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Abstract

This paper proposes a whole cycle analysis method of supply chain disruption based on underwater acoustic
sensor networks (UASNs). Firstly, the UASNs are deployed to monitor offshore disruptions (such as oil leakage),
and the monitoring data of underwater disruptions can be obtained. Based on the monitoring data, scenario
inference and Bayesian network forecasting are applied to reversely infer the upstream causes and
probabilities of the disruption, which will provide decision-making basis for the effective prevention of such
disruptions in the future. At the same time, based on the monitoring data via UASNs, the DA-NET model of
the petroleum supply chain (PSC) system is built and the impact of the disruption on PSC operation is
analyzed quantitatively, such as cost increase or time delay. The results show that with disruption monitoring
via UASNs, the proposed method can not only infer the causes of a disruption, but also quantitatively
determine the impact of the disruption on the operation of PSC, which has certain guiding significance for
the enterprise managers of the PSC to prevent such disruptions in advance and to deal with them
afterwards.

Keywords: Petroleum supply chain (PSC), Disruption, Underwater acoustic sensor networks (UASNs), Bayesian
network, Forecast

1 Introduction
Underwater acoustic sensor networks (UASNs) consist
of a variable number of sensors and vehicles that are
deployed to perform collaborative monitoring tasks
over a given sea area. UASNs have become more and
more important in ocean exploration applications,
such as ocean monitoring, pollution detection, ocean
resource management, and underwater device main-
tenance [1]. As a kind of strategic material, petroleum
is significant for the industrial economy and national
defense of a country. The uncertain nature and high
economic incentives of the petroleum business are
driving forces for improvements in the supply chain
management. At present, about 80% petroleum is
transported by sea. Inevitably, oil leakage can result
in serious contamination of the ocean and shoreline
environment and bring huge loss to the enterprises of
petroleum supply chain (PSC). Recently, UASNs have

been used to detect pipeline oil leakage, which is es-
pecially significant for the security of PSC. In research
area, the existed papers focused on the applications,
communication protocols, deployment analysis, and
energy management, etc. [2–4]. Modeling and analysis
of PSC based on marine disruption monitoring via
UASNs is not involved, which is a new research and
application area. Therefore, with the function of de-
tecting disruption, UASNs are utilized to infer the
causes and probabilities of the disruption and analyze
the impact of disruptions on the downstream oper-
ation of PSC quantitatively, which is significant for
the members of PSC to prevent and cope with the
disruption.
When obtaining the monitoring data of the disrup-

tion via UASNs, the proposed method can analyze
the PSC disruption from a whole cycle perspective,
which includes reversely inferring the causes and their
probabilities of the disruption, and determine the im-
pact of the disruption on the operation of PSC
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members. Thus, we can accumulate experiences of
such disruptions and prevent them effectively. On the
other hand, known its impact on PSC enterprises, the
managers can deal with the disruption more effi-
ciently and decrease the loss after the disruption oc-
curs. To analyze the impact of the disruption, a Petri
net-based method called DA-NET is applied, which
can illustrate the propagation of disruption and deter-
mine the impact of a disruption on the PSC.

2 Literature review
UASNs can be used to remotely monitor pipelines,
natural gas leaks, equipment condition, and real-time
reservoir status. Data gathered by such devices en-
ables new insights into plant operation and innovative
solutions that aid the oil, gas, and resources indus-
tries in improving platform safety and optimizing op-
erations [5]. Pipeline transportation is the main mode
of undersea petroleum transportation, so pipeline
leakage is generally detected by negative pressure
wave, mass balance, and pressure gradient methods
[6, 7]. Compared with the WSNs, the harsh and un-
predictable underwater environment is a challenge to
UASNs. In addition, UASNs should provide more reli-
able and stable data transmission over a long period
of time. Some problems, such as data collection, trust
model, and privacy, have been studied by [8–11].
Nadeem et al. [12] presented an autonomous under-
water vehicle-aided efficient data-gathering routing
protocol for reliable data delivery in underwater sen-
sor networks. The limited battery resources of UASNs
present a challenge for the deployment of such
long-term sensor networks. Akyildiz et al. [1] mainly
focused on various underwater applications, under-
water acoustic communication, and architecture for
UASNs. Ribeiro et al. [13] proposed an underwater
monitoring system built with sensors distributed over
a subsea infrastructure, which was responsible for the
operation and transportation of oil production. Be-
sides, the use of the currently available equipment
was considered. Data is transmitted by underwater
acoustic modems installed on the sensors, platforms,
and vessels used for logistic support of the petroleum
exploration.
The PSC is very important to the national economic

development. Sear [14] constructed a linear program-
ming network model of the PSC and proposed the ad-
justment strategy of the existing distribution network
and production plan under the fluctuation of demand
and price. Fernandes et al. [15] presented a stochastic
mixed integer linear program (MILP) for PSC design
and planning under the demand uncertainty that maxi-
mized the expected net present value of a multi-entity
multi-product PSC network.

In recent years, disruptions have brought huge loss
to supply chain [16–18]. Disruptions are caused by
natural disasters (earthquakes, flood, fire, etc.) or hu-
man factors (such as terrorist attacks and cyberat-
tacks) [19, 20]. Moreover, supply chains are also
affected by their own uncertainties, such as demand
fluctuations, supply changes, lead time variability, and
exchange rate fluctuations [21]. Fahimnia et al. [22]
systematically analyzed and summarized the research
on disruption management of global supply chain
since 1975. Snyder et al. [23] reviewed the OR/MS lit-
erature on supply chain disruptions, organized into
six categories: evaluating supply disruptions, strategic
decisions, sourcing decisions, contracts and incentives,
inventory, and facility location. Regarding the impact
of disruptions, Hendricks [24] investigated and calcu-
lated 827 supply chain disruptions between 1989 and
2000 and studied the impact of disruptions on enter-
prises. Tang et al. [25] developed a cascading failure
model of risk propagation based on production cap-
ability loss. In the model, the network robustness
levels under different disruption scenarios were com-
pared. Bandaly et al. [26] studied the impact of lead
time variability on the performance of supply chain
risk management in the beer industry using oper-
ational methods and financial derivatives. At the same
time, commodity price risk and demand uncertainty
were considered. Hu et al. [27] studied the stability of
a supply chain with switched system modeling based
on disruption classification. Wu and Blackhurst [28]
presented a network-based modeling methodology to
determine how disruptions propagated in supply
chains and how disruptions affected the supply chain.
However, this method only makes a general assump-
tion about whether a node will be interrupted or not
and does not consider the probability of node inter-
ruption based on the actual situation.
Bayesian network, an uncertain knowledge repre-

sentation model proposed by Pearl [29] in 1986 to
solve uncertainties and incompleteness, has great ad-
vantages in solving complex problems caused by un-
certainties and correlations. Qiu et al. [30] proposed
the merging method of single event Bayesian net-
work with correlation and constructed the Bayesian
network model of emergency chain. Barua et al. [31]
demonstrated a methodology for mapping the fault
tree gates into the Bayesian network and the dy-
namic Bayesian network. In other areas, Bayesian
networks can also make good predictions. Okutan
and Yıldız [32] used Bayesian networks to determine
the probabilistic influential relationships among soft-
ware metrics and defect proneness. Didelot et al.
[33] inferred a time-labeled phylogeny using Bayesian
evolutionary analysis by sampling trees (BEAST), and
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then inferred a transmission network via a Monte
Carlo Markov chain.
At present, the research mainly focuses on the evolu-

tion and evaluation of supply chain disruptions, supply
chain contract, network planning, etc., and there is still a
lack of research on the interaction mechanism between
disruptions and supply chain. For PSC, there is no re-
lated research on the causes and impacts of disruption
on the system operation. Therefore, this paper combines
the Bayesian network forecasting with the DA-NET
modeling to analyze the causes and impact of disrup-
tions quantitatively.

3 Methodology
By exploring the causal relation between risk factors,
a disruption and its impact, a disruption can be ana-
lyzed [34]. Accordingly, we construct the causal
model of the disruption chain of PSC, as shown in
Fig. 1. The input layer is a collection of risk factors,
which is composed of all causes and factors of a dis-
ruption. The state layer is the disruption, which ana-
lyzes the evolution process of the disruption factors.
The output layer is the impact layer, which shows the
damage of the disruption on the PSC.
The methodology of the paper is shown in Fig. 2.

This method consists of three sections: deploying
UASNs to obtain disruption monitoring data, infer-
ring the causes and probabilities of the disruption,
and analyzing the impact of disruption using the

DA-NET model. Based on the monitoring data via
UASNs, the disruption chain is analyzed in the whole
cycle. Firstly, the monitoring data of underwater dis-
ruptions (such as oil leakage volume and leakage
speed) can be obtained by the UASNs. Then, based
on the monitoring data of the disruption, the up-
stream causes and probabilities of the disruption can
be inferred by scenario inference and Bayesian net-
work forecasting. Finally, the impact of the disruption
on the operation of downstream enterprises can be
determined by using the DA-NET modeling method.

3.1 Deployment of UASNs and disruption monitoring
UASNs refer to a distributed intelligent network sys-
tem which consists of many sensors with communica-
tion and computing capabilities in the underwater
area by self-organizing and completing assigned tasks
independently according to the environment. The
nodes of the network monitor collect monitoring in-
formation with sensors in the distribution area of the
network in real time. After data fusion and informa-
tion processing, the real-time monitoring information
is sent to the base station through the underwater
nodes with long-distance transmission capability, and
then the real-time information is transmitted to the
users through the nearshore base station or satellite.
The system layout for monitoring oil leakage using
the UASNs is shown in Fig. 3.
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Fig. 1 The causal relation model of the disruption chain in PSC
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As shown in Fig. 3, UASNs are composed of under-
water nodes, floating nodes in the water, self-moving
nodes, and surface transmission nodes. Each node is
both a data collecting and a data transferring agent in
the network. The UASN protocol consists of the physical
layer, data link layer, and network layer.

1. Physical layer

In the leak detection system, the negative pressure wave
method, pressure gradient method, and other methods com-
bined with the leak detection and positioning technology will
be utilized to monitor the real-time data of pipeline. Once

Fig. 2 The methodology of the paper
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Fig. 3 The system layout of the UASNs
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the oil leakage occurs, the system will alarm immediately,
and the location and volume of the leakage and other related
parameters will be recorded.

2. Data link layer

It is mainly responsible for transmitting data accurately
between two adjacent nodes to ensure point-to-point and
point-to-multiple points connections within the sensor net-
work. The designing objective is to enable each underwater
node to share bandwidth resources fairly and efficiently
while minimizing the time delay and energy consumed.

3. Network layer

The task of the network layer is to design an appropri-
ate routing protocol between the source and destination
nodes. The node energy of UASNs is very limited, and
the communication bandwidth is also limited. Therefore,
the design of the routing protocol has a great influence
on the network usage time.
Based on the leakage volume detected by the UASNs,

the severity of the leakage can be evaluated. Scenario in-
ference is used to determine the causes of the disrup-
tion. According to the location of the interruption in the
PSC, the Bayesian network is used to forecast the prob-
ability of each cause of the disruption, so as to prepare
for future prevention and response to such disruptions.
At the same time, the monitoring data is input into the
DA-NET model to analyze the impact on the down-
stream supply chain enterprises.

3.2 Bayesian network forecasting
Bayesian network, one of the most effective theoretical
models in the area of complexity and uncertainty, is a
kind of graph model that uses directed acyclic graphs to
represent the probability dependencies between vari-
ables. Through bottom-up hierarchical analysis, the
probability of the causal node is deduced according to
the posterior probability of the oil leakage according to
the causal chain.
Suppose x is the cause set of causal relation in Bayesian

network, and y is the result set of causal relation, then there
is x→ y. Each of the set x is xi, and xi ∈ x(i = 1, 2,⋯, n).
When a disruption has occurred, we can determine

the probability of its cause, as shown in (1).

P xi yjð Þ ¼ P xiyð Þ
P yð Þ ¼ P xið ÞP y xijð Þ

Xn
j¼1

p xj
� �

P y xijð Þ
ð1Þ

Bayesian network inference implies a premise of con-
ditional independence, that is, for a given node’s set of
parent nodes, the node is independent to all its

non-descendant nodes. Therefore, the joint probability
of all nodes represented by the Bayesian network can be
expressed as the product of the conditional probability
of each node, then

P x1; x2;⋯; xnð Þ ¼
Yn
i¼1

P xijx1; x2;⋯; xi−1ð Þ

¼
Yn
i¼1

P xijPa xið Þð Þ

ð2Þ

where Pa(xi) is the parent node set of xi.
Dynamic Bayesian network adds time on the basis of

static Bayesian network to make reasoning consistent
and continuous with the development of events; thus, it
is more in line with the reality. A dynamic Bayesian net-
work can be seen as an expansion of a static Bayesian
network along the time axis. Suppose that there are T
periods, n hidden nodes, and m observation nodes and
xij represents the state of the ith hidden node of the jth
period, then there are:

P x11; x12;⋯; xT1; xT2;⋯; xTnjy11; y12;⋯; y1m;⋯; yT1; yT2;⋯; yTmð Þ

¼

Y
i; j

P yijjPa yij
� �� �Y

i;k

P yik jPa yik
� �� �

PY
i; j

P yijjPa yij
� �� �Y

i;k

P yik jPa yik
� �� � ; i∈ 1;T½ �; j∈ 1;m½ �; k∈ 1; n½ �

ð3Þ

where yij is an observation value and Payij is the set of
parent nodes of Yij.
The dynamic Bayesian network for the disruption evo-

lution is shown as Fig. 4.
The dynamic Bayesian network modeling includes the

following steps:

Step 1: Determine the key node variables. Firstly, the
nodes are determined by causal analysis, and then
according to the historical cases or expert experiences,
determine the node variables based on the key elements
Step 2: Construct a dynamic and continuous evolution
process according to Fig. 4
Step 3: Calculate the probabilities of the node variables
in the time-based dynamic Bayesian network from the
disruption back to the upstream causes of the disruption

3.3 DA-NET modeling
Firstly, the explanation of parameters about the
DA-NET is shown in Table 1.
The process of DA-NET modeling is as follows:
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Step 1: Obtain the input matrix I and the output matrix O.
The input matrix I is an input matrix mapping A×M→ {0,
1}, which corresponds to a set of directed arcs from A toM.
The output matrix O is an output matrix mapping, which
corresponds to a set of directed arcs fromM to A
Step 2: Assume the premise of E1 is true, that is, c11 <
accepted cost, then, with a token in m1, a1 is triggered.

Therefore, H1 = [1 0 0]. Also assume the algorithm set F j

¼ f f j1g is a simple sum operation to calculate the cost
Step 3: Consider a DA-NET with m place nodes and n
transition nodes, given Ti the current marking vector,
G the incidence matrix, and Hi the current transition
fire vector, a new marking vector is given by

Tiþ1
� �0 ¼ Ti

� �0 þ G Hiþ1
� �0 ð4Þ

We use (4) to add T i to R(T i).

Step 4: The attribute is updated with (5)

C1;C2;⋯;Cm
� �

Tiþ1
� �0 ¼ F C1;C2;⋯;Cm

� �
Ti
� �0

; D1;D2;⋯;Dn
� �

Hiþ1
� �0n o

ð5Þ

Step 5: The DA-NET is a loop network, so if there is
an enable transition node, we will go back to step 1

4 Case study
The PSC includes crude oil exploration, oil field devel-
opment, crude oil extraction, pipeline transportation,
petrochemical industry, transportation, distributor, and
customers. The PSC is easily affected by the changes of
world oil reserves, production, and prices. In addition,
unlike the traditional supply chain, in which the pro-
duction enterprise is regarded as the core enterprise

S1

D1

E1

S2

E2

S3

E3

t1 t3t2

D: Disposal measures S: Scenario statesE: Disposal target

D2 D3

Fig. 4 The dynamic Bayesian network for the disruption evolution

Table 1 Parameter and explanation of the DA-NET model

Parameter Explanation Parameter Explanation

ai Elements of the transition node set, ai ∈ A, ai = (Di, Fi) A Transition node set, A = {a1, a2,⋯}

cik Elements of the place node attribute set Ci Attribute set of the place node, Ci ¼ fc1i ; c2i ;⋯g
d j
k

Elements of the transition node attribute set Dj Attribute set of the transition node, Di ¼ fd1j ; d2j ;⋯g

f jk Elements of the transition node algorithm set Fj Algorithm set transition node, F j ¼ f f 1j ; f 2j ;⋯g
Ej Decision logic of the transition node G Incidence matrix, where algorithm set G = O − I

hik Elements of the transition firing vector, hik∈H
i Hi Transition fire vector, Hi ¼ ½hi1; hi2;⋯�

li Elements of the arc set I Input matrix mapping, A ×M→ {0, 1}

L Set of arcs, L = {l1, l2⋯}, L ⊆M × A O Output matrix mapping, A ×M→ {0, 1}

mi Elements of the place node set, mi ∈M M Place node set M = {m1,m2,⋯}

pi Elements of the node set, pi ∈ P P Set of nodes, P = {p1, p2,⋯}, P =M ∪ A

R(Ti) Reachable set of DA-NET markings from Ti tij Number of tokens of the place node in marking Ti

Ti Marking of DA-NET, T i ¼ fti1; ti2;⋯g
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and the production as the core process, the pipeline
transportation after oil exploitation is the core process
in the PSC. After pipeline transportation, oil is eventu-
ally distributed to different customers for subsequent
re-production and processing. Therefore, if oil leakage
occurs in the pipeline transportation, it will certainly
affect the operation of downstream enterprises. The
PSC model is shown in Fig. 5.

4.1 Causal analysis with Bayesian network forecasting
On April 20, 2010, the oil leakage in the Gulf of
Mexico has caused great concerns in the world. The
fire and explosion resulted in the damage of offshore
oil wells and finally led to the oil leakage. The under-
water detectors showed that the volume of daily oil
leakage of the drilling riser and drilling pipe was
about 1000 barrels.
The Gulf of Mexico, situated in the southeastern

coastal waters of the North American continent, con-
nects with the Atlantic Ocean through the Florida
Strait and its geological structure is relatively stable,
so geological factors are not considered. According to
the process of on-site rescue, the scenario elements
of the disruption can be analyzed and shown in
Table 2. The whole disruption is divided into six
periods according to the evolution state of the disrup-
tion, which are represented by scenario states,

including operational errors, fire and explosion, ab-
normal oil pressure, aging facilities, pipeline break
and adjacent pipeline break, and end of disruption,
which are also the causes of the disruption.
The evolution path of the Mexico Gulf oil leakage is

shown in Fig. 6.
The conditional probability is determined according to

the expert experiences for the variable with the parent
node. When an event occurs, its node probability for
each period is shown in Fig. 7. Netica (version 5.22.0.0)
is used to calculate the Bayesian probabilities.
Then, scenario inference and probability calculation

are carried out for each stage of the disruption. It is
inferred that, due to operational error, methane iso-
kinetic breaks through the safety barrier in the oil
well, and then explosion occurs. After the explosion,
the oil pressure in oil wells and pipelines is abnormal,
and the equipments are aging. These factors finally
result in oil leakage due to pipeline break. Based on
the historical data and the experiences of experts, the
probabilities of Bayesian network are deduced. The
process is shown in Fig. 7. The probabilities of causes
(scenario states) are shown in Table 3, in which the
probability of S3 and S6 is 100% and 85.9% respect-
ively. The calculation results are basically in line with
the actual situation of the disruption, that is, the ab-
normal pressure of the pipeline and the rupture of

Crude oil
exploration

Oil field 
development

Crude oil 
extraction

Pipeline 
transportation

Petrochemical 
industry

Distributor

End-customer

Raily
transportation

Ship
transportation

Pipeline
transportation

Road
transportation

upstream

downstream

Government
adjustment

Fig. 5 The PSC model
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the adjacent pipelines led to the eventual occurrence
of the oil spill.

4.2 Impact analysis with DA-NET modeling
This section mainly studies the impact of the oil spill
on the PSC. The oil of the Gulf of Mexico has always
been an important source of raw materials for W;
since the disruption, the underwater sensor has de-
tected that the amount of oil leaked every day is
about 5000 barrels, which has led to a shortage of
raw materials for the company and seriously affects
its normal manufacturing operation. Then, the
DA-NET model is used to analyze the disruption on
the PSC in which W Company belongs to. The as-
sumptions are as follows.

1. W is a chemical enterprise engaged in the
production of synthetic fibers. It mainly

manufactures synthetic fibers of three types of
chemical products

2. W can find new suppliers of crude oil on the third
day of the accident

3. W does not have enough emergency stock

According to the disruption in PSC and process of
DA-NET modeling, the DA-NET model of the PSC is
shown in Fig. 8.
In Fig. 8, we can see three kinds of raw materials for

chemical fiber products that are used and assembled.
Then, oil is processed, followed by the impact nodes,
including impurity removal and de-sulfurization, atmos-
pheric distillation, catalytic cracking, and processing of
petroleum. To understand the impact of the p8 disrup-
tion on the PSC, a token is provided for p8. The reach-
able set R(M) of p8 is (p10, p11, p12, p13), and these points
are nodes affected by the disruption. t9, t10, t11, t12

Table 2 Scenario elements of the Gulf of Mexico oil leakage

Scenario states S Disposal target E Disposal measures D

Operation error S1 Unprocessed E1 None D1

Fire and explosion S2 Put out the fire E2 Fire controlling D2

Abnormal oil pressure S3 Adjusting oil pressure E3 Drainage D3

Aging facilities S4 Prevent blow-out E4 Blow-out preventer D4

Pipeline break S5 First leak prevention E5 First leakage repair D5

Adjacent pipeline break S6 Second leak prevention E6 Second leakage repair D6

End of disruption S7–S10

D1 S1 E1

D3

D4

D6

D2

S7

S5S4 S9

S8S3

S2

E6

E5E4

E3

E2

S10S6

D5

yes

yes

yes

yes

no

no

no

Fig. 6 The evolution path of the Gulf of Mexico oil leakage
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related are respectively de-sulfurization, atmospheric
distillation, catalytic cracking, and processing of pet-
roleum. Within 3 days, the disruption leads to higher
costs and affects the efficiency of the PSC. Therefore,
cost and delivery time are chosen as the key perform-
ance indicators to illustrate the impact. Decision sets
are used to determine the fire of transition sets, and
algorithmic sets are used to update the cost and de-
livery time.
Assuming that the customers need 20 units of chem-

ical product from W, the disruption analysis of W is as
follows:

Step 1: According to the flow of the Petri net, we
obtain

I ¼
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

2
664

3
775, O ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

2
664

3
775, and

G ¼
1 0 0 0
−1 1 0 0
0 −1 1 0
0 1 −1 1

2
664

3
775

.

Then, we assume, C ¼ 5 6 13 2½ � D ¼
20 30 10 10½ �, T 0 ¼ 1 0 1 0½ � and H1

¼ 1 0 0 0½ �
Step 2: Assume that the condition of decision set E1 is
correct, c11 ¼ 8 is less than the acceptable price, the
transition fire vector H1 ¼ 1 0 0 0½ �, and the
algorithm set Fj is a sum set, which is used to calculate
the cost
Step 3: We obtain T 1 ¼ 2 −1 1 0½ �T and then
add it to R(Ti). That is, c11 ¼ c21 þ d1

1 ¼ 6þ 20 ¼ 26,
d1
1 ¼ d2

1 þ c11 ¼ 30þ 26 ¼ 56, which iterates until no
transition nodes are fired. Through iteration
calculation, it can be concluded that the updated C
¼ 26 20 12 10½ �, D ¼ 56 40 22 10½ �. Within
3 days of oil disruption in W, the cost increases and
delivery is delayed. For 1 unit product, the total cost
increases by $42 and the time delay is 58 h

5 Results and discussion
As the main aim of our research was to address two re-
lated questions, we discuss hereafter the implications of
the research findings in order to explicitly explain each
question.

Fig. 7 Probability inference of the Gulf of Mexico oil leakage

Table 3 Probabilities of the causes (scenario state)

Causes (scenario states) Probabilities (%)

S1 70

S2 70.1

S3 100

S4 70

S5 78

S6 85.9
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5.1 Causal analysis
As described before, scenario inference and probabil-
ity calculation are carried out to analyze the causes of
the disruption. Scenario inference is utilized to iden-
tify the causes qualitatively, based on the causal rela-
tion model of the disruption chain in PSC. Then, we
need more detailed information about the cause-effect
relation of the disruption chain. Based on the histor-
ical data and the experiences of experts, the probabil-
ities of Bayesian network are deduced. Finally, we not
only get the causes of the disruption, but also identify
their probabilities, which is especially hard and
significant for the decision-maker to cope with the
disruption. As shown in [25–27], most research
focused on the impact of disruptions. Although some
researchers addressed the causes, they used the
qualitative method to explain what factors led to

disruptions. Especially for the oil leakage, it does not
often occur, so we do not have sufficient information
and data to infer the causes. Thus, with the help of
Bayesian forecasting, we can tackle the problem.

5.2 Impact analysis
The other issue we address is the impact of the PSC
disruption. After oil leakage happened, we need to
know what are the causes and what the disruption
will lead to. If we know the impact of the disruption,
we can prepare in advance and reduce the loss. So it
is important for the managers of the PSC and down-
stream members to make decisions. We combine the
practical technology with the theoretical method to
solve the problem. Here, UASNs are designed to de-
tect pipeline oil leakage, and then, the DA-NET
model is built to analyze the disruption on the PSC.

p1

p13p12p11

p10p9

p8p7p6

p5

p4

p3p2

t1

t12t11t10

t9t8t7

t6

t5t4

t3t2

Fig. 8 The DA-NET model of the PSC
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Oil leakage is a special kind of disruption, which hap-
pens in the sea and difficult to collect disruption data.
Thus, identifying its impact accurately is basically im-
possible. With the input data via UASNs, the
DA-NET model is applied and we can infer the ac-
curate impact on the PSC, for example, time delay
and cost increase. When we get the result, the man-
agers can plan the delivery and ordering in advance,
and the fluctuation of the supply chain will be
controlled.
The method proposed in the paper can be applied to

analyze other kinds of disruptions. The causal analysis
with Bayesian network forecasting and impact analysis
with DA-NET modeling also can be separated to use.

5.3 Limitations and future research directions
The paper proposes a whole cycle analysis method of
supply chain disruption based on UASNs. Although
the method can provide causes and impact of oil
leakage simultaneously, there exist some limitations.
Because of the particularity of oil leakage, we lack
sufficient data and experience. So the causal relation
model of the disruption chain is not accurate. Perhaps
some causes are missing. In the future, we should ac-
cumulate more cases and data to improve the model.
Moreover, DA-NET modeling is a method based on
Petri net and analysis of disruption evolution. The
reasonable inference of disruption evolution path is
the key factor to obtain the accurate impact on PSC
operation. So how to analyze the evolution and devel-
opment of a disruption is essential to solve in the
future.

6 Conclusion
UASNs present a golden opportunity for marine dis-
ruption analysis. In the paper, we proposed a whole
cycle disruption analysis approach for the PSC. When
we obtained the monitoring data of a disruption via
the UASNs, we can infer the causes of the disruption
and also determine the impact of the disruption. In
detail, scenario inference and Bayesian network are
applied to reversely infer the upstream causes and
probabilities of the disruption, the DA-NET model of
the PSC is developed, and the impact of the disrup-
tion (cost and time delay) is analyzed quantitatively.
For the oil leakage in PSC, operational errors, fire
and explosion, abnormal oil pressure, aging facilities,
and pipeline break are usually the causes of the
disruption. With the proposed method, we can infer
the causes and their probabilities after analyzing the
evolution path of the disruption. Moreover, with the
DA-NET model, the cost increase and time delay of a
supply chain caused by the disruption can be
calculated.
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