
RESEARCH Open Access

Reinforcement learning-based dynamic
band and channel selection in cognitive
radio ad-hoc networks
Sung-Jeen Jang1, Chul-Hee Han2, Kwang-Eog Lee3 and Sang-Jo Yoo1*

Abstract

In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and
geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an
available transmission opportunity and data rate for each channel, and the system requirements, specifically the
desired data rate, can also change with the time and location. In multi-band operation, the primary time activity
characteristics and the usable frequency bandwidth are different for each band. In this paper, we propose a Q-
learning-based dynamic optimal band and channel selection by considering the surrounding wireless environments
and system demands in order to maximize the available transmission time and capacity at the given time and
geographic area. Through experiments, we can confirm that the system dynamically chooses a band and channel
suitable for the required data rate and operates properly according to the desired system performance.
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1 Introduction
As the demand for multimedia services increases, the
problem of the frequency shortage continues to increase.
The spectrum auction price is rising worldwide and pass-
ing on to users as a burden [1]. The Federal Communica-
tions Commission (FCC) had found that most of the
spectrums are underutilized under its current fixed
spectrum allocation [2]. The FCC had therefore proposed
a new paradigm which provides an access to the spectrum
resources not being used by the licensed user to resolve
the increasing demand for the spectral access and ineffi-
ciency in use [3]. The cognitive radio (CR) technologies
provide an opportunity for secondary users (SUs) to use
spectrums that are not used by primary users (PUs),
allowing the SUs to access the spectrum by adjusting their
operational parameters [4, 5]. In relation to the application
of CR, FCC adopted rules in April 2012 in [6] to allow
license-exempt devices employing the TV white space
database approach to access available channels in the
UHF television bands. [7] presents the existing, emerging,

and potential applications employing CRS capabilities and
the related enabling technologies, including the impacts of
CR technology on the use of spectrum from a technical
perspective. The U.S. Defense Advanced Research Projects
Agency (DARPA) and British defense firm BAE Systems
are developing a CR IC technology for next-gen commu-
nications [8]. DARPA is developing CR technologies that
maintain communications under severe jamming environ-
ment by Russian electronic warfare systems from 2011 [9].
In 2016, DARPA launched the Spectrum Collaboration
Challenge (SC2) to resolve the scarcity of spectrum for
DoD use and a Vanderbilt team won the round 1 [10].
The CR technology enables SUs to use free spectrum

holes in radio environments that vary with a time and
location. When the spectrum is used by a SU, quality of
service (QoS) for both the PU and SU should be main-
tained by ensuring the spectrum accessibility for the SU
without interfering with the service for the PU through
the spectrum sensing. The SU should periodically sense
the channel while using the channel and switch to an-
other channel when the PU starts accessing the current
channel. In this case, when selecting a channel, it is ne-
cessary to consider the fact that the frequency resource
varies depending on the time and geographical area.
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Also, the CR system should consider the available data
rate and possible channel acquisition time that can be
achieved on each channel to guarantees the QoS of the
SUs. Generally, depending on operating frequency bands
such as HF (high frequency), VHF (very high frequency),
and UHF (ultra-high frequency), a channel may have dif-
ferent channel bandwidths and the channel characteris-
tic is different. Primary systems that are operating on
different frequency bands also have diverse features and
characteristics in terms of medium access mechanism,
service types, and power requirements. Therefore, for
choosing the best channel among the available frequency
bands when the secondary CR network needs to move

to another channel, several dynamic aspects such as pri-
mary system operation characteristics, radio channel
conditions, frequency band characteristics, and second-
ary system requirements should be considered. We have
to utilize a dynamic spectrum selection mechanism
by considering the related environment and oper-
ational parameters to maximize the system perform-
ance. The channel access pattern of the PU, the
requested data rate of the SU, and the available data
rate and spectrum acquisition time can all vary dra-
matically according to environments. Therefore, the
learning algorithm is required to dynamically solve
these complex optimization problems.

(a)

(b) (c)

(d)
Fig. 1 Network model according to geography, time, and frequency. The cognitive radio ad-hoc network consists of a cluster head (CH) and
mobile nodes (MNs) as shown in a. According to the time zone, band group, and each channel, the frequency resource is different. The PU
activity, available data transmission rate, and SU demand for data rate vary according to the time and channel

Fig. 2 Channel bandwidths for different band groups. A wireless communication system generally has a higher bandwidth and a higher data
transmission rate as it goes to a higher band
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In this paper, we propose an optimal band and channel
selection mechanism in the cognitive radio ad-hoc net-
work using the reinforcement learning. In a
cluster-based CR ad-hoc network, we assumed that each
member node (MN) performs a wide-band spectrum
sensing periodically and reports the sensing results to
the cluster head (CH) node. Based on the sensing results
from the member nodes and previous channel history,
the CH builds wireless channel statistic data vectors in
terms of achievable data rates and average primary oper-
ational activation time (idle and busy) for each available
channel of each conducted band. In addition, the CH es-
timates the traffic demand of the current cluster net-
work to select a set of band and channel that provides
the appropriate service to the cluster. Therefore, in CR
ad-hoc networks, multiple clusters can operate in a lim-
ited area so that coexistence between ad-hoc clusters
should be carefully considered in the channel selection.
It is desired that if an ad-hoc cluster traffic demand is
low, then the CH should select the frequency band that
has relatively a narrow bandwidth (i.e., low achievable
data rate). It yields the frequency band with wider band-
width to another cluster network that needs higher traf-
fic demand. In the proposed architecture, as a
reinforcement learning, we use the Q-learning algorithm
and we have designed a reward function that captures
the expected consecutive operational time, affordable
data rate, efficiency of spectrum utilization use, and
band change overhead. In particular, the reward for
channel spectrum utilization is proposed to reflect the
degree of efficiency about using the supportable capacity.
Using the proposed Q-learning, the CH can select an
optimal band and channel that can maximize the

multi-objective function of the CR network, and also, it
can increase the coexistence efficiency of the overall sec-
ondary systems.
The main contributions of the proposed system archi-

tecture are as follows:

Fig. 3 Proposed system architecture. Proposed Q-learning is used to dynamically select the optimal band group and channel. As the reward
function, the system considers the user demand, wireless environment and system parameters. The user demand module determines the desired
data rate (DDR) of the CR ad-hoc network and measures the average utilization of the channel currently used. The wireless environment module
stores the spectrum sensing results. The system parameters module is used to establish the reward function and Q-learning parameters. If the
band of newly selected channel is different with the old one, the overhead for band group change is adopted to the reward function

Fig. 4 Proposed Q-learning mechanism. The CH of the ad-hoc CR
system is the agent of Q-learning, and the action is a selection of a
tuple (band group and channel) when the PU is detected on the current
band group and channel. The Q-learning agent (CH) designates the state
from the information of member node and statistics of environment by
the last action. From the Q-learning module, the Q-learning agent
obtains the reward, change the Q-table and next action tuple
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●We propose a new CR system architecture that maxi-
mizes the secondary user’s service quality by dynamically
selecting the optimal operating band and channel with con-
sideration of the traffic demand of each CR system and the
channel statistics according to the primary systems;
●We define states and actions in order to operate

Q-learning considering the service state and demand of

the corresponding systems, and propose a structural algo-
rithm for it;
● We design a reward function that maximizes operat-

ing time, data rate, and channel utilization efficiency and
minimizes band change overhead for secondary systems;
● The proposed system provides fairness by assigning

the band and channel that are appropriate to each

Fig. 5 Proposed Q-table structure. The column of the Q-table represents the action tuple of the band group bq (q-th band group) and channel

c
bq
m (m-th channel of bq). The row of the Q-table is the state tuple of the i-th geographic location zone (li), j-th time zone (tj), k-th band group (bk),
and l-th data rate efficiency level (dl)

Fig. 6 Proposed procedure for Q-table update, state determination, and action selection. (1) Suppose the learning agent CH determined the state
st − 1 and the best action at − 1 at the end of (t − 1)-th time period. (2) During t-th time period, MNs and CH monitor the primary activities and
channel statistics. (3) Agent CH detects the band and channel change event. (4) The CH calculates the reward rt − 1 for the previous action at − 1 at
state st − 1. (5) The CH updates the Q-value of (st − 1, at − 1) in Q-table. (6) The CH determines the current state st based on the measured DRE
during t-th time period. (7) The CH selects the optimal action at for the next (t + 1)-th time period. (8) Go to step 1
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secondary system based on its demand so that neighbor-
ing secondary systems coexist successfully.
The remainder of this paper is organized as follows. In

Section 2, we describe related studies. In Section 3, we
illustrate the system model and the tasks to be solved. In
Section 4, we provide the proposed Q-learning algorithm
to select the optimal operating band and channel.

Section 5 contains simulation results, and conclusions
are given in Section 6.

2 Related works
As the CR-based ad-hoc network is often deployed in
situations where resources are insufficient, it is necessary
to carefully consider the frequency resource selection. In

Fig. 7 Band group movement mechanism according to DRE. It is assumed the bandwidth of each channel provided by each band group follows
W1 <W2 <W3. The x-axis represents the DRE of each band group. The DRE is low, moderate, and high if it belongs to [0, r1), [r1, r2), and [r2,∞). If
the DRE is low, the selection of the band need to be changed to lower one since the selected band supports too much bandwidth. However,
the CH could not change the band in the range of [0, r1) in band group 1 since there is no band to move. If the DRE is high, the selection of the
band need to be changed to a higher one since the selected band does not support the DDR. However, the CH could not change the band in
the range of [r2,∞) in band group 3 since there is no band to move. In the range of [r1, r2) in each band group, the system does not need to
change the band since the selected band supports adaptive bandwidth. Therefore, the whole DRE region is divided by the region of “Band usage
maintenance” and “Band usage change”

Fig. 8 Utilization efficiency reward according to DRE. To realize the mechanism in Fig. 7, the reward for channel utilization efficiency (RUtil) is
designed as shown. The x-axis for each band group represents the DRE, and the y-axis represents RUtil. For the band usage maintenance range,
RUtil is set to 0. For the band usage change range where the DRE is low, RUtil increases from −1 to 0 since the DRE represents better value as DRE
increases. The band usage change range where the DRE is high is divided into [r2, 1) and [1,∞) to distinguish the insufficient transmission rate
provided by the channel. RUtil represents a more rapid decrease rate in [1,∞). RUtil decreases from −r2 to −1 in [r2, 1) range and from −1 to ∞ in
[1,∞) range
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this regard, studies related to the channel allocation in
various fields are being conducted. Vishram et al. exam-
ined how to allocate channels using the graph coloring
in the presence of homogeneous ad-hoc networks [11].
In their study, they maximized the overall performance
while guaranteeing a certain grade of service to individ-
ual users with the fairness. Maghsudi and Stanczak ap-
plied the graph theory for the channel allocation in a
device-to-device (D2D) environment and considered
fairness by equalizing the interference for cellular users
[12]. Han et al. studied channel allocation methods for
maximizing the overall system performance in vehicular
networks by using the submodular set function-based al-
gorithm [13]. Li et al. investigated channel allocation
methods that maximize the overall system reward using
a semi-Markov decision process (SMDP) in a vehicular
ad-hoc network (VANET) [14].
Other studies have considered a method of allocating

channels according to either bandwidth or service charac-
teristics. A study by Semiari et al. investigated methods of
allocating a user application with dual-mode operation in
the mmW and μW bands. The base station (BS) allocates
a delay non-sensitive user application to the mmW while
assigning a delay-sensitive user application to the μW
band. Matching game theory is specifically used for chan-
nel allocation in the μW band. In non-line-of-sight (NLoS)
of mmW band, the user application cannot be allocated
since the wireless communication is impossible because of
the frequency characteristics; therefore, channels are allo-
cated by estimating line-of-sight (LoS) and are secured
through Q-learning [15]. Liang et al. have studied a
method of assigning the channel with the high transmis-
sion capacity to the vehicle-to-infrastructure (V2I) link
and the channel with the high reliability to the
vehicle-to-vehicle (V2V) link considering the require-
ments of the two types of the vehicular network links [16].

Recently, the Artificial Intelligence (AI) technology, such
as machine learning, has been attracting attention in vari-
ous fields [17]. Among them, the reinforcement learning
is being studied in the wireless system field because it pro-
vides a solution to optimize the system parameters by
learning the surrounding environment in a dynamic and
complicated wireless environment [18]. The Q-learning is
the representative reinforcement learning and there are
also researches about using this to allocate channels in a
dynamically changing environment. Asheralieva and
Miyanaga studied the multi-agent reinforcement learning
using rewards to maximize the signal-to-interference-
plus-noise ratio (SINR) and increase the transmission cap-
acity in D2D networks [19]. Srinivasan et al. described a
way in which two BSs belonging to different operators in a
cellular network can allocate channels by providing ser-
vices to the nodes belonging to the all operators. They
studied the reinforcement learning using the reward with
the difference between quality of experience (QoE) and
cost that can be obtained by providing two services [20].
Rashed et al. studied the reinforcement learning that max-
imizes the sum-rate of D2D users and cellular users to
minimize the interference in a D2D environment [21].
Fakhfakh and Hamouda used the received SINR from the
access point (AP) detected by the mobile user, QoS met-
rics about the channel load, and delay as the reward for
choosing a WiFi over a cellular network to apply WiFi off-
loading and reducing the load on the cellular network
[22]. Yan et al. propose a smart aggregated radio access
technologies (RAT) access strategy with the aim of maxi-
mizing the long-term network throughput while meeting
diverse traffic quality of service requirements by using
Q-learning [23]. Maglogiannis et al. allowed the LTE sys-
tem in the unlicensed band to select the appropriate mut-
ing period by using Q-learning to ensure coexistence with
WiFi systems [24]. Xu et al. modeled the channel handoff

Fig. 9 Channel movement mechanism in Q-table and operating regions
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process as a partially observable Markov decision process
(POMDP) and adopted a Q-learning algorithm to find an
optimal handoff strategy in a long term [25]. Jang et al.
proposed Q-learning based sensing parameter (sensign
time and interval) control mechanism for cognitive radio
networks [26]. L. Shi et al. presented optimal resource al-
location for LTE-U and WiFi coexistence network using
Q-learning [27].
Various studies have been carried out about selecting

channels, but most studies do not consider the fairness of
the channel selection between users. Even if the fairness is
taken into consideration, they just allocate resources fairly
regardless of the required data rate or considered it as a
central manner [28]. And the central scheme is difficult to
realize the realistic implementation because of the com-
plexity, or their scheme gave the loads to the network due
to the centralized control. Some distributed resource allo-
cation mechanisms (e.g., game theory) may also cause a
loss of time or resources because the channel is selected
by the interaction between the systems. The fairness of
the channel usage is required in order to minimize the
possibility of channel resources being unnecessarily con-
sumed by some users and unavailable for other users who
require more of them. In order to reduce the load on the
system, it is necessary to consider fairness within the sys-
tem itself without control message exchanges. Meanwhile,
the various budgets for cognitive ad-hoc networks, such
as time available to the channel, transmission speed, fair-
ness, and bandwidth conversion cost, should be consid-
ered. Moreover, these budgets must work in concert to fit
an objective function with some degree of freedom about
flexible operation so that the system can be operated for
various purposes without altering a predetermined object-
ive. In this paper, the reward for spectrum utilization is
designed so that fairness is taken into consideration by
selecting a channel suitable for the required data transmis-
sion rate. In addition, we define a reward using weighted
sums for various budgets as well as a Q-learning algo-
rithm that can operate according to the change in weights.

3 Network model and system architecture
3.1 Network model
The system considered in this paper is the cognitive
radio ad-hoc network comprised of CH and MNs as
shown in Fig. 1a. The channel availabilities are different
with geographic locations in accordance with the pri-
mary transmitter positions, channel gain between

(a)

(b)

(c)

Fig. 10 Channel movement example in Q-table. The update of the
Q-table represents a unique pattern according to DDR by the reward
for channel utilization efficiency proposed in this paper. The channel
movement example of a low, b moderate, and c high DDR cases in Q-
table is shown. The stable domain is in gray circle in each case of DDR.
Each domain changes to another one by explore or natural transition
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primary systems and secondary users, primary activity
characteristics, and so on. The characteristics of these
channels for CR ad-hoc networks can be also different
in time zone and frequency band groups. Therefore, in
this paper, we have considered the difference of channel
characteristics according to geographical zone, time
zone, band group, and frequency channel. As shown in
Fig. 1b and c, the primary activities (i.e., available time
to access by secondary users) and possible data trans-
mission rates are different for each channel during the
same time interval. Furthermore, the desired data rates
of SUs changes according to time, as shown in Fig. 1d.
In particular, when the CR system operates cross a wide

frequency range, including HF, VHF, and UHF, as shown
in Fig. 2, the channel bandwidth for each band group that
is defined for secondary systems can be different due to
the band group-specific spectrum hole nature. In general,
in HF, the spectrum holes are relatively narrow in the fre-
quency domain because the licensed spectrum of primary
systems using HF band group is also usually narrow. On
the other hand, the spectrum holes of UHF are compara-
tively wider than that of HF. Excepting for details charac-
teristic difference of each band group, we assume that the
wider channel bandwidth is used in the higher band group
frequency. Therefore, if the operating frequency of band
group j (BGj) is higher than that of band group i (BGi),
then the channel bandwidth of BGj, Wj, is wider than Wi

which is the channel bandwidth of BGi and achievable
data transmission rate (i.e., capacity) of Wj is greater than
that of Wi. The greater preference for the channel is given
to the band group with the higher bandwidth in the

system or individual nodes. However, even though the
bandwidth demanded by the secondary system can be sat-
isfied by Wi of BGi, if the bandwidth Wj of the higher BGj

is utilized by the secondary system, then satisfaction of the
system will increase while overall spectrum resources are
wasted. Because other secondary systems may exist
around and their traffic demands only can be satisfied by
using the bandwidth Wj of BGj, therefore, a mechanism
for adaptive allocation of band group use according to the
traffic demand and bandwidth utilization efficiency of the
corresponding system is required.

3.2 System architecture and problem formulation
The proposed system architecture of CH is repre-
sented in Fig. 3. The Q-learning is used to dynamic-
ally select optimal band group and channel being
aware of wireless environment, network user demand,
and system operation parameters. The network user
demand module determines the desired data rate
(DDR) of the CR ad-hoc network based on each
member node’s traffic demand, and it also measures
the average utilization of the channel currently used.
The wireless environment monitoring module stores
the spectrum sensing results such as average SNR
(signal to noise ratio) and primary signal detection
history. Using the sensing results, this module gener-
ates band- and channel-specific statistics which in-
cludes available data rate and primary idle time. The
system operator can dynamically adjust the system
parameter for learning using the system parameter
module. The system operator can reset the reward

Table 1 Channel parameters for band groups 1 and 2

Operation time [min] Supportable data rate (bps)

Mean (Top) Variance (Top) Mean (Drate) Variance (Drate)

Channel Band group 1 1 2.1 1 10 kbps 1

2 4.2 2 55 kbps 3

3 8.4 1 70 kbps 2

4 6.3 2 85 kbps 2

5 10.5 1 100 kbps 1

Band group 2 6 5.2 1 0.8 Mbps 2

7 3.8 1 1.6 Mbps 1

8 6.7 2 2.4 Mbps 3

9 8.1 1 3.2 Mbps 1

10 9.5 2 4 Mbps 4

Table 2 Weight parameters

Weights vector (Default) Q-learning parameters Reward parameters DRE parameters

w1 = 0.3, w2 = 0.3, Learning rate (α) = 0.3, overhead (η) = 0.01, r1 = 1/6,

w3 = 0.3, w4 = 0.1 Discount factor (γ) = 0.7 δ = 2 r2 = 5/6
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function by learning parameters for Q-learning. Based
on all information, the Q-learning module determines
which band group and channel can meet the data rate
demand and maintain effective utilization level.
The Q-learning module changes from one channel to

another when a PU appears on the current channel be-
ing used by the secondary system. The reward function
is used to update the Q-table, and channel and band
group selection is performed based on the current
Q-table. The reward function proposed in this paper
captures user demand, wireless environment, data rate
efficiency (DRE), and band change overhead cost. The
DRE is an evaluation metric to determine how much the
ad-hoc network efficiently utilizes the data rate sup-
ported by the current channel.

In the proposed algorithm, we design the Q-learning
reward function to satisfy the following criteria:

●Maximize the secondary system operational time;
●Satisfy the desired data rate of the CR ad-hoc sec-

ondary network;
●Provide the coexistence and fairness between second-

ary systems;
●Consider the overhead of band change for system

reconfiguration;
●Guarantee operational flexibility and adaptability to

meet the desired purpose.

4 Reinforcement learning for dynamic band and
channel selection
4.1 Action, state, and Q-table design for Q-learning
The Q-learning is one of the model-free reinforcement
learning techniques. It is able to compare the expected
utility of the available actions for a given state without
requiring a specific model of the environment. An agent
tries to learn the optimal policy from its history of inter-
action with the environment, in which an agent applies a
specific action at the current state and receives a re-
sponse as a form of a reward from the given environ-
ment. The Q-learning eventually finds an optimal policy,
in the sense that the expected value of the total reward
return over all successive iterations is the achievable
maximum one. The problem space consists of an agent,
a set of states S, and a set of actions per state A. By per-
forming an action a∈A , the agent can move from state
to state.
Figure 4 shows the Q-learning mechanism of the pro-

posed method. The CH of the CR ad-hoc system is the
agent of Q-learning, and the action of the CH is a selec-
tion of a new tuple (band group, channel) for the CR
system operation when the primary signal is detected on
the current band group and channel. The structure of
the Q-table is expressed by rows of states and columns
of actions. In this paper, the set of action A is given by:

A ¼ B � Ck ð1Þ

where × is the Cartesian product; B ¼ fb1; b2;…; bNBg
expresses the set of channel band groups; NB is the

number of band groups; Ck ¼ fcbk1 ; cbk2 ;…; cbkNCk
g repre-

sents set of available channels in k-th band group
(bk); NCk is the number of channels of band group bk;

and cbkj is j − th channel of band group bk.

In this paper, a multi-layered state is defined, in which
it is composed of geographic location (LÞ, time zone (T Þ

, channel band group ðBÞ , and data rate efficiency level

(D). The state of space in this system is defined as
follows.

(a)

(b)
Fig. 11 The a Q-value of Q-table when DDR = 40 kbps, and b number
of state visits. Similar to Figs. 9 and 10a, the Q-value of Q-table shows
the channel movement of low DDR case. The visit count of state is
high in the state of low DRE and low CBG because the stable domain
is in that region

Jang et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:131 Page 9 of 25



S ¼ L� T � B � D ð2Þ

where L ¼ fl1; l2;…; lNLg; T ¼ ft1; t2;…; tNTg , and B
¼ fb1; b2;…; bNBg represent the sets of geographic location
zones, time zones, and band groups, respectively. NL, NT,
and NB are the number of location zones, time zones, and
band groups, respectively. In this paper, we have defined a
new additional state dimension D to represent the oper-
ational state of the secondary system in terms of how much
the CR system effectively utilize the given channel of the se-
lected band group. D ¼ fd1; d2;…; dNDg indicates the set
of DRE levels, and ND is the predefined number of DRE
levels. The DRE is the ratio of the DDR of the secondary
network to the average supportable data rate of the current
channel of the selected band group. Therefore, the current
state is defined as a form of (li, tj, bk, dl) tuple and it repre-
sents the current location zone, time zone, operation band

group, and DRE level. For the given geolocation area and
time period, the secondary CR system needs to select the
next operational band group and channel whenever a chan-
nel switching is required. The current band group (CBG)
and DRE capture the dynamic goodness of the selected band
group and channel in terms of spectrum efficiency and sup-
port of the desired rate. The CH selects the best action for
the current state using the current Q-table.
Figure 5 shows the proposed Q-table structure. At the

current state (li, tj, bk, dl), the CH selects the best action ðbq;
c
bq
m Þ , i.e., the next band group bq and m-th channel of bq,
which shows the maximum Q-value in the current Q-table.
It needs be noted that the candidate channels of each band
group as possible actions should be available channels at the
current time as a result of spectrum sensing.
Figure 6 shows the procedure of the proposed Q-table

update, state determination, and action selection. It is

(a)

(b)

(c)
Fig. 12 The change of a rewards, b states, and c actions according to iteration at a low DDR of 40 kbps. The temporary low reward value is due
to the random action of Q-learning exploration. The agents visits the state 2 more often than the states 4 and 5 over time as seen in Fig. 11b. As
shown in Fig. 11a, the action in c mainly visits channel 2 or 3 and is adaptive to the DDR at the latest possible moment, even if a channel from
band group 2 is selected or a channel from band group 1 offering a high data rate is selected. c represents how the agent selects the channels
in band group 1 suitable for the DDR over time. Therefore, we can see that the agent operates according to the designed mechanism
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assumed that the MNs transmit the average channel op-
eration time and average supportable data rate to the
CH through sensing and channel use report.

1. Suppose the learning agent CH determined the
state st − 1 and the best action at − 1 at the end of (t
− 1)-th time period.

2. During t-th time period, MNs and CH monitor the
primary activities and channel statistics.

3. Agent CH detects the band and channel change
event.

4. The CH calculates the reward rt − 1 for the previous
action at − 1 at state st − 1.

5. The CH updates the Q-value of (st − 1, at − 1) in Q-
table.

6. The CH determines the current state st based on
the measured DRE during t-th time period.

7. The CH selects the optimal action at for the next (t
+ 1)-th time period.

8. Go to step 1.

The Q-learning updates the Q-value for each pair of
state and action (s, a) visited through these series of pro-
cesses. The Q-value reflects the value that the system
can accept when selecting action a in state s.
The Q-value update of the Q-table can be represented

by:

Q st ; atð Þ← 1−αð ÞQ st ; atð Þ

þ α rt þ γ max
atþ1

Q stþ1; atþ1ð Þ
� �

ð3Þ

where α and γ denote the learning rate and discount fac-
tor, respectively. The learning rate α ∈ [0, 1] is used as a
weight to reflect the Qðst ; atÞ accumulated from the
past, the newly obtained reward, and the expected re-
ward value for the next action. If α is low, it increases
the weight of the past experience so the system takes an
extended time to learn, but the fluctuation of the reward
sequence is low. If α is high, the learning speed is in-
creased by assigning a high weight to both the present
and future values. However, an extremely high α causes
instability in the system, while a fairly low α prevents the
system from reaching a satisfactory reward at the desired
time. The discount factor γ ∈ [0, 1] is the weight for how
much the Q-value of at + 1, the future reward, should be
reflected in the Q-value of action at in the Q-table of
the current action and state. A high γ has a high contri-
bution on the Q-value of the future expected reward,
and a low γ weights the reward according to the current
action a. That is, when Q-learning reflects the immedi-
ate reward and the future tendency in the Q-value of the
action and corresponding state, γ is a weight that takes
into account whether to further consider the volatility of
the current action or to reflect the future value predicted
from past trends of the Q-table.
If the CH only uses the updated Q-values to select ac-

tions, it may fall into local optimum. Therefore, we use
ε-greedy policy to add randomness to selecting of actions
that are explorative in the learning algorithm, as follows:

a ¼
argmax

~a∈A
Q s; ~að Þ; with probability 1−ε

random a∈A; with probability ε

(
ð4Þ

where, ε ∈ [0, 1] is the probability of choosing a random
action. If ε is high, it is more likely that new information
will be added to the already accumulated information
while searching for the next action; if it is low, the next ac-
tion is selected using only the accumulated information. ε

(a)

(b)
Fig. 13 The a Q-value of Q-table when DDR = 90 kbps, and b number
of state visits. Similar to Figs. 9 and 10b, the Q-value of Q-table shows
the channel movement of moderate DDR case. The visit count of a
state is high in the state of low DRE and high CBG because the stable
domain is in that region
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starts with a specific value and lowers this value for each
iteration, so that the Q-table can operate stably after a cer-
tain time. However, when the value of ε decreases con-
tinuously, a considerable amount of time is required for
adapting to the changing environment by updating the Q-
table. Therefore, a lower limit of ε is required.
The overhead of Q-learning can arise from the mem-

ory size for the use of Q-tables. It depends on the level
of the actions (the number of channels and bands) and
resolution level of states, and it increases linearly with
each level. If you set the number of level too low, the
system cannot use the Q-table for learning dynamic en-
vironments. Otherwise, the system takes a long time to
learn the surrounding environment using the Q-table.
Therefore, the selection of appropriate level is required.

4.2 Reward function design
The reward that the CR system obtained by using the se-
lected set of (band group, channel) is composed of the
system operation time, average data transmission rate,

channel utilization efficiency, and overhead required for
the system to change the frequency band. The reward
for the action a is expressed as follows:

R að Þ ¼ w1
Top

max Tcbg
op

� �þ w2
E Ds½ �

max E Dcbg
s

� �� 	
þ w3RUtil−w4BC a;a0ð Þ ð5Þ

where Top is the consecutive channel operation time for
the secondary system after the channel is selected, in
which if a channel shows high Top value, then it indicates
that once the secondary system takes this channel it can
use the channel relatively long time before the primary
appears. E[Ds] is the average supportable data rate of the
selected channel. RUtil represents how the secondary sys-
tem utilizes the channel effectively. BCða;a0Þ is the over-
head for band group change. The operation time and
average supportable data rate are normalized to their
maximum values for the current band group. a and a′

are the current action and previous action, respectively.

(a)

(b)

(c)
Fig. 14 Rewards, states, and actions according to iteration at DDR = 90 kbps. In a, the reward is stable at more than 10 iterations, and we can see
that the reward is temporally low in the overall interval by random action, similarly to Fig. 12. As shown in b the agent mainly visits the state 5.
c Reveals that actions in band group 2 are selected mostly
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maxðTcbg
op Þ and maxðE½Dcbg

s �Þ are the maximum channel

operation time and maximum expected supportable data
rate value from all channels in the current band group, re-
spectively. wi is the weight for i-th reward component andP4

i¼1wi ¼ 1. The first and the second term are normalized
by each maximum value of the operation time and average
supportable data rate in each channel group so that the
relative value to the other channels can be reflected in the
reward. The third term is described in (7) and serves to
adjust the reward to select a channel suitable for the de-
sired data rate. The fourth term represents the cost due to
an overhead when a band group change occurs, which is
described in (6). All the terms are linearly coupled to allow
the system designer or user to operate the system for a
specific purpose through weighting changes.

The overhead for band group change, BCða;a0Þ , in (5) is
to capture the required additional time and energy for
reconfiguring some system operational parameters when
the band group is changed. In most cases, different band
groups have different channel bandwidths and wireless
characteristics so that communication system may need
to reconfigure radio frequency (RF) front-end, modula-
tion method, and medium access control (MAC) layer
components whenever it changes its operation band
group. The overhead is represented as in (6).

BC a;a0ð Þ ¼
η; channel a and a0 belong to different band groups:
0; else

�

ð6Þ

where η is the cost when the current channel and the
previous channel belong to different band groups. In this
paper, we do not consider the channel switching over-
head inside the same band group.
RUtil of (5) is defined as a function of DRE. The DRE is

defined in this paper as in (7)

DRE ¼ DDR
E Ds½ � ð7Þ

where DDR is the desired data rate (DDR) of the sec-
ondary CR network. To design RUtil function, first we
considered the desired system operation in terms of
band group selection depending on the current DRE
value.
Figure 7 shows the example of the desired mechanism

by which the channel selection is performed according
to the current DRE. It is assumed that the bandwidth of
each channel provided by each band group follows W1 <
W2 <W3, in which we have three band groups. The
x-axis is divided by band group, and the parts represent
the DRE for each band group. DRE (U) indicates that
the utilization ratio of the channel is low when it be-
longs to [0, r1) of band group 1, and that ratio is moder-
ate when it belongs to [r1, r2). If U belongs to [r2, 1), it
denotes a high channel utilization ratio so that some
time instances of the network may not be able to meet
the user traffic demand. The range of [1,∞) means the
channel cannot support enough bandwidth for the sys-
tem. A low channel utilization ratio means that the pos-
sible transmission rate provided by the selected channel
of the current bad group is much higher than the de-
sired CR network data rate so that most of spectrum re-
source is wasted after it satisfies the desired data
transmission rate. It is therefore necessary to move to a
channel that provides a lower bandwidth and data rate
(i.e., change to the lower band group channel). Further-
more, if U shows a higher channel utilization ratio than
the defined r2, which means that the possible data trans-
mission rate provided by the selected channel is not

(a)

(b)
Fig. 15 The a Q-value of Q-table when DDR = 3.5 Mbps, and b number
of state visits. Similar to Figs. 9 and 10c, the Q-value of Q-table shows the
channel movement of high DDR case. The visit count of state is high in
the state of high DRE and high CBG because the stable domain is in
that region
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likely to support the desired data rate of the system, then
it is necessary to move to a channel band group that can
provide a wider bandwidth and a higher data rate. How-
ever, in Fig. 7, even though DRE is in [0, r1) for band
group 1, the secondary system does not have any band
group that has narrower channel bandwidth so that it
needs to keep the current band group. On the other
hand, in case of band group 3, when DRE is in [r2,∞),
the system does not have any band group that has wider
channel bandwidth so that it has to find other best chan-
nel in the same band group. In each band group, [r1, r2)
is the band usage maintenance interval, because the se-
lected band group channel provides an appropriate
transmission rate.
Based on the band group selection movement mech-

anism in Fig. 7, the proposed utilization efficiency re-
ward function RUtil of Eq. (5) is shown in Fig. 8, in
which we assume that there are three band groups. The
x-axis for each band group represents DRE (U), and the
y-axis represents RUtil. For the band usage maintenance

range in Fig. 7, RUtil is set to 0 in [r1, r2) DRE range for
all band groups, which represents the medium channel
utilization efficiency ratio. In [0, r1) DRE range, the se-
lected band group channel can support much larger data
rate than the desired data rate so that channel utilization
efficiency is low. Therefore, as the value of DRE goes
from 0 to r1, RUtil increases from −1 to 0 except the in
first band group 1. Any ad-hoc CR secondary systems
that has its current DRE value in [0, r1) need to move to
the band group channel that has narrower channel
bandwidth and lower supportable data rate. It makes the
secondary system to yield the current band group chan-
nel to other secondary systems that requires more data
rate. For the first band group 1, there is no other nar-
rower band group so that RUtil is maintained at 0 in [0,
r1) DRE range. The range [r2,∞) is divided into [r2, 1)
and [1,∞) to distinguish the insufficient transmission
rate provided by the channel, with RUtil representing a
more rapid decrease rate in [1,∞) range except in the
last band group 2. In [r2, 1) DRE range, the band group

(a)

(b)

(c)
Fig. 16 Rewards, states, and actions according to iteration at DDR = 3.5 Mbps. In a, the reward is stable overall, while it is temporally low in the
overall interval by random action, similar to Figs. 12 and 14. In b, the system visits state 4 to a degree, but it mainly remains in states 7 and 8.
c shows that actions in band group 2 are selected mostly
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channel supportable data rate may not be enough to
guarantee the desired rate in some time instances so that
RUtil decreases from −r2 with a slope of −1 as DRE in-
creases. In [1,∞) DRE range, the current band group
channel cannot support desired data rate so that RUtil
decreases with a slope of −δ (δ > 1). For the last band
group 3, there is no other wider band group so that RUtil
is maintained with 0 in [r2,∞) DRE range.
Figures 9 and 10 show how this intentional mechan-

ism is supported in the Q-table. Figure 9 shows the
Q-table where the state is divided into geographic zones
and time zones, and again into band groups and discrete
DRE levels. The columns of the Q-table are divided into
bands, which are then divided into selectable channels
as possible actions. In the action shown in Fig. 9, a chan-
nel that represents a narrower band is shown as a lower
data rate toward the left, and a channel that can use a
wider band appears as a higher data rate toward the
right. Figure 10 represents how the Q-value updating
area changes in the Q-table of Fig. 9 through the ex-
ample of three DDR cases. First, Fig. 10a depicts a case
where the DDR is low. In Fig. 9, suppose that the sec-
ondary system is operating in action domain 1 (low
CBG, low DRE) and by the Q-learning ε-greedy policy it
may randomly select action domain 2 band group chan-
nel. As a result, the DRE is significantly lowered, and the
system gets low RUtil because a high channel band pro-
vides a high data rate and it results in low reward for
channel utilization efficiency. Therefore, after updating
the Q-value of domain 2, the system operating area
changes to domain 3 by the change of the state which
represents (high CBG, low DRE). Because selecting a
channel which supports a high data rate makes the DRE
low, the Q-table then updates the Q-value of domain 3
and the Q-learning agent will select the best action of
domain 4 because selecting a channel with a low band
gives a high RUtil. After selecting the low-band channel,
the transition to domain 1 (low CBG, low DRE) is per-
formed. In this case, RUtil does not have a negative value
because there is no longer a lower channel to select, as
in the [0, r2) of band group 1 seen in Fig. 8, and no value
is subtracted from the total reward. Therefore, in the

(a)

(b)

(c)

Fig. 17 a Average operation time, b average transmission rate, and
c reward of utilization according to weight change. The average
operation time, average data rate, and reward for channel utilization
by changing the weight assignment for DDR to 40 kbps. Since the
reward function is composed of the weighted sum of the objective
functions, the Q-learning can be operated according to the desired
objective function by adjusting the weight. Therefore, if the weight
of the operation time is increased, the average operation time is
increased, and if the weight of the data transmission rate is increased,
the average transmission rate is increased. Finally, increasing the
weight of reward for utilization increases the average of reward
for utilization
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case of a low DDR, the preferred domain in the Q-table
is not domains of 2, 3, and 4 where high band is selected
by occasional ε-greedy policy for exploration but domain
1 (stable operating domain). Cases of both moderate and
high DDR, as shown in b and c of Fig. 10, can be simi-
larly explained.

5 Simulation results and discussion
The simulation environment in this paper assumes five
channels for each of the two band groups, as listed in
Table 1. The channels of band group 2 provides higher
supportable data rates than those of the band group 1
while the operation time available for the transmission is
not significantly different. We use a Gaussian distribu-
tion to determine the operation time and supportable
data rate of each channel in each band group based on
the mean and variance values provided in Table 1. The
other simulation parameters are shown in Table 2.
In this paper, the action is defined as the selection of

the channel in each band group as shown in Table 1.
The index number of the action corresponds to the
number of the channel in Table 1, and the total number
of action is 10. We define the state as the combination
of (band group, DRE) where the domain of DRE is di-
vided as [0, r1), [r1, r2), [r2, 1), [1,∞). The domain of DRE
corresponds to each band group so the total number of
state is 8.
The ε-greedy policy for action exploration is as

follows:

p nð Þ ¼ p0 0:999ð Þn; p nð Þ > plow
plow; p nð Þ≤plow

�
ð8Þ

where p0 ¼ 0:3; plow ¼ 0:1

where n represents the iteration sequence number with
time. In applying the ε-greedy policy, when the wireless
environment of the system is changed, plow is required
to set a lower limit for a random value in order to main-
tain a certain degree of exploration. Otherwise, the
Q-table cannot adaptively operate in the changed
environment.
The overall simulation configuration starts by looking

at the operation of Q-learning for each DDR, 40 kbps −
90 kbps − 3.5 Mbps, and confirming the change of aver-
age operation time and average transmission data rate
according to the weight of the reward. Next, we compare
the results of Q-leaning and random channel selection
according to the reward, operation time, data rate, and
utilization. Finally, we compare the change of DDR ac-
cording to iteration for Q-learning and random channel
selection.

5.1 Adaptive channel selection according to DDR
In this section, we identify our proposal adaptively se-
lects the channel according to each DDR (e.g., low, mod-
erate and high) as described by Figs. 9 and 10 in Section
4.2. Figure 11a shows the value of the Q-table in scaled
colors when the DDR is 40 kbps, and b shows the num-
ber of visits to each state in the Q-table. The DDR of

Fig. 18 Average reward comparison for Q-learning channel selection vs. random channel selection. The average reward for each DDR depending
on the method of the channel selection. For all of the DDR cases, Q-learning band and channel selection has more reward value than random
selection. The reward for a DDR of 1.5 or 3.5 Mbps (e.g., more than medium or high DDR case) is lower than that of 10 and 50 kbps. The ε-greedy
policy in case of a high DDR causes very low reward for channel utilization RUtil due to the selection of a low-band channel which support
insufficient data rate and these effects are accumulated in the Q-table
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40 kbps is the low data rate comparing the data rate of
channels in Table 1. Therefore, if the CH selects the
channel of band group 1, the DRE belongs to almost [0,
r2) of band group 1 in Fig. 8 comparing the channels in
band group 1, and RUtil does not give any effect on total
reward. However, if the CH selects the channel of band
group 2, the DRE belongs to [0, r1) of band group 2 in

Fig. 8 and RUtil has an impact on the total reward
linearly according to DRE. Figure 11a represents the
process of changing the channel (action) selected by the
ad-hoc CH (agent). When the CH selects the channel of
band group 1, the process of updating the Q-value in
the Q-table takes place in domain (1), which represents
the channel selection of band group 1 and the low DRE

(a)

(b)
Fig. 19 a Mean value and b boxplot of data transmission rate for Q-learning and random channel selection. Shows the mean and boxplot of the
data transmission rate for Q-learning and random channel selection for each DDR. In cases of the random channel selection, the average data
transmission rate of all DDR cases is the same as the average value of the data rates for all channels in Table 1 belonging to band groups 1 and
2. The boxplots of all DDR cases for the random channel selection have a similar distribution. For the DDR of 10 kbps and 50 kbps, the mean of
the Q-learning selection is lower than the random selection and the Q-learning has more narrow distribution. For the DDR of 1.5 and 3.5 Mbps,
the mean of the Q-learning selection is higher than the random selection and the Q-learning has more narrow distribution
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of band group 1. If the CH selects the channel of band
group 2 by the explore policy of the Q-learning, the
Q-value of the domain (1) is changed and the update
process moves to the domain (2) which represents the
channel selection of band group 2 maintaining the
current state. Since the CH selected the channel of band
group 2 that provides a high data rate for low DDR, the
state is changed to the low DRE of band group 2. Thus,
the update process of the Q-table moves to domain (3)
and the Q-value of domain (2) changes. If CH selects
channel of band group 1 in state 5, the state is main-
tained and update process moves to domain (4) after the
Q-value change in domain (3). Finally, the state is

changed to the state 2, which represents the band group
1 and low DRE, and the update process moves to do-
main (1) after the Q-value of domain (4) changes. The
Q-value of Fig. 11a is the highest in domain (1), which
represents the low DRE of band group 1 same with the
low DDR case of Fig. 10a by the reward for utilization in
Fig. 8. As a result, Fig. 11b represents that the number
of visits in state 2 is the highest which corresponds to
domain (1).
Figure 12 shows the change of rewards, states, and ac-

tions according to iteration at a low DDR of 40 kbps.
The temporary low reward value is due to the random
action of Q-learning exploration. The agents visit the

(a)

(b)
Fig. 20 The a mean and b boxplot of the reward for the channel utilization by the Q-learning and random selection at each DDR. For all DDRs,
the boxplot of Q-learning has denser distribution and higher values than that of the random selection, and it has a higher average value
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state 2 more often than the states 4 and 5 over time as
seen in Fig. 11b. As shown in Fig. 11a, the action in
Fig. 12c mainly visits channel 2 or 3 and is adaptive to
the DDR at the latest possible moment, even if a channel
from band group 2 is selected or a channel from band
group 1 offering a high data rate is selected. Figure 12c
represents the agent selects the channels in band group
1 suitable for the DDR over time. Therefore, we can see
that the agent operates according to the designed
mechanism.

Figure 13a shows the value of the Q-table in scaled
colors when the DDR is 90 kbps and b shows the num-
ber of visits for each state in the Q-table. If the DDR is
90 kbps and the CH chooses a channel in the band
group 1, the DRE belongs to [r2,∞) in Fig. 8. Meanwhile,
the DRE belongs to [0, r1) in Fig. 8 if a channel is chosen
from the band group 2. Therefore, the supportable data
rate by the channels in band group 1 is not enough in
comparison with the channels in band group 2, as seen
in Table 1, since the channel selection from band group

(a)

(b)
Fig. 22 Rewards for a Q-learning and b random channel selection according to iteration (DDR = 40 kbps)

Fig. 21 The average fairness of data rate efficiency with increasing number of neighboring secondary systems
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2 offers better RUtil than that of band group 1. We as-
sume that the process of updating the Q-value starts
from domain (1) which represents the channel selection
of band group 2 and the DRE is low in band group 2.
After selecting the channel in band group 1 by random
channel selection, the Q-value of domain (1) is renewed
and the update process moves to domain (2). If the CH
selects channels from band group 1, the renewal process

of the Q-table changes to domain (3) due to the high
DRE which means the selected channel does not support
a high enough transmission data rate after the renewal
of domain (2). The process of updating moves to domain
(3) by the change of state then transfers to domain (4)
by the random or best selection. Because the channel se-
lection in band group 2 provides more reward for
utilization by Fig. 8, the Q-table in Fig. 13b has the

(a)

(b)
Fig. 24 Rewards for a Q-learning and b random channel selection according to iteration (DDR = 3.5 Mbps). Figures 22, 23, and 24 show the
rewards for Q-learning and random band and channel selection according to the iteration for each DDR. In the case of Q-learning for all DDRs,
the fluctuation decreases over time and the system operates with the intended reward design. In the random selection, there are more notches
and fluctuation than Q-learning selection

(a)

(b)
Fig. 23 Rewards for a Q-learning and b random channel selection according to iteration (DDR = 1.5 Mbps)
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(a)

(b)

(c)

(d)

(e)
Fig. 25 (See legend on next page.)
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highest Q-value in domain (1) which represents a low
DRE for band group 2. As a result, the number of visits
to state 5 belonging to the low DRE of band group 2 is
the highest, as shown in Fig. 13b.
Figure 14 shows the change of rewards, states, and ac-

tions according to iteration with a medium-level DDR at
90 kbps. In Fig. 14a, the reward is stable at more than
10 iterations, and we can see that the reward is tempor-
ally low in the overall interval by random action, simi-
larly to Fig. 12. As shown in Fig. 14b, the agent mainly
visits the state 5. Figure 14c reveals that actions in band
group 2 are selected mostly.
Figure 15a shows the value of the Q-table in scaled

colors when the DDR is 3.5 Mbps, and b shows the
number of visits to each state in the Q-table. Comparing
with the supportable data rate of channels in Table 1,
the DDR of 3.5 Mbps makes the DRE belong to [1,∞) of
the band group 1 in Fig. 8 when the CH selects the
channel from band group 1, and belongs to [r1,∞) when
a channel is selected from band group 2. However, the
reward for utilization RUtil remains as 0 since there are
no other channels to move out. As illustrated in Fig. 10c
about the example of high DDR case, the same explan-
ation can be given about Fig. 15a. At first, update
process is assumed starting from domain (1) in Fig. 15a
by the channel selection from band group 2. If the chan-
nel of band group 1 is selected by the explorer policy of
Q-learning, the update process moves to domain (2)
after the change the Q-value of domain (1). The state
changes to the state 4 which represents high DRE in the
band group 1 by the given DDR and the channel selec-
tion of band group 1. Therefore, after the Q-value of do-
main (2) is updated, the update process moves to
domain (3). The update process selects the channel of
band group 2 through the best or random channel selec-
tion and could be moved to domain (4), thereby the
Q-value of domain (3) is updated. Finally, since the
channel selection of band group 2 changes state to high
state of band group 2, the update process moves to do-
main (1) and the Q-value of domain (4) is updated. As
described for high DDR case in Fig. 10c, the CH of
Fig. 15 also tends to select the channel of band group 2
and stay on the state which has high DRE of band group

2 since the channels of this band group gives no harmful
effect on RUtil. In the Q-table of Fig. 15a, the Q-value of
domain (1) showing high DRE in band group 2 is the
topmost, and this is also shown in Fig. 15b as the high
visit count of states 7 and 8.
Figure 16 represents the change of rewards, states, and ac-

tions according to iteration at a high level DDR of 3.5 Mbps.
In Fig. 16a, the reward is stable overall, while it is temporally
low in the overall interval by random action, similar to
Figs. 12 and 14. In Fig. 16b, the system visits state 4 to a de-
gree, but it mainly remains in states 7 and 8. Figure 16c
shows that actions in band group 2 are selected mostly.
These results demonstrate that the proposed system

can select an appropriate channel according to the DDR
required by ad-hoc CR users.

5.2 Reward reconfiguration with weights
Figure 17 shows the average operation time, average data
rate, and reward for channel utilization by changing the
weight assignment for DDR = 40 kbps. In the reward
calculation, if weights for [operation time, supportable
data rate, reward for channel utilization] are assigned to
[0.5, 0.1, 0.3], then it increases the importance for the
operation time. As a result, it has the best average in-
crease in operation time, as shown in Fig. 17a, and the
least average of data transmission rate, as shown in
Fig. 17b. This is because the system wants to reserve the
highest priority for operation time and the least for data
transmission rate. If weights are assigned to [0.1, 0.7,
0.1], then it increases the data transmission rate. How-
ever, it results in the lowest average operation time and
reward for channel utilization because they are less im-
portant for consideration. This weight shows the highest
average transmission data rate in Fig. 17b. Therefore, it
is possible to operate the CR system according to the
purposes of user by changing the weight assignment.

5.3 Performance comparison for the proposed Q-learning
In this section, we compare the channel selection per-
formance between the proposed Q-learning mechanism
and random selection from the available channel lists in
terms of obtained rewards, average data rate of the sec-
ondary systems, and channel utilization efficiency. We

(See figure on previous page.)
Fig. 25 Rewards for Q-learning and random channel selection according to DDR change. Represents the rewards and visits of states according to
the changes in DDR as shown in a. Comparing b and d, the rewards of Q-learning selection are more stable than that of the random selection.
From c and e, we can see that the ad-hoc CH selects a low data rate channel and Q-learning visits the state of low DRE in band group 1 when
the DDR is low. Furthermore, we can see that the Q-learning visits a state of low DRE of band group 2 when the system selects a high data rate
channel by the explorer policy. When the DDR is high, the Q-learning tries to select the channel of band group 2 mainly which provides higher
data rates so that the sates of band group 1 are visited less frequently. However, in random channel selection, the visits of states are distributed
evenly in various DREs when the DDR is low or high. c and e shows that the visiting states of Q-learning and random channel selection are the
same for a particular DDR. However, since the Q-learning channel selection tries to select a channel adaptive for the specific DDR, Q-learning
mainly visits the state of the band group 1 when the DDR is low and visits the state of the band group 2 when the DDR is high. From these
results, the proposed Q-learning selects the appropriate channel even if the DDR changes
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also consider the fairness of selfish channel selection
without considering channel utilization efficiency.
Figure 18 shows the average reward for each DDR

case. When the DDR is 10 kbps or 50 kbps, the random
channel selection has a lower reward than Q-learning
because the random channel selection causes a waste of
channel resources and obtains the low reward for chan-
nel utilization RUtil. In case the DDR is 1.5 Mbps or
3.5 Mbps (e.g., more than medium or high DDR case), a
channel providing a sufficient data rate is not selected
adaptively by random channel selection, leading to a
lower reward than Q-learning channel selection. The re-
wards for a DDR of 1.5 Mbps and 3.5 Mbps is lower
than those of 10kbps and 50 kbps. As shown in DRE
range of [r2, 1) and [1,∞) in Fig. 8, the ε-greedy policy in
cases of a high DDR causes very low reward for channel
utilization RUtil due to the selection of a low-band chan-
nel which support insufficient data rate and these effects
are accumulated in the Q-table. These results show that
the Q-learning channel selection adaptively selects the
channel for the overall DDR.
Figures 19 and 20 show the boxplot and mean value

for the data rate and reward for channel utilization
resulting in Q-learning and random channel selection.
The red line represents the median value, and a star de-
notes the mean value of the data. Figure 19 shows the
mean and boxplot of the data transmission rate for
Q-learning and random channel selection for each DDR.
In cases of the random channel selection, the average
data transmission rate of all DDR cases is the same as
the average value of the data rates for all channels in
Table 1 belonging to band groups 1 and 2. The boxplots
of all DDR cases for the random channel selection have
a similar distribution, as well. The DDR of 10 kbps and
50 kbps by Q-learning channel selection have similar
distributions, and the mean for 50 kbps Q-learning is
higher than that of 10 kbps, since a higher DDR at-
tempts to choose the channel supporting higher data
transmission rate. In case of a DDR for 1.5 Mbps and
3.5M bps, as in Fig. 19b, the distribution and average
value of the data transmission rate by the Q-learning
channel selection are higher than that of 10 kbps and
50 kbps since the channels are mainly selected from
band group 2.
We can see that the Q-learning channel selection can

select the channel which provides higher data transmis-
sion rate when the DDR is 3.5 Mbps than 1.5 Mbps from
the mean values of each DDR case.
Figure 20 shows the mean and boxplot of the reward

for the channel utilization by the Q-learning and ran-
dom channel selection at each DDR. The reward for
channel utilization mainly operates as a harmful value in
the total reward function when the ad-hoc CH chooses
an appropriate channel for its DDR. For all DDRs, the

boxplot of Q-learning is denser and distributed at higher
values than that of the random channel selection, and it
has a higher average value since Q-learning tries to
choose the channel that does not create harm in terms
of RUtil. Outlier values of Q-learning cases are generated
by random selection.
Figure 21 shows the average fairness of data rate effi-

ciency with increasing number of neighboring secondary
systems. To compare the fairness between secondary
systems, two compared methods are considered in this
experiment: (i) the random selection, in which the oper-
ating band and channel are selected randomly by each
secondary system from its available channels and (ii)
MaxQ-selection [29–32], in which each secondary sys-
tem selects the channel that has the maximum support-
able data rate. As we can see in Fig. 21, the proposed
method provides the highest fairness because it selects
the band and channel based on the desired traffic de-
mand and current channel utilization efficiency. There-
fore, if a secondary system needs relatively low data rate,
then it will select the band that has a low channel band-
width in the proposed system and it yields the bands
with wider channel bandwidth to the neighbor second-
ary systems that require higher data rates.
Figures 22, 23, and 24 show the rewards of Q-learning

and random channel selection according to an iteration
for each DDR. In the case of Q-learning for all DDRs,
the fluctuation decreases over time and the system oper-
ates with the intended reward design. In the random se-
lection, there are more notches and fluctuation than
Q-learning channel selection.
Figure 25 represents the rewards and visits of states

according to the changes in DDR as shown in Fig. 25a.
Comparing Fig. 25b and d, the rewards of Q-learning se-
lection are more stable than those of the random selec-
tion. From Fig. 25c and e, we can see that the ad-hoc
CH selects a low data rate channel and Q-learning visits
the state of low DRE in band group 1 when the DDR is
low. Furthermore, we can see that the Q-learning visits a
state of low DRE of band group 2 when the system se-
lects a high data rate channel by the explorer policy.
When the DDR is high, the Q-learning tries to select the
channel of band group 2 mainly which provides higher
data rates so that the states of band group 1 are visited
less frequently. However, in random channel selection,
the visits of states are distributed evenly in various DREs
when the DDR is low or high. Figure 25c and e show
that the visiting states of Q-learning and random chan-
nel selection are the same for a particular DDR. How-
ever, since the Q-learning channel selection tries to
select a channel adaptive for the specific DDR,
Q-learning mainly visits the state of the band group 1
when the DDR is low and visits the state of the band
group 2 when the DDR is high. From these results, the
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proposed Q-learning selects the appropriate channel
even if the DDR changes.

6 Conclusions
In this paper, we propose a band group and channel se-
lection method considering the consecutive channel op-
eration time, data transmission rate, channel utilization
efficiency, and cost of the band group change for a cog-
nitive radio ad-hoc network composed of CH and MNs.
The proposed method uses the Q-learning in order to
operate in a channel environment that varies dynamic-
ally according to the geographical region, time zone,
band group, channel, and primary user’s activity. As the
core of the Q-learning operation, a Q-table and reward
function consisting of an action and state are designed
to consider various parameters related to the channel se-
lected by the CR ad-hoc system. In particular, the reward
for channel utilization is designed to select the appropri-
ate band and channel so that the frequency resources
are not wasted and a CR ad-hoc system can coexist with
other CR systems with fair resource utilization efficiency.
The simulation results represent how the proposed sys-
tem selects an adaptive band and channel for the re-
quired data rate and also explain the principle of
operation through the change of action and state in
Q-table. It also can be confirmed that the system oper-
ates according to the intended purpose through the
weight change, and the channel is selected adaptively
when the required transmission rate is changed. These
simulations clearly demonstrate these advantages of the
proposed method.

7 Methods/experimental
The purpose of this paper is to select the band and
channel for a cognitive ad-hoc system to move when the
primary user appears in the channel used by the CR sys-
tem and is to consider the fairness with other systems in
selecting the channel. The characteristics of frequency
resources such as an available transmission opportunity
and data rate vary depending on the time zone, geo-
graphical location, and band group, and the activity of
the primary user and the desired data rate of the second-
ary user are also different according to them. Therefore,
considering such a complicated environment, it is neces-
sary to select a band and a channel that can maximize
the performance of the system. In this paper, the
Q-learning is used to dynamically select the band and
channel according to the complex surrounding environ-
ment which is time-varying. The reward function of the
Q-learning is designed considering the available channel
use time, data rate, utilization efficiency of the selected
channel, and cost for band change. Each of the consid-
ered terms is combined with a weight sum so that the

performance related to the preferred parameters can be
properly realized according to the adjustment of the
weights. In particular, we designed a reward for
utilization in the reward function so that the CR ad-hoc
system does not choose a channel that provides un-
necessarily high data rate and other system has the op-
portunity of selecting adaptive channel which supports
adaptive high data rate. The Q-table is designed so that
the reward function of Q-learning works properly. The
state of the Q-table is composed of time zone, geograph-
ical zone, band group, and data rate efficiency (DRE) so
that the proposed Q-learning can operate well.
Experimental results in this paper had been performed

using MATLAB R2015b on Intel® Core i7 3.4 GHz sys-
tem. The Gaussian random function to generate the op-
eration time and supportable data rate of each channel
over time and Q-table matrix for Q-learning can be
made by constructing appropriate MATLAB code.
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