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Abstract

The target detection model based on convolutional neural networks has recently achieved a series of exciting
results in the target detection tasks of the PASCAL VOC and MS COCO data sets. However, limited by the data set
for a particular scenario, some techniques or models applied to the actual environment are often not satisfactory.
Based on cluster analysis and deep neural network, this paper proposed a new Statistic Experience-based Adaptive
One-shot Network (SENet). The whole model solved the following practical problems. (1) By clustering the existing
image classification dataset ImageNet, a common set of target detection datasets is formed, and a data set named
ImageNet iLOC is formed to solve the object detection. The problem of single and insufficient quantities in the task.
(2) We use cluster analysis on the size and shape of objects in each sample, which solves the problem of inaccurate
manual selection of suggested areas during object detection. (3) In the multi-resolution training and prediction
process, we reasonably allocate the size and shape of the suggested frame at different resolutions, greatly improve
the utilization rate of the proposed frame, reduce the calculation amount of the model, and further improve the
real-time performance of the model. The experimental results show that the model has a breakthrough in accuracy
and speed (FPS reaches 54 in the case of a 3.4% increase in mAP).
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1 Introduction
Convolutional neural network (CNN) was widely used
in the 1990s (such as model [1]), but with the rise of
support vector machines in the field of computer
vision, CNN entered a period of low tide. In 2012,
the image classification model proposed by Krizhevsky
et al. [2] demonstrated the revolutionary image classi-
fication accuracy in ILSVRC (ImageNet Large Scale
Visual Recognition Challenge, ILSVRC) [3], rekindling
people’s interest in CNN. A series of image classifica-
tion models based on CNN are continually proposed,
and the image classification records of ILSVRC are
also refreshed again and again. At the same time, the
mean average precision (mAP) and detection speed of
the target detection reference data set PASCAL VOC
[4] and MS COCO [5] are also constantly increasing.
Firstly, the success of selective search (SS) [6] and
region proposal based volume and neural networks
(R-CNN) [7] has driven advances in object detection.
Although R-CNN was very time consuming to

propose, the cost of the detection model was greatly
reduced by sharing the convolution between the pro-
posed regions [2, 7]. Typical research results, such as
Fast R-CNN, have achieved real-time target detection
speeds without the time-consuming recommendations
of regional recommendations, using target detection
models with extremely deep convolutional neural
networks [2]. However, the time-consuming problem
of regional recommendations remains the perform-
ance bottleneck of the most advanced target detection
systems. Next, region proposal networks (RPN) using
CNN instead of selective lookups is proposed [7].
RPN shares a partial convolutional layer with the
most advanced target detection network, and by tes-
ting the shared convolution, the cost of the calculation
suggestion box is further reduced. However, the entire
detection model (Faster R-CNN) needs to train a pro-
posed network and a detection network [7], which is still
too cumbersome, inefficient, and not easy to optimize
relative to the detection model of a single network.
YOLO regards target detection as a single regression

problem. It first extracts the input image through a
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traditional convolutional neural network to form an S × S
grid (e.g., 7 × 7). Each grid produces two bounding boxes
of different sizes and shapes (7 × 7 × 2 = 98) relative to the
original image, each bounding box representing the coor-
dinates of a potential object and the probability of belong-
ing to a certain category.
The SSD model is similar to YOLO. The main diffe-

rence is that the SSD architecture combines multiple
feature maps of different resolutions in the neural net-
work for target prediction, naturally processing objects
of different sizes, and improving detection quality [8].
However, the single dataset, poor integration, low speed
and accuracy, and difficulty in optimization are still
many of the problems faced by the object detection
model. This chapter proposes an end-to-end, single
neural network target detection model, which mainly
has the following contributions:
By applying the clustering analysis algorithm to the

existing ImageNet for image classification, a set of
general methods for making image classification data
sets into target detection data sets is formed, which
solves the problem of single and insufficient samples in
object detection tasks.
The paper uses cluster analysis to determine the size

and shape of the bounding box in each sample, and
obtains the prior knowledge of the size and shape of the
bounding box of the object in the data set. Based on
these priors, the design of the model’s border frame is
guided, and the object detection process is solved ma-
nually. Design suggestions for areas that are not accurate.
In the multi-resolution training and prediction

process, this paper greatly improves the utilization
rate of the proposed frame by reasonably assigning
the size and shape of the suggestion frame of differ-
ent resolution detection layers, and at the same time,
reduces the calculation amount of the model and
further improves the calculation. The real-time and
accuracy of the model.

1.1 Related works
In this part, we first introduce the neural network-based
target detection and recognition methods. On this basis,
the plant anomaly detection technology was reviewed,
and the research progress of false positive detection
technology was reviewed.

1.2 Image-based object detection and feature extractors
In recent years, visual media gained through the Internet
has proliferated. A large amount of data brings new op-
portunities and challenges to the application of neural
networks. Since Alex Net [2] first applied the convolu-
tional neural network (CNN) to image classification

tasks in the ImageNet Large Scale Visual Identity Com-
petition (ILSVRC-2012) [3], it consists of eight layers.
CNN demonstrated superior performance compared to
traditional manual computer vision algorithms. There-
fore, in recent years, several deep neural network struc-
tures have been proposed to improve the accuracy of the
same task.
Object detection and recognition is an important

issue in recent years. In the case of detecting specific
categories, earlier applications focused on image clas-
sification from object-centric [9]. The goal is to
categorize images that may contain objects. However,
the new main paradigm is not only to classify and
accurately locate objects in an image [10]. Therefore,
current prior art object methods for object detection
are primarily based on deep CNN [3]. They are
divided into two phases and a one-stage approach.
Two-stage methods are often associated with region-
based convolutional neural networks, such as faster
R-CNN [7], region-based fully connected networks
(R-FCN) [11]. In these frameworks, the region pro-
posal network (RPN) generates a set of candidate
object locations in the first level, and the second level
uses CNN to classify each candidate location into one
of the classes or backgrounds. It uses a deep network
to generate features for backward use by the RPN to
extract recommendations. In addition to the system
based on regional recommendations, a first-level
framework for object detection has been proposed.
Recent SSDs [8], Yolo [12] and Yolo v2 [13] have
shown promising results, resulting in a real-time de-
tector similar to the accuracy of a two-stage detector.
In the past few years, it has also been demonstrated
that deeper neural networks achieve higher perform-
ance than simple models in image classification tasks
[3]. However, with significant performance improve-
ments, the complexity of deep structures has also in-
creased, such as VGG [14], ResNet [15], GoogleNet
[16], ResNext [17], DenseNet [18], dual path network
[19], and Senet [20]. As a result, deep artificial neural
networks often have much more trainable model pa-
rameters than the number of samples they accept [21].
Although a large number of data sets are used, neural
networks tend to over-fitting [1]. On the other hand,
several strategies have been applied to improve per-
formance in deep neural networks. For example,
increasing the number of samples increases the data
[22], weighting regularization to reduce model over-
fitting [23], random discarding off-activation [24], and
batch normalization [25]. While these strategies have
proven to be effective in large networks, the lack of
data or category imbalances remains a challenge for
several applications. There is no specific way to under-
stand the complexity of artificial neural networks for
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their application to any problem. Therefore, the im-
portance of developing a strategy specifically designed
for applications that include limited data and class
imbalance issues. Moreover, depending on the com-
plexity of the application, today’s challenge is to design
a deep learning approach that can perform complex
tasks while maintaining lower computational costs.

1.3 Anomaly detection in plants
The problem of plant diseases is an important issue
directly related to people’s food safety and welfare.
Diseases and pests affect food crops, which in turn cause
significant losses in the peasant economy. The effects of
disease on plants are becoming challenging in crop
protection and healthy food production. Traditional
methods for identifying and diagnosing plant diseases
depend primarily on the visual analysis of experts within
the area, or in the laboratory. These studies often
require high expertise in the field, in addition to the
probability of not successfully diagnosing a particular
disease, thus leading to erroneous conclusions and treat-
ment (proposed 2018). In these cases, in order to obtain
quick and accurate decisions, automated systems will
provide efficient support to identify diseases and pests of
infected plants [26, 27]. Recent advances in computing
technology, particularly graphics processing units
(GPUs), have led to the development of new image-
based technologies, such as efficient deep neural net-
works. The application of deep learning has also
expanded into the field of precision agriculture, and it
has also shown satisfactory results while solving complex
problems. Some applications include disease identifica-
tion for several crops such as Cole [26], apples [28],
bananas [29], wheat [30], and cucumbers [31]. The
CNN-based approach constitutes a powerful tool that is
used as a feature extractor in multiple jobs. Mohanty et
al. [27] compared two CNN architectures, Alexnet and
Googlenet, to identify 14 crop species and 26 diseases
using large disease databases and healthy plants. Their
results show a system that effectively classifies images
containing specific diseases into crops that use transfer
learning. However, the disadvantage of this work is that
its analysis is based only on images collected in the lab,
not in actual field scenarios. Therefore, it does not cover
all the changes contained there. Similarly, Sladjevic et al.
[32] identified 13 healthy leaf plant diseases using the
Alexnet CNN architecture. They used several strategies
to avoid overfitting and improve classification accuracy,
such as data enhancement techniques, to increase the
size of the data set and improve efficiency while training
CNN. The average accuracy of the system is 96.3%. Re-
cently, Liu et al. [28] proposed a method for apple leaf
disease identification based on a combination of Alexnet
and GoogleNet architectures. The system was trained to

identify four types of apple leaf disease using an image
data set collected in the laboratory with a total accuracy
of 97.62%. In [33], ferencinos evaluated various CNN
models to detect and diagnose plant diseases using leaf
images of healthy and infected plants. The system is cap-
able of classifying 58 different plant/disease combina-
tions from 25 different plants. In addition, the
experimental results show interesting comparisons when
using images collected in the laboratory compared to
images collected in the field. The use of two types of im-
ages gives promising results with an optimum accuracy
of 99.53% given by the VGG network. However, when
images acquired in the field are used for testing rather
than laboratory images, the success rate is significantly
reduced. In fact, according to the author, this proves that
image classification under real field conditions is more
difficult and complicated than using images collected in
the laboratory.
Although the above work has achieved good results

in the identification of plant diseases, the challenges
of complex field conditions, infection changes, various
pathologies in the same image, and surrounding
objects have not been studied. They mainly use images
acquired in the lab, so they cannot handle all the
situations that occur in real scenes. Moreover, they are
all based on the method of disease classification. In
contrast, Fuentes et al. [26] proposes a system that
can successfully detect and locate nine Cole pests and
diseases using images collected in the field, including
actual cultivation conditions. This approach differs
from other methods in that it generates a set of
bounding boxes that contain the location, size, and
category of the disease and/or pest in the image. This
work examines different meta-architectures and CNN
feature extractors to identify and locate suspicious
regions in an image. The results show that the per-
formance of the method reaches 83%. However, the
system has some difficulties that make it impossible to
achieve higher performance. They mentioned that due
to the lack of samples, some highly variant classes are
often confused with other classes, resulting in false
positives or low precision. According to the idea in
[26], our current work aims to solve the above prob-
lems and improve the results by focusing on false
positives and class imbalances. On the other hand, our
method has studied several techniques to make the
system more robust to inter- and intra-species changes
in Cole pests and diseases.

2 Our methods
2.1 Classified dataset to test dataset
The target detection data set is costly to produce (you
need to label the number of objects in the image, the
size, shape, location, and type of each object), and the
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public can obtain less (more famously, only PASCAL
VOC and COCO data sets). The problem of single
type of data set severely limits the accuracy and appli-
cation range of the target detection model. On the
other hand, because the image classification data set is
relatively easy to make (only the type of the object
needs to be labeled), there are many kinds of types.
The publicly available data set is used to train the
image classification model. More famous are MNIST
[34], CIFAR [35], ImageNet [3], Youtube-8 M [36],
Open Image [37], etc. These data sets contain nearly
10,000 kinds and hundreds of millions. At the same
time, some well-known image classification models
achieved very high accuracy (even 100%) on the rele-
vant data sets. Do we have a way to automatically add
location tags to these well-known classification data-
sets? In the field of machine learning, there are many
unsupervised algorithms that are very suitable for
finding the shape of randomly distributed data. Spec-
tral clustering is one of them [38]. Spectral theory is
the study of how the properties of a graph are de-
scribed by several easily calculated quantities. Spectral
clustering of a graph is an important tool for describ-
ing graphs. The usual method is to encode the graph
into a matrix and then calculate the eigenvalues of the
matrix (also called spectrum spectrum) [38]. In other
words, spectral clustering uses a weighted adjacency
matrix and its spectral map to analyze the data by
graph segmentation [39]. Therefore, spectral cluster-
ing can achieve more powerful data representation in
the feature space by using the main components in
the data revealed by the spectrum, thus facilitating
data clustering.
The object detection data set usually consists of the

center coordinates of the bounding box of the object,
the length and width, and the category label of the
object, which are usually represented by {cx, cy, w, h,
category}. This chapter uses spectral clustering algo-
rithm and ResNet [17] image classification model to
propose a method to make the classification data set
into object detection data set. The algorithm first uses
spectral clustering to obtain the contours (shapes) of
the objects in the image, and calculates the position
coordinates {cx, cy, w, h} of each object; using ResNet
to classify the objects in the image to obtain a confi-
dence that it belongs to a certain category. Degree
(confidence). The algorithm flow is divided into the
following stages to complete the production of the
test data set:

1) Obtain image left and lower edge feature coordinate
vectors ¼ f l

!
1; l
!

2;…; l
!

mg;D ¼ f d!1; d
!

2;…; d
!

ng,
respectively, of size m × n.

2) Cluster analysis of the pixels of the image using
spectral clustering to obtain a rough outline of
each object O = {O1,O2…OM} in the image, and a
pixel coordinate vector Oj of each object (cluster)

C j ¼ f c! j
1; c
! j

2… c! j
Kg.

3) Calculate the object coordinate vector set Cj

based on the formula (1–4), the four
coordinates of the nearest and farthest distance
of each coordinate vector to the edge set {L, D}

T j ¼ f t
! j

u; t
! j

d; t
! j

l ; t
! j

rg, using coordinates (x1,
y1), (x2, Δy), (Δx, y3), (x4, y4) indicates.

t! j

u ¼ max
k∈K

distance D; c! j
k

� �
ð1Þ

t
! j

d ¼ min
k∈K

distance D; c! j
k

� �
ð2Þ

t
! j

l ¼ min
k∈K

distance L; c! j
k

� �
ð3Þ

t
! j

r ¼ max
k∈K

distance L; c! j
k

� �
ð4Þ

4) After getting the four vertices of the object, we
calculate the width, height, and center
coordinates of the bounding box based on the
formula (5–7):

w ¼ x4−Δx ð5Þ

h ¼ y1−Δy ð6Þ

cx; cy
� � ¼ Δx þ w;Δy þ h

� � ð7Þ

5) Finally, we use ResNet to calculate the category
confidence of the object in the rectangle. If the
confidence of this object belongs to a category is
greater than 0.85, then the correct label of the
algorithm output sample (ground-truth label) fðc jx;
c jyÞ;w; h; cg. Otherwise, ignore this object. See Fig. 1

for the specific process and a schematic diagram of
the algorithm.
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2.2 Boundary box clustering (k-means++)
At present, the recommended boxes of classical object
detection models are based on manual experience, and
the size and shape of the boundary boxes are set ma-
nually. In reality, the manual designed boundary boxes
are usually neither flexible nor robust [3, 7, 9]. For this
reason, this paper uses k-means++ algorithm to cluster
the shape of the object in the sample, so as to objectively
obtain the shape distribution of the object in the sample.
Standard k-means++ calculates the distance from each
element to the cluster center based on the Euclidean
distance. Because the distance between each element
and the cluster center varies greatly among objects of
different sizes, using absolute distance to calculate the
shape of the object will make k-means++ unable to con-
verge correctly. Therefore, this paper uses formula (8)
instead of the standard Euclidean distance calculation
method to complete the clustering analysis of object
shape, in which box is the sample to be clustered (in-
cluding the width and height of the object), centroid is
the center of the current clustering, and the function of
intersection over union (IoU) outputs the overlap ratio
between the object and the clustering cluster. Figure 2a
shows that when k-means++ chooses different K values,
k = 6 is selected to balance the speed and the overlap
rate of IoU. Figure 2b shows the distribution of objects
of different sizes and shapes in the original image by

Fig. 1 A monitoring system with wireless sensor networks. Figure 1 shows a monitoring system with wireless sensor networks. a Original image.
b Anchor box defining. c Object recognition
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clustering the ImageNet and COCO data sets. We find
that the shape of objects is different from the default
box set manually. The boundary boxes of high and thin
shapes occupy the majority of shapes. Again, it proves
the necessity of clustering the shape of samples to obtain
the priori shape of objects.

d box; centroidð Þ ¼ 1−IoU box; centroidð Þ ð8Þ

Figure 3a shows the method of setting default boxes
manually. Due to lack of objective analysis, it can not ef-
fectively improve the phenomenon of overlapping areas

Fig. 2 A general overview of the approach we propose. Figure 2 shows the entire proposed system. Input images of any size are trained in our
primary diagnostic unit, which generates boundary boxes and their location and category of infected areas in the image. The secondary diagnostic
unit uses the bounding box as an input, and the secondary diagnostic unit independently trains the CNN filter bank to reduce the number of false
positives generated by the primary unit. Both systems are further integrated into the level and location. K-means++ clusters the border shapes of
training samples from PASCAL VOC and COCO datasets. a It shows that when k-means++ chooses different K values, k = 6 is chosen to balance the
speed and the overlap rate of the IOU. b K-means + + clustering results show that thin and high boundaries account for the majority of the samples
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of interest. The red solid border is the correct border,
and the red dotted border is the highest border of IoU
for different methods of generating boundary boxes. The
average IoU of default boxes manually designed is only
47.6%. Figure 3b shows that after getting the priori
boundaries of object shape and size from a large number
of samples by clustering analysis, we can reduce the
square boundaries, increase the boundaries of thin and
high edges appropriately, effectively improve the propor-
tion of IoU, and further improve the convergence speed
and detection accuracy of the model.
It is different from K-means clustering algorithm used

in Yolo and DSSD. K-means++ has better stability and
efficiency in clustering results. Firstly, in order to ensure
the high detection speed of the model, the default box
size and shape in the model are usually taken as parame-
ters, which are set up when the model is initialized, and
no changes are made. This requires that the clustering
results on the training set must be as stable as possible.
However, K-means clustering algorithm is very sensitive
to the initialization of parameters of the algorithm. Each
randomly selected K clustering centers will produce
completely different clustering results, which confuses
researchers in choosing the priori shape of the boundary
box. In addition, if the selection of clustering centers is
inappropriate, the clustering results will be quite different,
and even some results can not reflect the characteristics

of the data set. Cluster centers of k-means++ are divided
in turn from least to most. Each time the elements farthest
from the current cluster centers are selected as new clus-
ter centers, which reduces the uncertainty of random
selection of k-means, improves the speed and accuracy of
clustering, and provides a better basis for the selection of
priori boxes for the detection model.

2.3 Model training
During training, the data input to the classifier includes
the feature mapping of the nth detection layer, the cat-
egory of the object in the correct border, and the prob-
ability that the object belongs to a certain category. The
data input to the detector includes the feature mapping
of the nth detection layer, the position coordinates of
the correct and priori borders, and the offset errors of
the output priori and the correct borders. The reality is
that there are many differences between the IoU of each
priori box and the correct border. We use two methods
to judge a priori box as a positive sample: (1) the highest
priori box overlapping the correct border box IoU, or (2)
the IoU of a priori box and any correct border is greater
than 0.7 (a correct border can be used as a label for mul-
tiple prioris). Although the second condition is sufficient
to determine the positive sample, we still use the first
condition, because in some rare cases, the second condi-
tion may not find the positive sample (for example, an

Fig. 3 Primary diagnosis unit for bounding box detection. Figure 3 shows the process by which the primary diagnostic unit detects suspicious
areas containing disease and pests in the input image. It is similar to Fuentes et al. (2017b). Compared the manual setting of boundary boxes
with the k-means++ clustering generation of boundary boxes, in which the red solid border is the correct border and the red dotted border is
the highest border in IoU of different methods of generating boundary boxes. a The size and shape of the default boundary box set manually
are usually not able to obtain high IoU, and b the prior knowledge of the boundary box is obtained from tens of millions of samples
using k-means++ (thin, high borders account for the majority)
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object is too small or too large). If the IoU ratio of a
non-positive sample to all correct borders is less than
0.3, then we consider some prior boxes as negative
samples. Finally, we discard the priori boxes that do not
contribute to training, neither positive samples nor nega-
tive samples. The training method of the model originates
from the multi-task minimization objective function, but
extends to the category that can recognize multiple
objects. The whole objective loss function is the weighting
of detection loss (reg) and classification loss (cls):

L x; c; p; gð Þ ¼ 1
N

Lcls x; cð Þ þ αLreg x; p; gð Þ� � ð9Þ

Where x is the feature mapping of the output of dif-
ferent detection layers, c is the category of objects in a
priori box d, p is the coordinate of the prediction box,
and g is the correct border coordinate value. N is the
number of matching priori frames. If N = 0, the loss is
set to 0, and alpha controls the weight of detection error.
Similar to Faster R-CNN, our regression method calcu-

lates the center ð̂txi ; t̂yi Þ, width ð̂twi Þ, and height ð̂thi Þ of the
prediction box (p) and the center ðtxj ; tyjÞ, width ðtwj Þ, and
height ðthj Þ of the prediction box (p), respectively. Our

regression method calculates the offsets between the
center; the detection loss is based on the coordinate
vector of the prediction box (p) calculated by smooth L1
based on the offset between { t̂

m
i } and the coordinate

vector tmj of ground truth box g; AMME can train the

model from end to end.

Lreg x; p; gð Þ ¼
XN
i∈Pos

X
m∈ cx;cy;w;hf g

xkijsmoothL1 t̂
m
i −t

m
j

� �

ð10Þ

Where:

t̂
cx
i ¼ pcxi −d

cx
i

dw
i

; t̂
cy
i ¼ p

cy
i −d

cy
i

dh
i

t̂
w
i ¼ log

pwi
dw
i
; t̂

h
i ¼ log

phi
dh
i

tcxj ¼ gcxj −d
cx
i

dw
i

; t
cy
j ¼ g

cy
j −d

cy
i

dh
i

twj ¼ log
gwj
dw
i
; thj ¼ log

ghj
dh
i

The classified loss function is as follows:

Lcls x; cð Þ ¼ −
XN
i∈Pos

xpij log ĉpi
� �

−
X
i∈Neg

log ĉ0i
� � ð11Þ

Where:

ĉpi ¼
exp cpi

� �
P

p exp cpi
� �

The model can use the error function above to
optimize the proposed regions generated by all the prior
boxes, but this will be biased toward negative samples,
because their number of samples dominates. Therefore,
in the training process, we use the min-batch method to
randomly select 128 recommended areas at a time, and
force the proportion of positive and negative samples to
be kept at 1:1. If there are less than 64 positive samples
in an image, the negative samples are filled in small
batches. We randomly initialize all the new multi-reso-
lution detection layers so that their parameters obey the
Gauss distribution with zero mean and 0.1 variance. The
basic network layer is initialized by pre-training the Ima-
geNet classification model VGG-16.

3 Results
The hardware of the experiment is accomplished on a
Dell server and equipped with two GTX-1080Ti GPUs.
The operating system is Ubuntu 16.464 bits, which runs
the Tensor-flow deep learning framework, and uses
Tensor-board to monitor the training process. All the
experimental results are based on VGG16 and trained in
advance on ILSVRC datasets. Target detection training
set and test set are Passcal VOC 2007, 2012, COCO, and
our ImageNet iLOC data set based on Section 3.1. We
use the AMME optimizer proposed in chapter 4 to
fine-tune the model. The default parameters are lear-
ning_rate = 0.001, beta 1 = 0.9, beta 2 = 0.999, and
= 1e-08. The learning rate of different data sets is slightly
different from the setting of parameters of beta 1 and beta
2, which will be described in detail later.

3.1 Experimental results in PASCAL VOC 2007
On this data set, our SENET method is compared with
SSD, YOLO, and Faster R-CNN. The data set used in
this section includes PASCAL VOC 2007, training set in
2012, and verification set in PASCAL VOC 2007 and
2012, totaling 16,551 images. The test set uses PASCAL
VOC 2007 test, including 4952 images. In the first 40 K
iterations of the model, AMME uses learning_rate =
0.001, beta 1 = 0.9, beta 2 = 0.999, Euro = 1e-08, then
reduces learning_rate = 0.0007, beta 1 = 0.75, beta 2 =
0.777, Euro = 1e-08, and then iterates 20 K. Table 1
shows that SENET’s accuracy when using 300*300 as
input has exceeded that of SSD model with the same
size as input. This again shows that in Section 5.2.1, we

Wei and Wang EURASIP Journal on Wireless Communications and Networking        (2019) 2019:150 Page 8 of 13



can better match the correct border by clustering the
boundaries of the training set, so as to improve the accur-
acy of the model. When the image training model of 512 ×
512 is input more, SENET’s mAP easily surpasses Faster
R-CNN (mAP reaches 78.1%, 5.9%, 1.3% higher than
SSD512). Moreover, most of its high confidence tests are
correct, and the recall rate is about 85–90%. Compared
with the R-CNN step training using two stitching methods,
our SENET model directly regresses the shape of the
object and the category of the classified object, so it is
easier to train and optimize, so it has less detection error.
Table 1 shows the results of PASCAL VOC2007 test

set. Among them, the input image sizes of model SSD,
YOLO, and Faster R-CNN are 512 × 512. Our SENET
model uses two sizes (300 × 300) and (512 × 512) to
compare with each baseline model.
To illustrate the performance of two SENET models

with different input sizes in more detail, we use tensor-
board detection and analysis tools from Google tensor-
flow to analyze the training process of the model. As can
be seen from Fig. 4 because of our multi-resolution de-
tection layer, using more efficient priori box generation
method can get better IOU value, which is conducive to
accelerating the convergence speed and improving the
accuracy of the model. Compared with SSD (right side
of Fig. 4), the convergence speed of the model is faster

(about 60 K iteration model has converged), and mAP is
higher than SSD. At the same time, we can also see that
SENET’s convergence is more stable than SSD’s.
Most detection models detect smaller objects with

worse performance than larger objects, mainly because
after multi-layer convolution, the feature mapping of the
smallest objects at the top level may not have any infor-
mation left. In Fig. 5 based on the clustering results, we
use different shape and number of priori boxes in differ-
ent detection layers, which makes the model less sensi-
tive to the size of boundary boxes than SSD. The
experimental results also show that our SENET model
has better performance and stronger robustness than
SSD when detecting smaller objects.

3.2 Experimental results of MS COCO
MS COCO 2015 has 91 classifications, each of which
has about 10,000 samples, and each sample (image) has
about one to six objects. To further validate the pro-
posed method, we train SENET 300*300 and 512*512
models on MS COCO datasets. Because COCO data sets
have many kinds of objects, many objects to be detected
in a single sample and small objects to be detected, the
gradient oscillation of the model is large when it starts
training. First, the parameters of learning_rate = 0.001,
β1 = 0.9, β2 = 0.99, ϵ = 10−8, batch-size = 128 are trained

Table 1 The results of PASCAL VOC 2007 test set

Method mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV

Faster R-
CNN

73.2 76.2 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

YOLO V2 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7

SSD300 74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.9 76.0 83.4 74.0

SSD512 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3

EAO300 74.9 75.7 80.1 74.3 66.6 53.6 82.0 83.6 85.7 58.6 78.2 75.9 83.7 83.3 82.7 77.2 49.9 73.9 75.3 82.6 74.6

EAO512 78.1 85.7 85.4 78.8 71.3 55.4 84.9 87.3 86.9 59.2 82.8 74.3 85.9 87.1 85.7 81.9 54.5 78.7 74.1 84.9 76.3

Fig. 4 VOC2007 test set compares the convergence speed and the stability of training convergence of SENET512 (4a) and SSD512 (4b) models
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and iterated 140 K times. Then, the parameters of
ADAM are adjusted to learning_rate = 0.0009, β1 = 0.9,
β2 = 0.999, and ϵ = 10−8, batch-size = 64 continue to iterate
50 K times.
Following the strategy mentioned in Section 5.3.2, we

cluster the size and shape of objects in COCO datasets
and use smaller priori boxes for all detection layers.
Then, based on the method of Section 5.3.3, the shape
and number of cell priori frames in different detection
layers are designed. We evaluated the mAP value with
IOU < [0.5:0.05:0.95] (standard COCO measurement
method, simply quoted as mAP@[.5,.95]) and mAP@0.5
(PASCAL VOC measurement method).
Table 2 shows the test results of each model on

test-dev2015. Similar to what we observed on PASCAL
VOC datasets, SENET 300*300 outperforms Faster
R-CNN and YOLO in mAP@0.5 and mAP@0.95, and is
very close to SSD512. However, whether SENET300 or
SENET3512, its mAP@0.5 is significantly better than
SSD and YOLO. We speculate that this is because the
size of objects in MS COCO datasets is too small, and
SSD and YOLO models are not good at locating many
small objects accurately, which leads to model failure.
The experimental results also show that by increasing
the size of the input image to 512*512, SENET is more
accurate than all baseline models in both test criteria.
The experimental results also show that SENET512 model

is better than ION [162]. It is a multi-size version of Fast
R-CNN, which uses cyclic neural network to explicitly
simulate feature context. In Fig. 6 some detection results
of MS COCO test-dev using 512*512 model and conver-
gence process of SENET model boundary box are shown.

4 Discussion
Firstly, aiming at the problem of single sample and high
production cost of current object detection data set,
based on clustering analysis algorithm and image classi-
fication model, this paper proposes a method of integra-
ting classification data into detection data set, and makes
ImageNet iLOC detection data set from ImageNet classifi-
cation data set. The experimental results show that the
accuracy of the model can be improved by 4.3% by using
the proposed ImageNet iLOC detection data set and

Fig. 5 The results of the bounding box detector demonstrate an imbalance between the classes. Each column represents a comparison of the
number of borders for each class using different intersections within a 10% to 90% joint threshold range. SENET and SSD models are used to
compare the accuracy of identifying objects of different sizes. The overall performance of SENET model is better than that of contrast model, and
the recognition accuracy of chair with sparse structure is much higher than that of SSD

Table 2 Testing results of MS COCO show that SENET model
performs well in small objects

Mode Boxes mAP@[0.5:0.95] mAP@0.5 mAP@0.75

Faster R-CNN RPN 300 21.9 42.5 21.9

ION – 22.4 42.7 18.7

YOLO 97 21.4 43.8 19.6

SSD512 8735 25.5 44.9 22.7

SENET300 5965 21.7 45.1 24.6

SENET512 5965 26.9 47.6 28.2
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Fig. 6 Some false positives produced in the primary diagnostic unit. a The ulcer sample was detected as plague. b The gray mold sample was
detected as ulcer disease. c The low temperature sample was detected as ulcer disease. The detection effect of MS COCO dataset is shown, a the
convergence process of boundary box location and object classification, and b the detection effect of SENET512 on COCO dataset
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continuing to train the model. Then, aiming at the prob-
lem that the current popular object detection model can
not design the default box manually and accurately, this
chapter uses K-means++ clustering algorithm to cluster
the shape of the object in the sample, and obtains the
shape distribution of the object. Based on this priori
knowledge, the designed priori box model and ground
true box IOU are higher, which greatly improves the con-
vergence speed of model training. Finally, according to the
characteristics of different multi-resolution detection
layers corresponding to different size regions of the ori-
ginal image, we carefully design the size and shape of the
priori box of each detection layer to form an empirical
adaptive single network detection model SENET. In the
experimental part, I continue to train SENET model with
ImageNet iLOC data set. The results show that the accur-
acy of the SENET model proposed in this chapter is im-
proved by about 3–4% on average compared with other
benchmark models. Future work will further improve the
practicability of the model. For example, the model will
start from the video of a specific scene (e.g., unmanned
driving), real-time object detection in video content, and
ensure high speed and accuracy.
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