterministic
parameters. By reconnoitering, the jammer counts acknowledge/not acknowledge (ACK/NACK) frames to calculate the
SER, which is also regarded as samples that are sampled from the real SER curve using an MAB. When we obtain the
sampled sequence and the constructed dictionary, the OMP algorithm is used to search and locate atoms and its
corresponding coefficients. With the searching results, the jammer can construct an SER curve that is similar to the real
SER curve. The experimental results demonstrate that the proposed algorithm can learn an optimal jamming strategy
with three interactions, which converges substantially faster than the state of the art.

Keywords: Reinforcement learning, Cognitive jamming, Orthogonal matching pursuit, Multi-armed bandit, Interaction
times

1 Introduction
Wireless communication has extensive utilization in civilian
and military domains with the advantage of convenience
[1–3]. However, the inherent openness of a wireless
medium renders it susceptible to adversarial attacks [4].
Three categories of jamming methods can be presented as
follows: (1) Reconnaissance, evaluation, and jamming—The
jammer collects the required information, such as modula-
tion scheme, transmission power, and communication pro-
tocols, and takes some targeted actions, such as denial of
service (DOS) attack, eavesdropping attack, and correlation
attack or hybrid attack. (2) Game theory—When both
jammer and communicators can recognize the existence of
each other, actions such as jamming or anti-jamming are
performed to conquer each other. As a result, Nash equilib-
rium is a suitable final result, even though it does not exist
or may require a considerable length of time to acquire [5].
(3) Reinforcement learning (RL) [6]—Trial and error is the
key of RL, and prior information is not necessary to the

jammer. Generally, the learning process is often modeled as
a multi-armed bandit (MAB) [7], and the purpose to
identify the best bandit, which also indicates the optimal
jamming strategy. In this paper, we investigate the ability of
an agent to learn an efficient jamming strategy with sparse
representation and RL.
To fulfill the requirement of communication denial,

jamming is a direct choice and has numerous research
outcomes. Prior to jamming, an attacker should conduct
reconnaissance of the battlefield and evaluate elements
of jamming that can be useful when making jamming
decisions [8]. The major disadvantage of these methods
is that it assumes that the jammer has accurate informa-
tion about environmental factors and receiver actions.
For example, adaptive zero adjustment technology will
decay the power of jamming signals, error detection and
correction technology can reduce the symbol error rate
(SER) of the received information, and anti-jamming
methods such as in-phase and quadrature (IQ) imbal-
ance [9] or anti-chirp-jamming [10] can fade the jam-
ming signal influence. Game theory is a dynamic process
between the jammer and the transmitter-receiver pairs;
it can build a Nash equilibrium between both sides [11],
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but the jammer needs to employ an efficient jamming
strategy, which is also the purpose of this paper. As a
branch of machine learning, the RL feedback (reward) is
less informative than that in supervised learning, where
the agent would be given the correct actions to take (this
information is not always available). The RL feedback is,
however, more informative than that in unsupervised
learning, where there is no explicit feedback on the per-
formance. The advantage of the RL is that the agent
does not need to know the environment model or rules;
only the feedback from the environment is needed.
Therefore, RL has attracted a significant amount of at-
tention for robots, the game field, cognitive radio, and
cognitive jamming. Examples of cognitive radio, in
which RL has been applied, are dynamic channel selec-
tion, channel sensing, and routing. In cognitive jamming,
RL is employed to learn the jamming scheme in a phys-
ical layer, a jamming frame in a media access control
(MAC) layer [12], and jamming nodes in a blind net-
work [13]. Although RL does not need prior information
and is convenient for implementation, it has the disad-
vantage of slow convergence, which is the limitation of
its application.
We propose a novel algorithm for a jamming strat-

egy, which combines the advantage of orthogonal
matching pursuit (OMP) [14] and MAB. The
proposed algorithm fully utilizes prior information,
such as the distribution of the channel noise and the
modulation scheme of the communication signals to
construct a dictionary that contains various SER
curves. The algorithm jams the in-phase and quadra-
ture phase, which corresponds to a reward, such as
the SER can be calculated by counting acknowledge/
not acknowledge (ACK/NACK) frames. The algorithm
regards the received SER values as sampled samples
and searches the optimal atoms with the OMP from
the constructed dictionary. The jammer can predict
the SER curves of both the in-phase and the quadra-
ture phase, which will guide the jammer to choose
the optimal jamming strategy. The experimental
results demonstrate that with proper samples, the
proposed algorithm only needs three interactions with
the environment, which is considerably less than the
state of the art.
The remainder of this paper is organized as follows:

In Section 2, the model of the jamming environment
between the communicators and the jammer is
presented, and the formula for generating a dictionary
is deduced. Section 3 establishes our jamming strategy
learning algorithm that is based on OMP and MAB.
Section 4 compares the performance of the algorithm
in [4, 15–17] with our algorithm. The simulation re-
sults verify the efficiency of the proposed algorithm.
Section 5 concludes the paper.

2 System model
In a real-time jamming environment, too many fac-
tors can influence the jamming effect. For example,
both the transmitter power and the jamming power
would be decayed by obstacles in the transmission path.
The jamming power would be further decayed by receiver’s
anti-jamming actions, such as amplitude limiting and adap-
tive zero attenuation. Figure 1 depicts a real-time jamming
environment in wireless communication. The low-pass
equivalent of a received signal is represented as rm ¼ ffiffiffiffiffiffiffiffi

αPT
p

xm þ ffiffiffiffiffiffiffiffi
βP J

p
jm þ nm, m = 1, 2, ⋯, where PT is the transmit-

ted signal power, PJ is the jamming signal power, xm denotes
the modulated symbols, jm presents the jamming symbols,
and nm is the Gaussian or Rayleigh noise with the power
N0. We denote α and β as decay factors that belong to the
transmission signal and the jamming signal, respectively.
Consider an additive white Gaussian noise (AWGN)

scenario, where the communicators use multiple quadra-
ture amplitude modulation (MQAM) modulated signals
and the jammer uses binary phase shift keying (BPSK)
modulated signals. The average SER in the receiver is
given by:

ξ ¼ X−1ð Þ
2X

η∙ erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α∙PT=N0

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β∙γ∙P J=N0

q� �
ð1Þ

where the parameter η presents a discount factor in the
receiver for error detection and correction reasons,
which remains unknown to the jammer, and X denotes
the dimensions in the in-phase of the communication
signals. Eq. (1) can also be written as:

ξ ¼ X−1ð Þ
2X

η∙ erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT þ ϕ

p
−

ffiffiffiffiffiffiffiffiffiffi
P J=φ

q� �
ð2Þ

In Eq. (2), erfc(∙) is a monotonically decreasing func-
tion, where ϕ = PT(α −N0)/N0, φ =N0/(2β ∙ γ), and PT, ϕ,

Fig. 1 Real-time jamming environment in wireless communication.
The jamming model indicates some decay factors that can influence
the jamming effect, such as a power lost in the transmission path or
a decreased SER by error correction
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and φ are unknown to the jammer. Equation (2) can also
be written as:

ξ ¼ X−1ð Þ
2X

η∙ erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P F þ ω

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
P J=ϖ

q� �
ð3Þ

where PF has a fixed value that is assigned by the jam-
mer, and the parameters ω = PT + ϕ − PF and ϖ = φ. The
jammer can obtain an SER curve ξ 0 ¼ ðX−1Þ

2X ∙ erfc½ ffiffiffiffiffiffi
P F

p
−ffiffiffiffiffi

P J
p � by assuming that the communication signal has
power PF and the true SER curve is similar to ξ′. The
difference is that we should have ξ′ stretched, com-
pressed, or shifted to coincide with the true SER curve
or use a linear combination of several constructed
curves to represent the true SER curve.
With different types of ω, ϖ values, we will have vari-

ous SER curves, within which several curves are needed
to construct the true SER curve. How do we obtain
these curves? We take advantage of the trial and error
by RL with the searching method of sparse representa-
tion [18]. When the dictionary is constructed with a
priori knowledge and the sampled samples are obtained
by interacting with the environment, the sampling se-
quence should be linearly represented by k (also known
as sparsity) atoms in the dictionary. Therefore, the jam-
mer can apply sparse representation algorithms to
search for potential atoms. Although optimization algo-
rithms such as a genetic algorithm can be employed to
search for atoms, they can only search for the best atom
and cannot accurately represent the sampling sequences.
In terms of different norm minimizations that are applied

in sparsity constraints, the sparse representation methods
can be roughly categorized into five groups: (1) l0-norm
minimization, (2) lp-norm (0 < p < 1) minimization, (3)
l1-norm minimization, (4) l2,1-norm minimization, and (5)
l2-norm minimization. We note that the greedy iterative
algorithms that solve the sparse representation method with
l0-norm minimization have the characteristics of low com-
plexity and an extensive range of applications. The greedy it-
erative algorithms include MP [19], OMP [20], regularized
OMP (ROMP) [21], and stagewise OMP (StOMP) [22]. The
computational complexity of MP and OMP is O(N2k2),
where N denotes the atomic dimension. The algorithms of
ROMP and StOMP have a lower computational complexity
O(Nk2) but also a poor reconstruction performance. As a
result, we use the OMP that converges faster than MP to
search for atoms, and algorithms that are better than OMP
await further research.
The general formula of sparse representation is Y =

DX, where Y is the sampled sequence, D denotes the
over-complete atomic dictionary, and X is the sparse co-
efficient. We assume that the jammer jams the in-phase
with power P Jm , P Jn and then regards the received feed-

back ξm, ξn as the action’s reward. With the received
data, the formula Y =DX can also be written as:

⋮
ξm
⋮
ξn
⋮

2
6664

3
7775
N�1

¼
⋯

⋯

⋮
dmm
⋮

dnm

⋮

⋯

⋯

⋮
dmn
⋮

dnn

⋮

⋯

⋯

2
6664

3
7775
N�M

∙

⋮
xm
⋮
xn
⋮

2
6664

3
7775
M�1

ð4Þ

In Eq. (4), Y could be seen as a linear combination of
atoms in D, and the position and coefficient of the
chosen atoms are marked in X.

3 An algorithm for jamming strategy
In the proposed algorithm, we use both MAB and OMP
technology. With MAB, we can obtain sampled data,
which are necessary in Eq. (4). With the latter, we can
obtain the best atoms, which are used to predict the SER
curve. Figure 2 shows the process of the proposed algo-
rithm, in which dictionary construction should be com-
pleted by reconnoitering the environment. This
environment includes communication signals, jamming
signals, noise and feedback signals transmitted by the re-
ceiver. The following details about the proposed algo-
rithm are provided.

3.1 Reward standard
Reward is the key in MAB, which drives the agent to se-
lect actions and learn the best strategy. Regarding jam-
ming missions, a standard is needed to evaluate the
jamming effect. To use TCP/IP as a communication
protocol, the receiver should send ACK/NACK frames
to a transmitter as a response; sometimes, the frames
are not encrypted. If the jammer counts the number of
ACK/NACK frames, the packet error rate (PER) can be

Fig. 2 Process of jamming with SER value prediction. Taking
advantage of trial and error in reinforcement learning, the value
function can be searched by the OMP algorithm from our previously
constructed dictionary
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easily calculated and used to estimate the SER with SER
= 1 − (1 − PER)1/H, where H is the number of bits in the
frame check sequence. In reference [4, 12, 15–17], the
SER is used to evaluate the jamming effects, which
applies to this paper.

3.2 Dictionary construction
With prior knowledge such as modulation scheme and
noise distribution, we can construct the dictionary ac-
cording to Eq. (3), where we directly assign PF a fixed
value and assign ω, ϖ with different values to generate
various atoms. The range of ω, ϖ is determined by PT,
PF, α, β, γ, η, and N0, and additional relationship details
are provided as follows:

ω ¼ PΤ þ ϕ−P F ¼ PT þ P F α−N0ð Þ=N0−P F ¼ αPT=N0−P F

ð5Þ
As PT, N0 has a positive value, the communication sig-

nals have maximum power PTmax , and 0 ≤ α ≤ 1, ω ≥ − PT;
thus, ω≤PTmax=N0−PT.

ϖ ¼ φ ¼ N0= 2βγð Þ ð6Þ
The parameters 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1; thus, we have

ϖ >N0/2.

3.3 Sample selection
In the OMP algorithm, the sampled sequence is used to
search for the proper atoms. Thus, we should obtain
some effective samples that would be helpful in search-
ing for the excepted atoms. For any atom in the diction-
ary, it has a monotone increasing trend that ranges from
0 to some fixed value. For example, when the in-phase
of a QPSK signal is successfully jammed, the maximum
SER in the receiver is 0.5, which indicates that all atoms
have a value of 0 at the initial part and a value of 0.5 at
the end part. The atoms cannot be distinguished accord-
ing to these two values. In view of the above reasons,
the jammer should avoid 0 or 0.5 as samples; a smart
choice is to evaluate the jamming environment and
determine a proper power. After the first interaction, the
jammer has to determine the second jamming power
according to a feedback of the first jamming. In a world,
the purpose of choosing jamming power is to obtain
effective samples with fewer interactions.

3.4 An algorithm for jamming strategy using OMP and
MAB
The proposed algorithm has three stages: the reconnais-
sance stage, preparing stage, and jamming stage. In the
reconnaissance stage, the jammer recognizes the modu-
lation of the communication signal [23] and the distribu-
tion of noise; this information is necessary for dictionary
construction. For the second stage, the jammer has to

determine the jamming power P Jinitial for the first inter-
action. Another study is to construct the dictionary with
given ω and ϖ values. In the most important stage of
jamming, the jammer uses the same power to jam
in-phase and quadrature phase, and then determines
which phase should be jammed in the next action
according to the feedback results. If the decision is
in-phase, the jammer should use another proper
jamming power to jam in-phase. After three jamming
actions, the jammer already has two effective jamming
results ξm and ξn, and should continue to jam with the
in-phase. Equation (4) can be written as:

ξm
ξn

� �
2�1

¼ dm1

dn1

⋯
⋯

dmm

dnm

⋯
⋯

dmn

dnn

⋯
⋯

� �
2�M

∙

⋮
xm
⋮
xn
⋮

2
6664

3
7775
M�1

ð7Þ

With the OMP algorithm, the jammer can identify
proper atoms and coefficients; the schematic diagram of
the proposed jamming algorithm is shown in Fig. 3.
Step 1. Reconnaissance stage: Analyze the modulation

of the communication signal and the distribution of the
channel noise and take a rough estimate of the power of
a communication signal according to the jamming
environment.
Step 2. Preparing stage: Determine the span of the pa-

rameters ω and ϖ, which would be used to construct the
dictionary D with Eqs. (3), (5), and (6), and then decide
the value of the power P Jinitial in the first jamming accord-
ing to the reconnaissance results.
Step 3. Jamming stage:
1. Jam the in-phase one time with P Jinitial and obtain

the feedback ξð1Þm from the environment state.
2. Jam the quadrature phase one time with P Jinitial , and

obtain the feedback ξð2Þm from the environment state.

3. If ξð1Þm > ξð2Þ:m ,
Jam the in-phase one time with a proper jamming

power, which can be decided in terms of ξð1Þm and the re-
connaissance results; the feedback of this jamming ac-

tion is ξð3Þn .
else
Jam the quadrature phase one time with a proper jam-

ming power, which could be decided according to ξð2Þm

and the reconnaissance results; the feedback of this jam-

ming action is ξð3Þk .
end if
4. If the in-phase is jammed by the third jamming

action
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With the sample sequence fξð1Þm ; ξð3Þn g and the con-
structed dictionary D, the optimal SER curve can be cal-
culated by the OMP algorithm.
else if the quadrature phase is jammed by the third

jamming action
The optimal SER value can be obtained with the OMP

algorithm but the sample sequence should be fξð2Þm ; ξð3Þk g.
end if
5. The follow jamming actions can be guided by the

optimal SER curve.
An MQAM signal is equivalent to a pulse ampli-

tude modulation (PAM) signal on two orthogonal
carriers. As the two signal components are orthogonal
in a phase that can be completely separated in the
demodulator, the symbol error rates ξI and ξQ of the
two signals can be calculated and jointly determine
the symbol error rate ξ = 1 − (1 − ξI)(1 − ξQ) of the
MQAM signal. We know that ξ requires more
jamming power than ξI (or ξQ) under the same SER.
Therefore, the jammer can jam only the in-phase or
quadrature phase in the jamming stage, which will
reduce the jamming power while performing effective
jamming.

3.5 Evaluation of the prediction results and advantages of
the proposed algorithm
For any jamming missions, the core demand is to deter-
mine the optimal jamming strategy as soon as possible,
which indicates that the jammer requires few interac-
tions and better prediction performance. In this paper,
we evaluate the convergence rate with the interaction
times and apply the index of the mean square (MS) and
the sum square error (SSE) [24] to measure the predic-
tion performance. The calculations of MS and SSE are
expressed as:

MS ¼ 1
N

XN
i¼1

yi−byij j; SSE ¼
XN
i¼1

yi−byið Þ2 ð8Þ

where y denotes the true SER curve and ŷ denotes the
prediction curve. As shown in Eq. (8), we know that the
lower is the index value, the better is the prediction
performance.
The advantages of this algorithm are listed as follows:

(1) The proposed algorithm only needs to know the
noise distribution as a priori knowledge and does
not need to know the accurate power of the
communication signals and the jamming signals in
the receiver.

(2) The proposed algorithm does not have to divide the
jamming parameters that can avoid the curve of the
dimension in [4].

(3) The proposed algorithm can fully utilize a priori
information, such as the communication scheme
and the noise distribution, to achieve a faster
convergence rate.

4 Methods
The effectiveness of the proposed approach has been
validated by computer simulation experiments. The sim-
ulations were conducted in the MATLAB R2014a envir-
onment on a personal computer with an Intel® Core™ i5
1.7 GHz processor and 4 GB RAM.
Assume that the modulation of the signal used by a

communicator is QPSK and the power of the transmitted
signal is PT = 100 W. For the jammer, the span of the jam-
ming power is PJ ∈ [0,400]W, and the expected SER is ξE
= 0.38. In a jamming mission, both the communication
signal and the jamming signal will be decayed by a trans-
mitter channel; the factor of decay is α = 0.82 and β = 0.68,
respectively. The jamming signal will also be decayed by

Fig. 3 Schematic diagram of the proposed jamming algorithm. Additional details about the process of the proposed jamming algorithm are
shown in the schematic diagram. The dictionary is constructed with reconnaissance result, and the sampled data in OMP is the feedback from
the environment
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adaptive zero attenuation, which is often used by a com-
municator to counter the jamming actions. Thus, the fac-
tor of restraint is γ = [γ(1), γ(2)] = [0.4, 0.3]. The noise that
we assume in this paper is the AWGN, which has zero
mean and one variance. In the preparing phase, we should
construct the dictionary in advance, and the span of the
parameters ω and ϖ is ω = [−100, 400], ϖ = [0.01, 5]. The
algorithm of sparse representation in this paper is OMP,
and the algorithm process will be terminated by an
assigned value.

5 Results and discussion
5.1 Performance of the proposed algorithm
As discussed in Section 3.3, the samples are the key
when using the OMP algorithm to obtain the optimal
SER value. In the given jamming mission, the jammer
jams the in-phase and quadrature phase with 180W and
obtains the feedback 0.359 and 0.141. As mentioned in
Section 3.4, at least two samples are needed in the OMP
algorithm, and the jammer should choose 140W and
160W to jam the in-phase and quadrature phase again.
The feedback of the second jamming action in each
phase is 0.161 and 0.074. With these samples, the
jammer can predict the optimal SER curve by the OMP
algorithm. Figure 4 shows the predicted results in the
in-phase and quadrature phase, where the noise belongs
to the AWGN distribution.
In Fig. 4, the predicted SER curve and the real SER

curve are almost completely overlapped. When we use
SSE to evaluate the difference, the in-phase has SSE =
3.65 × 10−5 and the quadrature phase has SSE = 8.45 ×
10−6. When we compare the SER curve between
in-phase and the quadrature phase, we discover that the

in-phase of the communication signal is more fragile
and determine that jamming in-phase than quadrature
phase with given jamming power. To fulfill the require-
ment of expecting SER ξE = 0.38, the jamming power
should be 188W and the target should be in-phase.
When the noise has a Rayleigh distribution and other

parameters remain unchanged, the in-phase and quadra-
ture phase are jammed two times, and then, the optimal
SER curves can be predicted with the OMP algorithm
again. Figure 5 shows the predicted SER curve and the
real SER curve.
As depicted in Fig. 5, the predicted SER curve and the

real SER curve are almost completely overlapped, the
in-phase curve has SSE = 2.85 × 10−4, and the quadrature
phase curve has SSE = 1.22 × 10−4. Figures 4 and 5 have
different SER curves for different noise distribution rea-
sons. With the proposed algorithm, the jammer can pre-
dict an accurate SER curve.

5.2 Effect of atom numbers on predicted results
The number of atoms in the constructed dictionary de-
pends on ω and ϖ values, and the number of ω and ϖ
depends on the division manner that we employ. When
the span of ω and ϖ are given and statistically analyzed,
we have 10 types of division manners: division(ω) = {50 :
50 : 500} and division(ϖ) = {10 : 10 : 100}. Using these div-
ision manners, the number of atoms are {50 : 50 :
500} × {10 : 10 : 100}. Figure 6 shows the effect of atom
numbers on the predicted results, where MS and SSE
are employed as evaluating indicators.
When the dictionary has fewer atoms, the values of

MS and SSE are large and fluctuated, which indicates
that the predicted SER curve has the same amount of

Fig. 4 Environmental noise belongs to the AWGN distribution. The
predicted results in the in-phase and quadrature phase almost
overlapped with the real SER curve, where the noise belongs to the
AWGN distribution, and the dictionary was constructed with the
AWGN assumption

Fig. 5 Environmental noise belongs to the Rayleigh distribution. The
predicted results in the in-phase and quadrature phase almost
overlapped with the real SER curve, where the noise belongs to
Rayleigh distribution, and the dictionary was constructed with the
Rayleigh assumption
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error as the real SER curve. The predicted SER curve
with error cannot be used as a guide to choose the cor-
rect actions. However, when the atom numbers exceed
20,000, the values of MS and SSE are small, and the
predicted SER curve would be a better guide.

5.3 Jamming with wrong dictionary
We consider two types of noise distributions: AWGN
and Rayleigh. We first assume that the real noise that
exists in a communication channel has an AWGN distri-
bution, but we have a wrong reconnaissance result and
construct the dictionary with the Rayleigh distribution
assumption. Figure 7a shows the predicted results

compared with a real SER curve, where the jammer
requires three interactions both in the in-phase and the
quadrature phase. Figure 7b shows an opposite situation,
in which the noise has a Rayleigh distribution. The
dictionary is constructed with an AWGN distribution
assumption, and three interactions both in the in-phase
and the quadrature phase remain unchanged.
In Fig. 7a, the predicted SER curve is similar to the

real SER curve, with the evaluation index mentioned in
Section 3.5. The SSE value of the in-phase is 0.0132, and
the SSE value of the quadrature phase is 0.0251.
Although the results are higher than the values in Fig. 6,
the jammer can make jamming decisions with the

Fig. 6 Effect of atom numbers to ME and SSE. The MS and SSE are employed as an evaluation indicator, whose performance has correlation with
the atom numbers in the constructed dictionary. a Effect of atom numbers to ME. b Effect of atom numbers to SSE

Fig. 7 Predicted results with the wrong dictionary. The jammer searched the value function with the wrong dictionary. a Dictionary with the
Rayleigh distribution assumption but the real noise has an AWGN distribution. b Dictionary with the AWGN distribution assumption but the real
noise has a Rayleigh distribution
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predicted SER curve. As shown in Fig. 7b, the SSE
value of the in-phase is 0.0236 and the quadrature
phase is 0.0337; the effect of the prediction remains
acceptable.
If the proposed algorithm is not sensitive to the noise

distribution, the jammer still can consider the noise dis-
tribution but the premise is that the SER curves are
similar under different noise distributions; the degree of
similarity that can be accepted depends on the jammer.
In Fig. 7, the jammer incorrectly estimates the Gaussian
distribution and the Rayleigh distribution. However, the
above two noise distributions have similar SER curves at
the same jamming power, so the prediction result
remains acceptable.

5.4 Jamming algorithms comparison
To measure the performance of the proposed algo-
rithm, we make a comparison with dual reinforcement
learning based jamming decision (DRLJD) [16], MAB
[4], greedy algorithm [17], and positive reinforcement
learning-orthogonal decompose (PRLOD) [15]. In these
algorithms, jamming actions can be obtained by
discrete division and be regarded as independent
choices. The jammer needs to perform trial and error
on these actions and takes the action with the highest
reward value as the best jamming strategy. In contrast
to this, the proposed algorithm explores the relation-
ship between actions and takes advantage of it that will
greatly faster the convergence rate. The experimental
conditions are the same as the conditions in Section
5.1, and the jamming times are limited to 500
interactions.
In the DRLJD algorithm, the number of interactions is

relevant to the length of the initial phase, and only the
initial phase is set to more than 200 interactions. The
DRLJD algorithm can learn the optimal or suboptimal
strategy with a possibility of 1, as shown in Fig. 8a. After
204 interactions, the SER curve converges to 0.391,
which fulfill the expected jamming requirement. The
learned jamming strategy is {200W, 190W, 1}, which
indicates that the total jamming power of 200W is
needed, the in-phase has a jamming power of 190W,
and the quadrature phase has a jamming power of 10W.
The MAB algorithm can learn the best action until

all actions have been tried. However, sometimes, too
many actions exist, and the jammer has to choose the
best actions for which the feedback is already known.
In Fig. 8b, we assume that 300 actions would be tried
one by one and the jammer chooses the best action
as the optimal jamming strategy. In this experiment,
the optimal jamming strategy is {240W, 240W, 0.95},
which indicates that the jamming signal has a power
of 240W, the modulation scheme is BPSK, and the

pulse ratio is 0.95. However, even the learned jam-
ming strategy fulfills the expected requirement, it still
has a large jamming power.
A greedy algorithm has a special parameter divide

manner that is decided by the jammer. In an unfamiliar
environment, the jammer does not know the optimal
discretization factor (the optimal jamming strategy is
among the possible strategies that can be chosen by the
greedy algorithm). In Fig. 8c and d, we set the
discretization factors to 3 and 7; thus, we have 27 ac-
tions and 343 actions to try respectively. Although the
discretization factors differ, the jammer learns the same
jamming strategy, in which the optimal jamming power
is 200W and the modulation scheme is BPSK, which in-
dicates that the discretization factors that we established
are too small.
As previously discussed, the proposed algorithm needs

to jam three times to obtain samples; after three interac-
tions, the algorithm converges to the optimal jamming
strategy. In Fig. 8e, the feedback of the jamming action
is 0.387, which fulfills the previously mentioned require-
ments. The learned jamming strategy is {188W, 188W,
1}, which indicates that the minimum jamming power
should be 188W and the modulation scheme is BPSK.
The jamming power and the number of interactions of
the proposed algorithm are less than that of other
algorithms.
The PRLOD algorithm has two phases that are randomly

performed: selection phase and positive reinforcement
learning phase. The length of both phases should be ini-
tially set. In Fig. 8f, the length of the random choose phase
is 50 interactions and the length of the latter phase is 200.
Thus, the jammer requires 250 interactions to converge to
0.436. Besides that, the learned jamming power is 220W,
the in-phase power should be 198W, and the left power
belongs to the quadrature phase.
In contrast to the previous jamming algorithms

based on RL and discretization action, the simulation
results demonstrate that the proposed algorithm con-
siders the correlation among actions and directly pre-
dicts the value function of actions, as mentioned in
Section 5.1, which will substantially alleviate the curse
of dimensionality. With the predicted value function,
the jammer can purposely choose to jam with the
action instead of randomly selecting the action, which
will reduce the number of interactions and ensure
that the proposed algorithm will converge much
faster than other RL algorithms.

6 Conclusions
In this paper, we proposed an algorithm for a jam-
ming strategy using OMP and MAB to predict the
value function of actions. The proposed algorithm can
learn the optimal jamming strategy at the physical
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Fig. 8 Jamming performance among different algorithms. We address four additional algorithms to compare with the algorithm proposed in this
paper, and the convergence curve shows the performance of the above five algorithms. a DRLJD algorithm. b MAB algorithm. c, d Greedy
algorithm with different division manners. e Value prediction based on the algorithm proposed in this paper. f PRLOD algorithm
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layer in an electronic warfare-type scenario with three in-
teractions. Prior knowledge such as communication signal
schemes and noise distribution is needed in the proposed
algorithm, which can be obtained by reconnaissance. The
effect of atom numbers in the constructed dictionary is
also discussed. The rate of learning is considerably faster
compared with commonly employed RL algorithms.
Moreover, the proposed algorithm can learn a substan-
tially smaller jamming power, which fulfills the jamming
expectation and power efficiency.
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