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Abstract

Indoor robot global path planning needs to complete the motion between the starting point and the target point
according to robot position command transmitted by the wireless network. Behavior dynamics and rolling windows
in global path planning methods have limitations in their applications because the path may not be optimal, there
could be a pseudo attractor or blind search in an environment with a large state space, there could be an
environment where offline learning is not applicable to real-time changes, or there could be a need to set the
probability of selecting the robot action. To solve these problems, we propose a behavior dynamics and rolling
windows approach to a path planning which is based on online reinforcement learning. It applies Q learning to
optimize the behavior dynamics model parameters to improve the performance, behavior dynamics guides the
learning process of Q learning and improves learning efficiency, and each round of intensive learning action
selection knowledge is gradually corrected as the Q table is updated. The learning process is optimized. The
simulation results show that this method has achieved remarkable improvement in path planning. And, in the
actual experiment, the robot obtains the target location information by wireless network, and plans an optimized
and smooth global path online.
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1 Introduction
Autonomous navigation in an unknown environment
should require that the robot finds a suitable, safe,
smooth, and even optimal path from the starting point
(position and attitude) to the end point (position and at-
titude). Researchers have performed a large amount of
research, using artificial neural networks [1],ant colony
algorithm[2], and so on combined with fuzzy logic to
achieve understanding and rapid classification of current
environmental perceptions, the artificial potential field
method [3], behavior dynamics [4], Firefly algorithm [5],
full coverage path planning algorithm [6], lidar acquisi-
tion data and RBPF-SLAM [7] to construct maps, and
other methods to solve the autonomous navigation
problem in unknown environments for global planning
of the robot path or for a combination of global and
local planning [8–10]. Researchers combine behavior dy-
namics and rolling windows to perform path planning

[11, 12]; the local sub-objective is optimized by using a
heuristic function according to the local information in
the rolling window obtained by the robot; the behavior
dynamics model is used to perform autonomous path
planning [13] in the rolling windows; and the planning
trajectory of a series of windows is connected end to
end to realize the global path planning. Behavior
dynamics uses point attractor and point repulsor to
build robot behavior, and the robot’s heading angle and
motion speed are used as behavior variables to describe
robots moving in a plane [14], but in the application, the
line speed is limited by the heading angular velocity con-
trol and causes a deadlock; in addition, because of the
non additivity of the virtual forces, there are also pseudo
attractor problems. The literature [15, 16] uses the linear
velocity control method to solve this problem, but it is
required that the linear velocity ensures that the robot’s
heading angle is always near the heading angle of the
attractor. At the same time, there is also a situation in
which the path between windows in the rolling windows
method is not smooth because of the different directions
of the robot motion.
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Reinforcement learning is a machine learning algo-
rithm that adjusts its own action strategy by interacting
with the environment and ultimately finds the optimal
strategy to achieve the goal. The adaptive navigation and
obstacle avoidance algorithm based on reinforcement
learning can solve the abovementioned problems well
and has strong adaptive ability. However, the intensive
learning method takes too long to train, and the conver-
gence is slow. The general idea of the application of
reinforcement learning in robot path planning is as
follows [17]: robots roam in the environment, learn
obstacle avoidance movements, and gain experience;
when robots enter new unknown environments, they
rely on previously learned experience to plan obstacle
avoidance paths. This kind of approach which involves
blind search makes the target reward and punishment
spread very slowly, so it is almost impossible to solve the
problem of robot navigation in the complex environ-
ment with a large state space; in addition, the offline
learning method does not apply to the real-time chan-
ging environment. Researchers optimize from the aspect
of reducing the state space, the action selection, and so
on, but they have lost useful information, so the learning
cannot be adequately optimized. Some scholars intro-
duce the theory of hierarchical reinforcement learning,
and they decompose complex reinforcement learning
problems into sub-problems that are easy to solve. By
solving these sub-problems separately, the original
reinforcement learning problems are finally solved
[18, 19]. It has also been proposed to use neural net-
work structures to automate the hierarchical abstrac-
tion and learning of problems [20]. The literature
[21] has proposed a reinforcement learning method
that is based on path knowledge enlightenment,
which uses the knowledge gained by online learning
to reduce the blindness of the search, but it needs to
set the robot action selection probability fictitiously.
Taking the above research methods into consideration,

an idea comes to our mind. If the robot can choose the
action itself according to the current state and the ex-
perience gained in the learning process, it can not only
apply knowledge to enhance the learning efficiency but
also enhance the robot’s autonomous navigation ability.
Q learning with behavior dynamics and rolling win-

dows is proposed in this paper to solve the problems in
robot autonomous navigation while applying the above
methods. On the one hand, the online knowledge
obtained by applying behavior dynamics improves the
robot learning efficiency in this window, and it continu-
ously corrects the knowledge obtained in the previous
window to optimize the subsequent learning process. On
the other hand, the Q-learning behavior dynamics model
parameters enable the robot to adaptively change the mo-
tion scheme online to adapt to the state in the process of

interacting with the environment, thereby obtaining a
good running state and planning an optimal path.
This paper is organized as follows. In Section 2, the

robot behavior dynamics model and rolling window path
planning method is introduced. Q learning algorithm
and the parameters of the Q learning algorithm corres-
pond to the motion state of the robot are introduced in
Section 3. Afterward, behavior dynamics and rolling
windows path planning based on Q learning method is
proposed in Section 4. Simulation and experiments are
implemented to verify the proposed method in Section
5. Section 6 gives conclusions.

2 Behavior dynamics and rolling window path
planning
2.1 Robot behavior dynamic model
Behavior dynamics uses point attractor and point repul-
sor to build robot behavior, and it uses the robot’s head-
ing angle and motion speed as the behavior variables to
describe robots that move in the plane. The description
of the robot and its environment is shown in Fig. 1.
The behavior of the robot is determined by both mov-

ing toward the target and performing obstacle avoidance.
The behavior dynamics model is coupled by a behavior
state dynamics model and a behavior pattern dynamics
model. It is a nonlinear differential equation group, and
the dynamic state model of robot navigation behavior
can be expressed as follows:

Fig. 1 Robot model. The coordinate system OXY is the world
coordinate system, the robot coordinate system takes the robot
position as the origin, the X-axis is parallel to the X-axis of the world
coordinate system, and the Y-axis is perpendicular to the X-axis
(not drawn)
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φ ¼ wtarj j f tar þ wobsj j
X
n

f obsti ð1Þ

where ftar is toward the target behavior function, fobsti is
the obstacle avoidance behavior function, n is the num-
ber of obstacles in the environment, and wtar and wobs

are the weights toward the target behavior and the obs-
tacle avoidance behavior. This equation constitutes the
behavior dynamics model:

wtar ¼ α1wtar 1−w2
tar

� �
−γ21wtarw

2
obs

wobs ¼ α2wobs 1−w2
obs

� �
−γ12wobsw

2
tar

�
ð2Þ

Where α1, α2, γ12, and γ21 are environment-related pa-
rameters; α1 and α2 respectively, represent the competi-
tive advantage of the toward the target behavior and the
obstacle avoidance behavior; γ12 is the coefficient of the
constraining ability of the running toward target behav-
ior to the obstacle avoidance behavior in competition;
and γ21 is the coefficient of obstacle avoidance behavior’s
constraining ability to target behavior in competition.
These four parameters describe the extent of coupling
between the robot and the environment, and its value
changes as the robot’s position changes.
If (wtar, wobs)

T = (0, 0)T; then, the fixed points (wtar,
wobs)

T of Eq. (2) are (0, 0), (0, ±1), (±1, 0), and (±A1, ±A2),
where:

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðα1−γ12Þ
α1α2−γ12γ21

q
A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1ðα2−γ21Þ
α1α2−γ12γ21

q
According to Lyapunov’s first approximation theorem

[22], as long as the parameters α1, α2, γ12, and γ21 are
properly designed so that all of the eigenvalues of the
Jacobi matrix that satisfy Eq. (2) have negative real parts,
then the fixed point is stable; otherwise, the fixed-point
is unstable.
Considering the overall behavior equation of the robot

(1), the stability of the above four abovementioned types
of fixed points in Eq. (2) can be seen:

1. The first type of fixed point (0, 0) means that the
weights of the target behavior and the obstacle
avoidance behavior are zero, and both are in the
state of complete suppression (i.e., off ), which
indicates that the robot is in a roaming disorder
state. In the robot navigation process of this paper,
this state is not needed. As long as α1 > 0 and α2 > 0
are satisfied, the fixed point is unstable, and this
situation can be avoided.

2. The second type of fixed point (0, ±1) means that in
the overall behavior of the robot, there is only
obstacle avoidance behavior without target
behavior; this situation occurs in the case of robot
emergency obstacle avoidance, and as long as y12 >
0, α2 > 0 is satisfied, this fixed point is stable.

3. The third type of fixed point (±1, 0) means that
when there is no obstacle in front of the robot, the
robot moves directly to the target point, as long as
γ21 > α2 and α1 > 0 are satisfied, the fixed point is a
stable fixed point.

4. The fourth type of fixed point (±A1, ±A2) means
that the weights of the two behavior modes are not
0 or 1 but are between 0 and 1. At this time, both
of them act simultaneously,and the navigation
behavior of the robot emerges. It is necessary to
move to the target while avoiding obstacles and
being in a competitive state. Since the parameters
α1, α2, γ12, and γ21 are descriptions of the coupling
state between the robot and the environment, the
value changes as the position of the robot changes.
Therefore, the fixed point is changed. The fixed
point is stable as long as α1 > 0, α2 > 0, α1 > γ12,
α2 > γ21, γ12γ21 < 0, or γ12 > 0, γ21 > 0 are satisfied.

It can be seen from the above stability analysis that the
stability of various fixed points is mutually exclusive.-
When a fixed point is stable at a certain time, other fixed
points are unstable, as long as there are reasonable de-
sign parameters α1, α2, γ12, γ21 in such a way that the pa-
rameters can accurately reflect the relationship between
the robot and the environment; then, the correct naviga-
tion of the robot can be realized.
In the robot autonomous navigation task, the robot

exhibits a mutually coordinated target behavior and obs-
tacle avoidance behavior. In interactions with the envir-
onment, the robot needs to independently determine the
direction and speed of the navigation. The robot’s head-
ing angle dynamics model is:

€φ ¼ f φd _φð Þ þ wtarj j f φt φ; dtð Þ þ wobsj j
X
n

f φo φ; doð Þ

ð3Þ

where f ϕdð _ϕÞ is related to the damping coefficient of the
system, the distance between the robot and the target
point is dt, and do is the distance between the obstacle
and the robot. The speed dynamics model of the robot
is expressed as follows:

_v ¼ wtarj j v−v exp t
� �þ wobsj j v−v exp o

� � ð4Þ

where Vexp _ t is the desired speed of the target behavior
and Vexp _ o is the desired speed of the obstacle avoidance
behavior.
When the robot travels in an unknown environment,

it changes its heading angle and speed in real time
according to the information obtained from the environ-
ment, and it autonomously avoids obstacles.
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2.2 Rolling window path planning
The rolling window path planning method is to use the
local environment information acquired by the sensor in
real time near the current position of the robot and to
perform local path planning under each sub-window to
realize the robot behavior control. As the robot
advances, the sub-window scrolls forward. This kind of
repeated scrolling window local planning realizes a com-
bination of optimization and feedback to complete the
global planning [23].
The robot acquires environmental information within

a certain range of its current location. Regarding this en-
vironment as a window, the heuristic function is used to
determine the local sub-target point of the window
based on the location of the feature point and the obs-
tacle. Starting from the current position, the path to
reaching the local sub-goal is planned. During the entire
navigation process, the window is scrolled forward
accordingly, and the prior information in the local envir-
onment is corrected. To determine the sub-objects in
the window is the premise of the local path planning.
The sub-objectives are usually judged by a heuristic
function. The heuristic function in this paper is as
follows [16]:

F Pð Þ ¼ G Pð Þ þ H Pð Þ þ J Pð Þ ð5Þ

The G(P) value represents the distance from the
sub-target in the set P to the global target guide point G,
and the set P always guarantees that the sub-target exists
in the window. H(P) is the cost of P to travel to the glo-
bal target guidance point, ensuring that the sub-target
will not be located in the robot forbidden zone of exist-
ing obstacles; J(P) guarantees that the sub-targets of two
adjacent windows at moment i and moment i − 1 are dif-
ferent. The point at which F(P) is the minimum must be
included in the point set at which H(P) and J(P) are sim-
ultaneously minimized, and if the point at which G(P) is
minimized is also selected at the point set, then the
sub-target point of this window is ascertained. The loca-
tion of the global target guidance point is the main fac-
tor that determines the target of each window. The
sub-target point determined by the heuristic function is
always close to the global target guidance point.
In each window, the experience acquired by the robot

does not form the knowledge of applying subsequent
navigation behavior, which results in problems such as
the path of the robot’s window junction place not being
smooth and the path not being optimal.

3 Q learning algorithm
3.1 Original Q learning algorithm
Most reinforcement learning systems apply a theoretical
framework of the Markov decision process (MDP) [24].

The MDP includes the following four parts: S is the en-
vironmental state set, A is the set of actions, W : S ×
A→ T(A) is the set of environmental state transitions,
and R : S ×A→ R is the feedback signal of the environ-
ment state to action which is also a reward value. At
each time t moment, robot obtains an environmental
state st and executes a corresponding action at according
to a certain strategy, and then, the environment state
changes according to the action. At the next moment,
robot receives the reward value rt + 1 from the environ-
mental state; that is, for each group given (s, a), here is a
reward value Ra

s ; at the same time, robot moves to new
environment state st + 1, and the transition probability is
pas . In this learning process, experience knowledge (st,
at, st + 1, at + 1) is obtained. Based on this empirical know-
ledge, the Q(s, a) value is modified. Robot’s goal is to
seek in each discrete state S such that Q(s, a) is
maximal.
The Q learning algorithm is as follows:
Initialization Q(s, a)
For each round of learning {
Selection status S = source;
While (Does not satisfy the end condition)
In the current state s, we select the behavior a accord-

ing to a certain strategy;
Performing action a, obtaining reward r, entering state

st + 1, and updating the Q value:

Qðst ; atÞ ¼
ð1−βÞQðst ; atÞ
þβ½rt þ γ maxQðstþ1; atÞ s ¼ st ; a ¼ at
Qðst ; atÞ otherwise

8<
: }

Among these, 0 < γ < 1 is called a discount coefficient
and β is called a learning rate.
In Q learning, the robot selection action is usually ran-

dom or blind. In the single-step reinforcement learning
process, the reward obtained after searching for the tar-
get can only be propagated one step in the next round,
and most of the experience results gained in each round
of the search is lost and not fully utilized.

3.2 Q learning about robot
The parameters of the robot behavior dynamics model
parameters α1, α2, γ12, and γ21 are in the range (0–1).
Therefore, the set of environmental statuses S is defined
as the range of values of the parameters that need to be
reinforced for learning, that is (0,1). The set A of corre-
sponding actions is the turning angle of the robot. When
accounting for the harsh environment of the robot dur-
ing its movement, the robot’s turning angle regards the
current forward direction as zero degrees; expanding to
the left and right has an angle range of 60°, which is di-
vided into seven discrete actions, − 60, − 40, − 20, 0, 20,
40, and 60. During the movement of the robot, when it
is closer to obstacles, the robot decelerates, and it turns
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the specified angle in a timely manner according to the
angle between the robot and the obstacles.When the
robot is farther away from the obstacles, it will acceler-
ate or turn the specified angle in a timely manner.
Therefore, determining the reward function needs to
consider two factors: the distance and angle. The value
of the reward function for different distances and angles
should be different, specifically as follows:

r ¼
1−e−x

1þ e−x
dmin > 2Rð Þ ϕt < ϕobsð Þ

−1 otherwise

(
ð6Þ

where ϕt is the robot’s heading angle and x is the dis-
tance that the robot has traveled at this moment relative
to the previous moment.
Since the robot system does not satisfy the constraint

conditions that the state/action must be finite discrete in
the Q learning algorithm, there is a need for generalization.
In this paper, the neural network is applied to generalize
the Q learning algorithm [25]; because the value of the kin-
etic parameter is a real number between zero and one, we
take 0.2 as the opening degree, and the state-discrete is
expressed as s = {s1, s2, s3, s4, s5}, where 0 < s1 ≤ 0.2, and so
on, 0.8 < s5 ≤ 1. The input of the back propagation (BP) net-
work corresponds to the five discrete states of the behavior
dynamics parameters.The output of the BP network corre-
sponds to the Q value of each turning angle action, and
there are seven output values in total.

4 Path planning of behavior dynamics and rolling
window based on Q learning
4.1 Q learning action search
Original Q learning usually follows certain rules and
selects actions, and the choice of actions is random,
which results in decreasing the convergence speed of
the learning. Applying behavior dynamics knowledge
in the rolling window to guide Q learning can reduce
the search space and improve the learning efficiency.
At the same time, Q learning adjusts the behavior dy-
namics parameters in such a way that the robot can
better adjust its own running status based on the en-
vironmental information.
The Q learning set of actions in this paper is the robot

turning angle. The behavior dynamics model also calcu-
lates the robot’s heading angle at any time.The current
heading angle of the robot is used to guide the Q learn-
ing search for the action space to reduce the search
scope. The current heading angle of the robot is
recorded as A; this angle corresponds to the action space
B, and the two discrete action ranges on the left and
right, which are similar to this angle, are taken as
possible performing actions of the robot, thereby shrink-
ing the action space. The probability of execution of
each robot action is:

P ai sjð Þ ¼ eQ s;aið ÞX
j

eQ s;a jð Þ ð7Þ

This equation indicates the probability of selecting
action i from j actions in state s.

4.2 Shortest path guided robot action selection
In each scroll window, the robot is learning while mov-
ing to the sub-target point as the termination condition.
The action of the robot is initially calculated by the be-
havior dynamics model; with the gradual establishment
of the Q value table, in a certain state s, the environmen-
tal state also corresponds to a certain action. At this
point, there are two possibilities for the robot action.
One option is to select the action based on the size of
the Q value, and the other option is to use the angle
action calculated from formula (3).
This paper is based on the principle in favor of gaining

the global shortest path, and it uses the shortest path to
determine the robot’s choice of action. At moment t, the
robot obtains an environmental state st that corresponds
to the parameters of the behavior dynamics, calculates
the distance between the robot and the end point when
the robot moves to a new location according to this par-
ameter, and calculates the distance between the robot
and the end point when the robot that executes the cor-
responding action at reaches the new position according
to the Q learning strategy; then, the robot selects an
action according to the short distance between the two
distances, and at the same time, the Q value table is
updated. If the robot performs actions according to the
behavior dynamics parameters, this parameter is com-
pared to the corresponding state value in the Q value
table; then it obtain rewards and updates the Q value
table. If the robot performs actions according to the Q
learning strategy, the Q value table is directly updated.

4.3 Q learning knowledge acquisition
One round of learning of the robot will gain some ex-
perience, retain the result of this experience, and be able
to optimize the later learning process. This paper uses
the value of the reward function to make the knowledge
in the previous round of learning be applied.
The specific approach is as follows: in the first

sub-window, the robot moves from the starting point to
the sub-target point, and the first learning is over.
Recording each state and the corresponding turning
angle action and then saves the information to table T;
in each round of learning after the first window, when
the robot performs an action, it traverses the table T. If
the state value that corresponds to this action in the
table is the same as the current state value, the reward
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function becomes 2r; that is, each round of know-
ledge gained strengthens the learning of the later
round. In the process of the robot running, after a
series of Q learning, it gradually establishes the Q
value that corresponds to the action knowledge,
which is used to guide the Q learning, and it also
constantly perfects the knowledge itself. Q learning
improved the behavior dynamics parameters, and the
interaction between the robot and the environment
was significantly improved.

(a)

(b)
Fig. 2 MATLAB simulation results. The robot is set to run from the
origin (50, 0) to the endpoint (250, 250), and the maximum speed
does not exceed 2 m/s. There are multiple obstacles of different
sizes in the environment. The size of the rectangular window is 40 ×
34. In the scroll window, the small “。” indicates the position of the
robot and forms the robot’s movement trajectory. a, b The same
environment, in b robot can walk from small space to target point.
This result show that Behavior Dynamics Rolling Window Path
Planning adding Q learning algorithm is much suitable than
Behavior Dynamics Rolling Window Path Planning

Fig. 3 Running track. The trajectory in this figure is the trajectory of the
robot in Fig. 2b when Q learning method is applied in path planning

(a)

(b)
Fig. 4 Comparison chart of speed changes. The vertical coordinate
represents the movement speed of the robot (m/s), while the
horizontal coordinate represents the number of steps the robot
takes (step). The change in the velocity in figure (a) of the robot is
more gentle than that in figure (b)
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4.4 Path planning based on Q learning
Based on the above definition of the environment state
space, action definition, action search method, action
selection, and design of reward function, the path plan-
ning step of the behavior dynamics rolling window based
on Q learning proposed in this paper is as follows:
Step 1: System initialization; the robot detects the first

child window and determines sub-goals.
Step 2: The robot moves in the child window accord-

ing to the behavior dynamics model, and it plans the
path. The first round of Q learning begins at the same
time as the robot movement, and the behavior dynamics
model is used to guide the search for Q learning accord-
ing to the method of Section 3.1; the T table is created.
Step 3: At the starting point of the next window, a

new Q learning process is started. A proper reward func-
tion value is obtained by querying the table T. The robot
performs the action selection according to the method
of Section 3.2, and the table T is updated.
Step 4: Repeat step 3 until the robot reaches the global

end point.

5 Experiments and results analysis
In path planning based on the behavior dynamics model,
the position of the obstacles detected by each rolling

window is different, and then, the path walked by the
robot is also different. To verify the validity of the above
method combination and the continuity and smoothness
of the path planning, this paper selects a representative
situation in the path planning, and we conduct simula-
tion experiments in the MATLAB.
Figure 2a shows the experiment that applies only the

behavior dynamics rolling window method. It can be
seen from the figure that the robot can avoid the obs-
tacle and reach the target point. Figure 2b shows the
behavior dynamics rolling window method combined
with the Q learning algorithm. In contrast to the path in
Fig. 2a, the robot can walk in between the obstacles, im-
proving the planned path in Fig. 2a and minimizing the
path to reach the destination. In the same external envir-
onment and exercise conditions, in Fig. 2b, the path that
the robot can plan is more reasonable than that in figure
(a) after applying Q learning algorithm.
The treading track of the robot using Q learning algorithm

is shown in Fig. 3, and the track shown in Fig. 3 is smooth. It
shows that the Q learning improves the phenomenon that
the track is not smooth when the sub-windows are con-
nected to each other, making the robot’s kinematic perform-
ance perform better in the actual operation.
Figure 4 is a comparison of robot speeds in the experi-

ments shown in Fig. 2a and Fig. 2b. It can be seen that

Fig. 5 Robot planning path. The gray part in this figure represents obstacles. The number 1 is the starting point for the robot, and the numbers 2
and 3 are the target points (robot receives the signal sent by the control terminal through the wireless network) of the robot respectively. The
curve between the numbers is the actual path of the robot walking, the purple pentagon is the robot, and the green spot is the real-time data
scanned by the laser sensor of the robot
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the robot speed variation in graph (b) added to the Q
learning algorithm is much more moderate than that of
graph (a), especially in terms of the distance from the
obstacle area after reaching the end point; in graph
(b), speed variation trend is obviously better than that
of graph (a), which shows that the accumulated know-
ledge of Q learning can instruct the robot to better
interact with the environment and make the robot
move more smoothly.
This method is applied to a real robot system. Mobile

R robots carry laser ranging sensor urg-10 lx, accurate
Odomete Odomete, gyro module GPX, absolute encoder
e6b2-cwz6c 10P/R sensor, and wireless data transmission
function circuit module; the wireless data transmission
module is used to receive the robot target position infor-
mation in the indoor environment, such as point 2 and
3 (Fig. 5). In the process of walking toward the target
point (especially from point 1 to point 2), the robot can
plan a reasonable route and walk a smooth trajectory.
The experimental results show that the proposed
method can improve the walking performance of the
robot and realize the online global path smoothing.

6 Conclusions
In this paper, the online Q learning method is used to
solve the accuracy problem that exists in the robot
behavior dynamics model and the problem of the Not
smooth path of the rolling window connection. The
behavior dynamic model guided Q learning reduced the
search space and improved the learning efficiency. The
experience and knowledge accumulated in the previous
window are beneficial to the later learning; the gradually
improved Q learning online adjusts the model parame-
ters in such a way that the robot exhibits better
performance in interactions with the environment, and
an optimized and smooth global path is obtained. This
method described in this paper can obtain and use
knowledge of the environment in real time, which can
improve the practicality of the dynamic model and
rolling window path planning and plan an optimal path
safely and stably.
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