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Abstract

The raw log messages record extremely rich system, network, and application running dynamic information that is
a good data source for abnormal detection. Log template extraction is an important prerequisite for log sequence
anomaly detection. The problems of the existing log template extraction methods are mostly offline, and the few
online methods have insufficient F1-score in multi-source log data. In view of the shortcomings of the existing
methods, an online log template extraction method called LogOHC is proposed. Firstly, the raw log messages are
preprocessed, and the word distributed representation (word2vec) is used to vectorize the log messages online.
Then, the online hierarchical clustering algorithm is applied, and finally, log templates are generated. The
experimental analysis shows that LogOHC has a higher F1-score than the existing log template extraction methods,
is suitable for multi-source log data sets, and has a shorter single-step execution time, which can meet the
requirements of online real-time processing.
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1 Introduction
The network environment is increasingly complex, and
attacks against network applications and different systems
are constantly emerging and are often combined with
multiple attack methods. Once the attack succeeds or the
network application itself is abnormal, it will bring im-
measurable losses to the owners and users of the appli-
cation. The earlier the attack and error are discovered, the
less damage it will cause. Therefore, anomaly detection
has caused extensive attention from the academia. Current
anomaly detection data sources include malware and
traffic, but they all have their shortcomings [1–3].
Networks, systems, and applications generate various

types of log data during running that are used to record
the status of networks, systems, and applications, as well
as important events. Therefore, log data contain extremely
rich network operational dynamic information that can be
used for anomaly detection [4–9], discover and diagnose
performance problems [10], and find software bugs [11].
Because the log-based anomaly detection method has the
characteristics of an accurate analysis of attack problems

and reconfigurability of attack chains, it is increasingly
becoming the mainstream method for detecting abnormal
behavior of network or system. On the other hand, the log
data has the characteristics of large data volume, hetero-
geneity, and unstructured, which poses great challenges
for the analysis.
The log is sequence data, generated by the corre-

sponding template of log print statements in the source
code. A template reflects a type of event, but we do not
know the code beforehand. The log sequence records
the events that occur in the system. Inspired by natural
language processing, each log message can be viewed as
a sentence. The log-based anomaly detection can be
regarded as a text prediction to some extent. However,
the log data has a large volume. Generally, templates are
extracted from the log messages firstly. The log-based
anomaly detection can be simplified to the abnormal
detection for the log sequence, that is, the abnormal
detection for the log template sequence. So log template
extraction is an important prerequisite for log-based
anomaly detection, and it is highly valued by the
academia. Traditionally, log template extraction mainly
relied on regular expressions, which are designed by
analysts. But it is too much subject to the log format
and so manually. In recent years, log template extraction
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is widely studied to parse the raw log messages auto-
matically [12–20]. However, these methods relied on the
log format and most of them were offline, which did not
meet the real-time requirements for log analysis. In re-
sponse to this problem, Du and Li [13] and He et al.
[14] proposed Spell and Drain for online log template
extraction. Spell extracted the log templates online
based on the idea of the longest common subsequence
matching and solved the online extraction problem of
the log templates. Drain parsed log messages in a
streaming mode and further improved the accuracy and
running time. However, the existing online log template
extraction methods were not accurate and efficient
enough. More importantly, they did not analyze their
applicability to multi-source logs, which had a different
log format, while this requirement was often present in
practical applications.
In view of the shortcomings of the existing methods,

this paper proposes an online log template extraction
method, namely, LogOHC. Firstly, the raw log messages
are preprocessed, and the word distributed represen-
tation (word2vec) is used to vectorize the log messages
online. Then, the online hierarchical clustering algo-
rithm is applied, and finally, log templates are generated.
The process of vectorization is word embedding, which
is inspired by natural language processing. It is not
limited by the log format, and suitable for multi-source
heterogeneous log data. We evaluate LogOHC on
real-world log data sets. It demonstrates a higher
F1-score and a shorter single-step execution time, which
can fully meet the needs of online log analysis.
The main contributions and innovations of this paper

are summarized as the following:
(1) On the basis of data preprocessing, this paper

vectorizes the log message online using the mean value
word2vec algorithm to provide a high-quality data source
for online hierarchical clustering. It applies the idea of
natural language processing to log processing, which is
not subject to the log format;
(2) This paper proposes an online log template extrac-

tion method based on online hierarchical clustering,
meeting the needs of online processing of log data;
(3) Sufficient experiments have been conducted on

three real-world log data sets. Three state-of-the-art
methods are used to automatically extract log templates
as the competing baseline. Our study shows that com-
pared with state-of-the-art methods, LogOHC out-
performs them in terms of effectiveness and also has
the superiority in efficiency and the sensitivity of the
parameters.
The remainder of this paper is organized as follows:

Section 2 provides preliminary and background, Section 3
presents the LogOHC log template extraction method,
Section 4 conducts the experimental evaluation, and

Section 5 summarizes the full paper and proposes further
research directions.

2 Preliminary and background
2.1 Problem description
For the convenience of the expression of the following
chapters, we define a few terms: the raw log messages
refer to the event records that are generated by the
network device, system, and service program during
operation. A log message (or event) refers to a single line
in the raw log messages after preprocessing. A log
template is defined as the description for events in the
same log group with a similar structure.
The raw log message structure contains two parts: the

log template and the parameter value. The log template
extraction is a process of continuously clustering the
raw log messages. Figure 1 lists four raw log messages,
INFO is an event type in the system log, and the content
after INFO describes the events that occur in the system.
The raw log messages are generated by a certain
template format, although we do not know the specific
template in advance. For example, the first and second
raw log messages have a common template: generating
core.*. “3450” and “3440” are parameter values. The four
raw log messages in Fig. 1 generate three log templates.
Common parameter values include a port number, IP
address, file path, number, etc. The format is not the
same as those used by different systems and different
devices to express the same parameter. So an accurate
template cannot be obtained only through regular
expression matching. The method LogOHC in this paper
is to use the idea of online hierarchical clustering for log
parsing and get the log template in real-time accurately.

2.2 Related work
At present, log template extraction has two main
methods: clustering-based log template extraction method
[14–18] and heuristic-based log template extraction
method [12, 13].
The clustering-based log template extraction method

firstly calculates the similarity among logs, uses the
corresponding clustering method to classify the logs into
different categories according to the similarity, and
finally extracts the log templates. SLCT proposed by
Vaarandi [16] was the earliest method of log template
extraction. This method classified logs with common
frequent words into one category; however, this method
did not consider the position information of words. Tang
and Li proposed LogTree [15] to convert the raw log
messages into tree-type semi-structured information.
It classified the words in the log messages into five
categories including word, number, IP address, etc.,
and then established similarity function based on
whether the words in the same position in the two
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log messages were of the same type, clustered and
extracted the log templates. Tang et al. proposed LogSig
[18] to generate system events from textual log messages.
By searching the most representative message signatures,
LogSig categorizes log messages into a set of event types.
It was able to incorporate human’s domain knowledge to
achieve high performance. It used the domain knowledge
to establish regular expressions, converted each log
message into sets of word pairs, and clustered based on
word pairs, then extracted log templates for each category.
This method was not limited by the log format. Ning et al.
proposed HLAer [17], a heterogeneous log analysis
system, which adopted a hierarchical clustering method.
He et al. proposed Drain [14]. It did not require source
code or any information other than raw log messages. It
converted the log messages into a fixed-length analysis
tree according to certain rules, first grouped the log
messages by the length of the log messages, then grouped
the log messages by tokens, and finally compared whether
the words in the same position were the same word to
establish a similarity function, clustered, and extracted
the log templates.
The heuristic-based log template extraction method

extracts the templates according to the format infor-
mation of the raw log messages or the word information
in the raw log messages. Makanju et al. [12] proposed
IPLoM to add location information on the basis of
SLCT. It made full use of the format characteristics of
the raw log messages, carried out three-step hierarchical

partition on the raw log messages, classified the log
messages into different categories, and finally generated
a log template for each category. However, this method
was only applicable to the logs with an extremely strict
format. Du et al. proposed Spell [13] to extract the log
templates based on the idea of the longest common sub-
sequence matching. With streaming, real-time message
template and parameter extraction produced by Spell
not only provides a concise, intuitive summary for end
users, but the logs are also represented by clean struc-
tured data to be processed and analyzed further using
advanced data analytics methods by down-stream ana-
lysts. It solved the online extraction problem of the log
templates for the first time. The experimental results
showed that this method had significantly improved the
F1-score and efficiency compared with the previous
offline algorithm.
There are other studies on the log template extraction.

For example, Beschastnikh et al. [19] used pre-defined
rules in the specialized domain for expression. Fu et al.
[20] extracted log templates using log print statements
in the source code. The method using the rule for re-
presentation requires domain knowledge. The method of
using the source code for log parsing, although highly
accurate, is generally not available, because ordinary
engineers cannot get the source code generating logs.
In the field which researches of log analysis, a great
deal of researchers did a lot of related works about
detecting anomaly [21–31].

Fig. 1 Description of the log templates extraction problem
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The most important feature of the abovementioned
clustering-based log template extraction method is that
when the similarity function is established. Different
from the general text data, it fully explores the structural
information of the log data and establishes a similarity
function suitable for the log data characteristics. How-
ever, different types of log data have different characte-
ristics. It is difficult to find a general similarity function
that can be applied to all types of log data. Additionally,
most of these algorithms are offline algorithms, which
occupy high system memory and cannot meet the online
requirement of log analysis. Although some heuristic-
based log template extraction methods achieve online
extraction of log templates, they do not analyze their
applicability to multi-source log data.

3 LogOHC method
We now present LogOHC, an online log template ex-
traction method for log messages. In this section, the
distributed word representation (word2vec) method is
used to online vectorize the log messages, and the online
hierarchical clustering algorithm is used to cluster the
log messages, and finally log templates are generated.
The basic steps of the LogOHC method are shown

in Fig. 2.

3.1 Log preprocessing and online vectorization
The raw log messages cannot be directly used as an in-
put to the clustering algorithm, and a mathematical
method is needed to convert the text into digital in-
formation in vector form. If the raw log messages are
directly vectorized, there will be problems such as exces-
sive log vocabulary, long training time, and excessive
interference words affecting the training effect. For
example, each raw log message will contain an accurate
log generation time. In a data set containing millions or
even hundreds of millions of raw log messages, only the
log message generating time will make the vocabulary
very large, which greatly affects the training speed. The
role of the timestamp is negligible for us to study log
template extraction. Therefore, we need to perform data
cleaning for the raw log message data set first and use
regular expression matching to remove parameter values
including the time and IP address. Then, we need to

segment the words and remove the stop words for the
log messages. The experiment has proved that the 2000
raw log messages randomly selected in the BLG data set
were preprocessed, and the number of words in the
vocabulary generated after preprocessing was reduced from
more than 10,000 to more than 2000 compared with the
number of words in the vocabulary directly generated
without preprocessing, which greatly improved operational
efficiency.
The preprocessed log messages are represented using

the word2vec. The basic idea is to map each word into a
K-dimensional real number vector by training. This
paper uses “CBOW + negative sampling” training model
and optimization method, as shown in Fig. 3. A piece of
text in the log data set w−c, ⋯w−2, w−1, w, w1, w2, ⋯wc

is marked as a sample (context(w),w). CBOW used a
three-layer neural network: the input layer, the pro-
jection layer, and the output layer. It uses the context of
the word to predict the current word. The input layer is
2c context word vectors V(contexti(w)) of w, the pro-
jection layer Xw is the sum of all V(contexti(w)), and a
negative sampling optimization algorithm is used for the
output layer to find the word embedding that makes
g(w) the largest. It is considered that w is a positive
sample, and different negative sampling algorithms can
be used to select the negative sample. After a non-empty
negative sample set NEG(w) about context(w) is deter-
mined, the corresponding words in the log vocabulary
are determined to have a positive sample label of 1 and a
negative sample label of 0. In the objective function of
the output layer,

p ujcontext wð Þð Þ ¼ σ ΧΤ
wθ

u� �
; u ¼ w

1−σ ΧΤ
wθ

u� �
; u≠w

�
; σ is sigmod function

ð1Þ

What obtained from word2vec is a vector represen-
tation of one word, and the vector representation of the
entire log message cannot be directly obtained. This
paper averages the word embedding of each word in the
log message, as the vector representation of the entire
log message V(lj).

Fig. 2 Basic steps of the LogOHC method
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V l j
� � ¼ 1

l j
�� ��

Xl jj j

i¼1

V wið Þ ð2Þ

V(wi) represents the word embedding of wi, lj re-
presents jth log message, and |lj| represents the length
of the jth log message (the number of words).
The word2vec model can easily learn the vector re-

presentation of new words from the new log message.
The specific process is to judge whether the words in
the newly added log message are in the log vocabulary; if
not, add new words to the log vocabulary and load the
trained model to incrementally train new words. That is,
we can load new words into the existing model and
online get the word embedding without re-learning all.

3.2 Online hierarchical clustering for log messages
Hierarchical clustering is to create a hierarchical nested
clustering tree by calculating the similarity between
different types of data points. In the clustering tree, the
original data points of different categories are the lowest
layer of the tree. The top layer of the tree is the root
node of a cluster, and the root node cluster covers all

the data points. LogOHC applies an online hierarchical
clustering algorithm [32] to aggregate and group log
messages with similar structures. Each leaf node cor-
responds to a log message, and any internal node cor-
responds to a class cluster. The elements in the class
cluster are all leaf nodes using this internal node as the an-
cestor node. The online hierarchical clustering algorithm
for log messages includes the following three basic steps:
Step 1: A new log message is inserted, as shown in

Fig. 4, traverse the current clustering tree, compares the
distance between the newly inserted log message node l′

and all leaf nodes (all log messages that have been
inserted), and the nearest log message l is found. There
are two cases: for the first case in Fig. 4, l′ is inserted
directly, so that l and l′ have a common parent node; for
the second case in Fig. 4, the structure of the tree is
adjusted so that l and l′ have a common parent node.
This is done by cutting the connection between l and its
parent node and inserting the new internal node p as
the parent node of l and l′. However, the disadvantage of
this is that the algorithm complexity is too high, and
each time a new node is inserted. It has to traverse the
entire clustering tree. So the idea of a bounding box is

Fig. 3 CBOW + negative sampling training and optimization process

Fig. 4 Steps to insert a new node
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introduced; here, each internal node maintains a bound-
ing box that contains all of its leaves (log messages).
When a new log message l′ is inserted, it is not neces-
sary to compare the distances with each of the inserted
log vectors, only to compare the boundary distance with
the internal nodes, as so to logarithmically reduce the al-
gorithm complexity. dmin(l

′, v)2 and dmax(l
′, v)2 are

respectively used to represent the squares of the minimum
and maximum distances between the newly inserted log
message l′ and the internal node v. j in Formulas (3) and
(4) represents the jth dimension. vj− and vj+ represent the
minimum and maximum coordinates of the internal node
v in the jth dimension coordinate. Vj(l

′) represents the
value of the newly inserted log message l′ in the jth
dimension coordinate. Taking 2D as an example, as shown
in Fig. 5, due to dmax(l

′, l) < dmin(l
′, v), l and l′ belong to

the same cluster.

dmin l0; vð Þ2 ¼
Xd
j¼1

V j l
0ð Þ−v j−

� �2
if V j l

0ð Þ≤v j−
V j l

0ð Þ−v jþ
� �2

if V j l
0ð Þ≥v jþ

0 others

8><
>:

ð3Þ

dmax l0; vð Þ2 ¼
Xd
j¼1

max V j l
0ð Þ−v j−

� �2
; V j l

0ð Þ−v jþ
� �2n o

ð4Þ

Step 2: Determining if any nodes are masked. The
basis is Formula (5):

max
y∈lvsðv0 Þ

x−yk k > min
z∈lvsðaÞ

x−zk k ð5Þ

where v′ is the sibling node of v, lvs(v′) represents the

set of all log messages contained in the internal node v′,
and a is the sibling node of the v′s parent, x ∈ lvs(v′).
As in the first case of Fig. 4, if ‖l' − l‖ > ‖a − l‖, the

node l is masked. The tree structure is adjusted by the
following steps to insert a new log message, as shown in
the blue part of Fig. 6.
Step 3: Balanced rotations of the clustering tree.
Both of the adjustments of the tree after the node

being masked (Fig. 6) and the adjustment of the tree by
directly inserting the nodes (the case 2 in Fig. 4) cause
the structure of the tree to change. The depth of the
adjusted tree is too deep, and the difference in depth
between the left subtree and the right subtree exceeds 1,
resulting in a tree unbalance. It is required to further
rotate the unbalanced tree based on the balanced
binary tree.
The pseudo codes of the inserted new log online are

as follows:

3.3 Online log template extraction
Found from actual experiments, log messages with the
same template have the same length. Do the following
for the new log added to the cluster:
Step 1. Determine whether the new log message added

to the current cluster is the same as the length of the
existing log template in the current cluster. If yes, go to
step 2. If no, go to step 3.
Step 2. Compare the new log message added to the

cluster and the template of the same length in the
current cluster word by word to determine whether they
are the same word. If yes, the word in this position in
the template keeps the word unchanged; if not, the word
in the position in the template is replaced by *. Go to
step 1.
Step 3. Use the newly added log message as a new

template in the current cluster. Go to step 1.
The pseudo codes of the online log template extraction

algorithm are as follows:
Fig. 5 Optimized method of inserting new nodes
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3.4 Algorithm complexity analysis
In the LogOHC algorithm, the main computation over-
head is log online vectorization and online hierarchical
clustering. In the log vectorization phase, the time
complexity is O(logV) (V is the size of the vocabulary).
During the online hierarchical clustering process, the
process of adding a new log message uses A* search.
This paper introduces the idea of the bounding box to
optimize its search strategy. The optimized time com-
plexity is O(logN). During the online log template
extraction phase, the complexity is O(E*L) (E is the count
of templates, L is the largest length of the template). So
the total time complexity is O(logV+logN+ E*L).

4 Experimental evaluation
4.1 Experimental environment and data sets
The experimental environment uses Windows 7 system,
32-GB dual-channel DDR4 memory, Intel(R) Core(TM)
i7-6800 K CPU @ 3.40 GHz processor. The log data set
BlueGene/L (BGL) is a public, partially tagged data set
from IBM’s renowned high-performance computing lab
(Lawrence Livermore National Labs, LLNL). The BGL
data set [33, 34] contains 4,747,963 raw log messages of
215 days, with a size of 708M. HPC data set [33, 34] is a
high-performance cluster log collected by Los Alamos
National Labs, containing 433,490 raw log messages.
HDFS data set [33, 34] is a log data set collected from
the 203 node cluster of the Amazon EC2 platform. He et
al. [35] randomly sampled 2000 raw log messages from
BGL, HDFS, and HPC called 2kBGL, 2kHDFS, and
2kHPC, and performed manual classification and tem-
plate extraction for 2kBGL, 2kHDFS, and 2kHPC, and

obtained 112, 14, and 44 log templates respectively. To
verify that the LogOHC method is applicable to
multi-source log data, 1500, 3000, and 4500 raw log
messages were randomly sampled from the combined
data set from 2kBGL, 2kHDFS, and 2kHPC (Totaldata,
6000 log messages in total) to obtain Sampledata1,
Sampledata2, and Sampledata3. The data sets used in
this experiment are shown in Table 1.

4.2 Assessment methods
In this paper, the experiment measures the effectiveness
of online clustering based on purity. Defining the purity
of the cluster i as:

pi ¼ max pij
� �

ð6Þ

where pij ¼ mij

mi
refers to the probability that the members

in the clustering i belonging to the true class j, mij refers
to the number of members in the clustering i belonging
to the real class j, and mi is the number of all members
in the clustering i. The purity of the entire clustering is:

purity ¼
XK
i¼1

mi

m
pi ð7Þ

For the measurement of the clustering effect of the
clustering tree, this experiment was based on the normally
defined purity, combined with the structural characteris-
tics of the clustering tree, and referred to the evaluation
criteria of the clustering tree called dendrogram purity in
the literature [36] (the dendrogram purity of clustering
tree T is recorded as DP(T)). The known tagged data has a

Fig. 6 Processing method for node being masked

Table 1 Data set information

Data set Number of raw log messages Number of log templates

2kBGL 2000 112

2kHDFS 2000 14

2kHPC 2000 44

Totaldata 6000 170

Sampledata1 1500 112

Sampledata2 3000 138

Sampledata3 4500 155
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total of K clusters, which are recorded as C� ¼ fC�
kgKi¼1

and

DP Tð Þ ¼ 1
P�j j

XK
k¼1

X
xi;x j∈C�

k

pur lvs LCA xi; x j
� �� �

;C�
k

� � ð8Þ

where P∗ = {(xi, xj)|C
∗(xi) = C∗(xj)} refers to all the data

pairs in the tagged data belonging to the same clus-
tering, LCA(xi, xj) refers to the least common ancestor of
xi and xj, and lvs(z) refers to all the leaves belonging to
the internal node z in T·pur(S1, S2) = |S1 ∩ S2|/S1.
Meanwhile, we adopt three indicators of Precision,

Recall, and F1-score to measure the LogOHC method
proposed in this paper. As the Precision and Recall of
the classification process are a pair of contradictory
indicator, the use of F1-score can effectively balance the
Precision and Recall, and the closer to 1 of F1-score
numerical value means better classifier’s performance.
Where TP, FP, TN, and FN are used to respectively
represent true positive cases, false positive cases, true
negative cases, and false negative cases, the calculation
of precision as well as recall rate along with F1-score
formula is as follows:

Precision ¼ TP
TPþ FP

ð9Þ

Recall ¼ TP
TPþ FN

ð10Þ

F1−score ¼ 2� Precision� Recall
Precisionþ Recall

ð11Þ

4.3 Experimental analysis
The LogOHC is used to perform an experiment on data
sets described in Table 1, and compared with the classic
offline algorithms IPLoM [12], LogSig [18], and the
online algorithm Drain [14]. For the convenience of
comparing Precision, Recall, and F1-score with other
three algorithms, the clustering number of LogOHC is
set as the number of manually tagged categories in the
experiment. The comparison results are shown in Fig. 7.
Results show that the LogOHC exceeds the best results

of the classic offline algorithm IPLoM, LogSig, and the
online algorithm Drain on the three data sets in Precision,
Recall, and F1-score.
To further measure the effect of LogOHC on multi-

source log data sets, experiments are performed to

Fig. 7 Comparison of the LogOHC and the other methods on 2kBGL (a), 2kHDFS (b), and 2kHPC (c)

Fig. 8 Comparison of P, R, F1-score of LogOHC on multi-source log data sets
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compare F1-score on the multi-source log data sets Total-
data, Sampledata1, Sampledata2, and Sampledata3. The
results of LogOHC performed on the above four data sets
are shown in Fig. 8. And the results of comparison with
the other three methods are shown in Table 2.
As can be seen from Fig. 8, the LogOHC has a lower

average F1-score on multi-source log data set than that on
single-log data set. However, it is not the larger the
multi-source log data set, the worse the algorithm perfor-
mance, for example, the experimental results with the algo-
rithm on Totaldata are better than those on Sampledata3.
As can be seen from Table 2, the LogOHC has a higher
F1-score than other three methods on all multi-source log
data sets. Both results indicate that the LogOHC has good
effect on multi-source log data set. This is very significant in
practice, because the log data is always multi-source, and the
algorithm can be used for clustering analysis of multi-source
log data effectively as a general algorithm, whose results
provide a good research data source and research method
for subsequent researches on anomaly detection.
To further measure the clustering effect of LogOHC

on multi-source data sets, this experiment calculates and
compares the dendrogram purity values on four multi-
source data sets and three single-log data sets described
as Table 1. As shown in Fig. 9, it can be seen that the
dendrogram purity value for multi-source log data sets

is lower than the maximum value of dendrogram purity
for all single-log data sets, but is equivalent to the
average value of dendrogram purity for single-log data
sets, which is consistent with expectations. Even so, the
minimum value of dendrogram purity clustered for the
four multi-source log data sets is still more than 98.5%,
indicating good clustering results.

4.4 Analysis on algorithm execution time
The experimental environment is as described in Section
4.1, and LogOHC is applied to the data sets in Table 1.
The single-step execution time is shown in Fig. 10. It
can be seen that the single-step execution time of
LogOHC method does not exceed 0.025 s, which is able
to well meet the requirements of real-time log analysis.

4.5 Parameter selection
During the online clustering process, the similarity measure
between nodes and class clusters is an important parameter
of the algorithm, and its value has an important influence
on the effect of the algorithm. Since the online clustering
algorithm does not select the similarity measure method
with best results after fully acquiring all the data and takes
it as an appropriate parameter, the log data is acquired in
an incremental mode and clustered online in accordance
with the parameters set in advance. Therefore, it is

Table 2 F1-score on multi-source log data sets with four methods

Data set Methods

IPLoM LogSig Drain LogOHC

Totaldata 0.9334 0.6727 0.9446 0.9474

Sampledata1 0.5358 0.4074 0.9312 0.9514

Sampledata2 0.2995 0.2475 0.9368 0.9495

Sampledata3 0.1976 0.165 0.942 0.946

Fig. 9 Comparison of the dendrogram purity of the LogOHC on different data sets
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necessary to select similarity measure parameters that
can be stable on different data sets and can acquire
relatively good results. In order to select the parameter,
six methods for measuring similarity are selected on
four data sets in this paper: 2kBGL, 2kHDFS, 2kHPC,
and Totaldata. The dendrogram purity of the correspon-
ding clustering tree and the F1-score of the clustering
result are calculated and compared. The results are shown

in Figs. 11 and 12. The same parameters perform diffe-
rently on different data sets, for example, on the 2kBGL
data set and the 2kHDFS data set, both maxD and minD
parameters can be selected to acquire good clustering
result, whereas the clustering result of the same parameter
on 2kHPC data set, compared to other parameters,
reduces the dendrogram purity by nearly 20% and reduces
the F1-score by 27%. As can be seen from Figs. 11 and 12,

a b

c d

Fig. 10 Single-step execution time of LogOHC on data sets. a 2kBGL. c 2kHPC. b 2kHDFS. d Totaldata

Fig. 11 Dendrogram purity of clustering tree corresponding to different parameters clustering on different data sets
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the parameters approxKM, gloabalKM, and localKM,
compared to other parameters, make the algorithm have a
better clustering result; however, the results of gloabalKM
and localKM on 2kHPC data set reduce the dendro-
gram purity by 3% and reduce the F1-score by 17% and
19% respectively than those of approxKM. Through
the above experimental analysis, the approxKM para-
meter is selected by the LogOHC method to measure
simiarity. The meanings of the six parameters are
respectively

pointCounter = the number of nodes in class cluster
maxD = the maximum distance between nodes in class
cluster
minD = the minimum distance between nodes in class
cluster

approxKM ¼ 0:5�pointCounter�maxD

localKMðnodeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−xÞ2 þ ðx2−xÞ2 þ⋯þ ðxn−xÞ2

q
,

where x is the clustering center

globalKM(node) = localKM(node) − (localKM(child1) +
localKM(child2)), where child1 and child2 are the two
children nodes

5 Conclusion
In view of the shortcomings of the existing log template ex-
traction methods, this paper proposes an online hierarchical
clustering for log template extraction: LogOHC. With
the ideas of text vectorization and online hierarchical
clustering, firstly, the raw log messages are preprocessed,
and the word distributed representation (word2vec) is
used to vectorize the log messages online. Then, the
online hierarchical clustering algorithm is applied, and
finally, log templates are generated. The experimental ana-
lysis shows that, compared to the existing classic offline
methods and the newly proposed online method, the

LogOHC has higher F1-score and is suitable for multi-
source log data. The template extraction method is not
limited by the log format, and the single-step execution
time is shorter, which is able to meet the requirements of
real-time online processing. Next, we will continue to
carry out research in two aspects: one is to explore the
heuristic method for determining the cluster number in
log online hierarchical clustering; the other is to further
research the online log anomaly detection method based
on the online log template extraction.
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