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Abstract

This paper describes a new type of image segmentation method based on deep convolutional neural networks
(DCNN) in the actual autonomous driving scene. The spatial pyramid pooling model is used to identify and
segment the actual scene to complete the machine-aware task. In order to improve the information aggregation of
the whole image, we use atrous convolution for multi-scale feature extraction based on the pyramid structure of
image cascade network (ICNet), removing a residual module in the fifth stage of the network, in order to reduce
the scale of the convolutional layer. The feature map is preprocessed by padding and atrous convolution before
the four-level spatial pyramid model. Then, conventional convolutions are introduced to compose the atrous spatial
pyramid pooling (ASPP) structure. Finally, the four feature maps in the pyramid are merged with the feature maps
before input into the pyramid. This paper analyzes the spatial pyramid model, receptive field, and dilation
convolution in detail and propose atrous image cascade network (AtICNet). Experiment results in the cityscape
dataset have shown that AtlICNet has some improvements over ICNet, by improving the accuracy of the
segmentation.
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1 Introduction

Deep convolutional neural network has shown strong
capabilities in computer vision and machine perception
in recent vyears, including image classification [1],
semantic segmentation [2], object detection [3], and
other recognition tasks. The emergence of fully convolu-
tional neural network lays the foundation for the current
semantic segmentation based on pixel method, and most
models are based on this network. ICNet [4] and pyra-
mid scene parsing network (PSPNet) [5] both adopt
residual neural network (ResNet)’s basic architecture [6],
and use the spatial pyramid pooling model to replace
the pooling operation of the last layer. Long et al. [7]
describe the internal tension between semantics and lo-
cation faced by semantic segmentation: what global in-
formation solves and where to solve local information.
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Multi-scale feature extraction of images through local-
to-global pyramid aggregates global information and
local information.

In the initial network, a deep convolution neural net-
work is applied to semantic segmentation: (1) replacing
the original full-connected layer by a series of convolu-
tion layers and (2) enlarging the receptive field by dilated
convolution to increase the feature pixels. In this paper,
we have improved ICNet to reduce the number of
residual modules in the fifth stage, which reduces the
size of convolution layer and greatly reduces the amount
of computation. Atrous convolution is used in the pyra-
mid model, so the context information of the image can
be aggregated effectively after multi-scale feature extrac-
tion, thus the experimental results with better accuracy
than ICNet can be obtained. In fact, each label on the
scene analysis contains a strong space correlation. Seman-
tic segmentation needs to understand different categories
of spatial information [7-9] to identify similar things.
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2 Related work

This paper focuses on the current deep network for
semantic segmentation and object detection. In the trad-
itional network structure, the size of the input feature
map of fully connected layers is fixed, and the appear-
ance of spatial pyramid pooling (SPP) [10] network has
changed this situation. SPP replaces the last pooling
layer with a space pyramid pooling, which can generate
some fixed space areas and transform them into fixed
length vectors. These vectors will be transmitted to the
fully connected layer so that it can receive feature maps
of any size.

To further aggregate the information of multi-scale
feature maps, pyramid scene parsing network (PSPNet)
[5] uses several grid scales of spatial pooling to pool fea-
ture maps into fixed area blocks and extracts one feature
in each area block. These features are connected in
series with the original feature map before entering the
pyramid pooling model to form a cascade feature graph,
thereby aggregating global information.

PSPNet achieves good segmentation results by using
the pyramid pooling model, but its segmentation speed
is affected by its deep network. Based on this situation,
ICNet proposes an image cascade network structure to
compress the depth of PSPNet network on the basis of
PSPNet. It uses three branches with different resolu-
tions, which can simplify the network structure of
PSPNet, improve the running speed, and not excessively
reduce the segmentation accuracy. In ICNet, low-reso-
lution and medium-resolution images are separately sent
to the first and the second branches. The low-resolution
feature maps are obtained by downsampling the
medium-resolution feature maps, and their resolutions
are 1/4 and 1/2 of the original image resolution, respect-
ively. The network uses an image cascade structure to
cascade the feature maps from the first branch and the
second branch, so as to achieve the purpose of sharing
parameters between the first branch to the second. The
third branch is responsible for receiving high-resolution
images, and then high-resolution feature maps will be
cascaded into the space pyramid together with the fea-
ture map obtained by cascading the first two branches.

ICNet uses the pyramid model to average pool the
received cascade feature map and fuses the result with
the feature map before entering the pyramid. In SPP and
PSPNet, the above two are connected in series to form a
fixed vector; therefore, the choice of fusion or series
connection will have a great impact on the performance
of the network.

The new type of method proposed in the paper is
named as atrous image cascade network (AtICNet). We
add atrous convolution to the four-layer pyramid pool-
ing model of ICnet, which can expand the range of re-
ceptive field and obtain more image information by
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setting different dilated rates to correlate information of
different distances. Compared with ICNet’s pyramidal
pooling model, this method can obtain more global
information, so that the final fused feature map contains
more spatial pixel information.

3 Method

3.1 Atrous convolution and receptive field

In image segmentation, the steps of using CNN
network to segment image are convolution first and
then pooling, which reduces the size of image and
enlarges the receptive field. Since image segmentation
prediction is a pixel-wise output, it is necessary to
upsample the pooled image to the size of the original
image for preprocessing. It can be seen that there are
two key points in this traditional processing method:
one is to reduce the size of the image by pooling, and
the other is to restore the image to its original size by
upsampling. In the above two processes, a lot of useful
information will be lost and the ideal segmentation
effect will not be achieved.

Long et al. [7] show that atrous convolution can sys-
tematically aggregate multi-scale context information
without losing resolution.

Atrous convolution is applied to one-dimensional or
two-dimensional information input data x[i]. After filter-
ing w[k], the output y[i] is obtained as follows.

ol = xli+r-klwlk] (1)

k

In (1), i is the location of the pixels, r is the dilated
rate of the atrous convolution, and k is the size of the
convolution kernel. Standard convolution is a special
atrous convolution with a dilated rate of 1. Different
dilated rates can be set to adjust the range of the recep-
tive field. The smaller the rate, the more detailed the
segmentation of the rough feature map, but more time
will be spent in training.

For standard k x k convolution operations, stride is S,
which can be divided into three cases:

(1) S>1, which means downsampling while doing
convolution, the size of the feature map obtained by
convolution will decrease;

(2) S=1, representing the convolution of the normal
step size of 1;

(3) 0<S<1, representing the fractionally strided con-
volution, which is equivalent to upsampling the image.
The size of the feature map obtained by convolution will
increase. For example, S=0.5 means padding a blank
pixel behind each pixel of the image, and the size of the
resulting feature map is twice as large as that of the con-
volution of S =1 under the same conditions.
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Fig. 2 The internal structure and specific operation of the four-level pyramid
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multi-scale information. The smaller rate correlates the
nearest pixels, while the larger rate correlates the
long-range pixels. Because of the image boundary effect,
it cannot capture the remote boundary information
accurately in some cases. This design is different from
the average pooling output of the feature map input
directly into the pyramid model by ICNet. Although the
parameters and training time are increased, more
detailed information can be obtained to improve the
segmentation accuracy.

3.2 Spatial pyramid and multi-scale feature extraction
Input image will get a semantic feature map in ICNet.
The method described in [4] is as follows: firstly, a rough
prediction map is obtained from a low-resolution image
through a complete semantic perception network [11],
and then a cascade fusion unit is used to introduce
medium-resolution and high-resolution image features,
and then the coarse semantic map is gradually improved.
As shown in Fig. 1, the feature map of the last residual
module of the deep neural network is imported into a
pyramid pooling module [10]. Note that these pyramids
are parallel and independent of each other. Chen et al.
[12] mentioned that the atrous spatial pyramid pooling
extracts multiscale features by using multiple parallel fil-
ters with different rates. Feature maps can extract four
layers of feature information through different sub-re-
gions and at the same time connect the context informa-
tion of all feature images that are effective for
aggregated images. From the previous description, we
can see that the SPP and the PSPNet output the
four-layer feature map information in series as the final
output, while this network adopts a fusion approach,
which are two completely different network structures.

At present, many networks have adopted global pool-
ing; for example, Chen et al. [13] mentioned the use of
global maximization pooling for target detection under
weak supervision, and using global average pooling can
not only reduce the size of the model, but also avoid
over-fitting [12].

The four-layer space pyramid pooling the feature map
is the global average. Max pooling is also a popular pool-
ing method, but it only takes a single maximum, which
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is not suitable for this network. At each level, we divide
the feature map with size of (w, h)(w width, & height)
equally. For example, if we divide it into 4 blocks, the
size of each block will be (w/2, h/2); if we divide it into 9
blocks, the size of each block will be (w/3, h/3); if we
divide it into 36 blocks, the size of each block will be (w/
6, h/6). In this paper, we divide the four-layer feature
map into 1, 4, 9, and 36 blocks, so that we can get 50
sub-regions and extract 50 features. These features are
combined with the feature map of the fifth residual
module to form a new feature map for output.

As shown in Fig. 2, we use a four-tier model structure
to feed the feature map from the fifth stage into the
pyramid model. In the fifth stage, we used two residual
modules, one less than ICNet. Low-resolution and
medium-resolution feature maps are processed by the
first and second branches respectively, and the two
branches can share parameters, while high-resolution
feature maps are processed by the third branch. In this
process, the first and second branches have stored most
of the information of the image, so the third branch can
use fewer convolution layers to process high-resolution
feature maps, thus reducing the computational complexity.

Each layer in Fig. 2 performs atrous convolution, in
which the size of the convolution kernel is set to 3 x 3,
and the dilated rate of the four-layer atrous convolution
is 2, 4, 8, and 12 in turn. Table 1 shows the parameters
of the four-tier pyramid.

Atrous convolution with a larger dilated rate ignores
the information of small objects and affects the accur-
acy of network. Therefore, we use atrous convolution
with a smaller dilated rate to segment small objects. So
the advantage of dilation is that it can increase the re-
ceptive field without losing the pooling information, so
that the output of each convolution can contain a larger
range of information.

Atrous convolution in each layer of the network is
associated with multi-scale feature extraction. Different
dilated rates are set to correspond to different scale fea-
ture maps. Among them, a small dilated rate is used to
correlate short-range information, while a large dilated
rate is used to correlate long-range information. Each
branch is independent of each other. In the final stage of

Table 1 Hyperparameter settings for operation within a four-level pyramid

Level padding  Atrous convolution Conventional convolution Batch normalization ~ Average pooling

k ¢ d p r S k C s b r r k S
One 4 3 1024 2 Same Relu 1 1 1024 1 / / Relu w, h w, h
Two 4 3 1024 4 Same Relu 1 1 1024 1 / / Relu w/2,h/2 w/2,h/2
Three 4 3 1024 8 Same  Relu 1 1 1024 1 / / Relu w/3h/3 w/3h/3
Four 4 3 1024 12 Same  Relu 1 1 1024 1 / / Relu w/6,h/6  w/6,h/6

k kernel, ¢ channel, d dilated rate, p padding, r relu, s stride, b biased
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the network, the feature maps of different scales ob-
tained from the pyramid model will be fused with the
feature map before entering the space pyramid.

4 Experiments results

Our experimental and training learning platform is the
TensorFlow deep learning framework. The basic work-
ing platform of the experiment is the GPU graphics card
of Tesla pcl00, which contains 16G memory and is
equipped with CUDAS8.0 and cudnn6.0. All training,
learning, and testing evaluation are carried out on this
GPU graphics card.

AtICNet is modified on the basis of ICNet: (1) it re-
duces a residual module in the fifth stage of ICNet and
(2) it adds filling, atrous convolution, 1 x 1 conventional
convolution and batch normalization layers before the
average pooling of the four-layer pyramid model. This is
to enable each layer to capture different range of image
information, so as to better aggregate global information.

4.1 Datasets and evaluation metrics

Cityscapes is an image segmentation data set driven by
Mercedes-Benz. It is mainly used to evaluate the per-
formance of visual algorithms in urban scene semantic
understanding. This data set can provide 1024 x 2048
high-resolution images, including street scenes of 50
cities in different scenes, backgrounds and seasons. It
can be divided into 5000 fine-labeled images, 20,000
rough-labeled images and 30 types of labeled objects. Of
the 5000 fine-labeled images provided by the Cityscapes
dataset, 2975 were used for training, 500 for evaluation,
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Table 2 Without loading the pre-training model, our model
mloU is slightly higher than ICNet

ICNet AtlCNet
mloU (%) 249 25.1
Training memory (M) 4553 8649
Evaluation memory (M) 7111 7655
Evaluation time (S) 127 136

and the remaining 1525 for testing. The data set pro-
vides 30 types of data labels, but we only use 19 of them
for training and evaluation. The standard of evaluation
is mean intersection over unit (mloU).

4.2 Experimental detail and evaluation
In the experiment, we adopted different training strat-
egies and set different hyper-parameters: the size of the
input training picture was set to 720 x 720; the
mini-batch size was set to 10; the basic learning rate was
set to 0.001; the power was set to 0.9; and the momen-
tum and weight attenuation were set to 0.9 and 0.0001,
respectively. For a better comparison, the number of it-
eration steps is set to 5K. ICNet uses the same
hyper-parameter settings as AtICNet in training. In the
first training, the pre-training model was not loaded,
and the training was carried out from the beginning.
The mloU in Table 2 is 0.2% higher than that in ICNet
when the pre-training model is not loaded for the first
time. However, when the iteration is set to 5K, the train-
ing time is longer.

0.525 O

TCNet

71 23456789 10'_11213141516171819202122232425262728293031323334353637383940#14243447

Fig. 3 AtICNet and ICnet network training mloU. It can be seen that Atrous ICNet's MloU is higher than ICNet

AfICNet
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In the next training, we will take the weight obtained
when the pre-training model is not loaded as the weight
parameters of the pre-training model, and record it in
Fig. 3. Each subsequent training will take the weight
obtained from the previous training as the initial weight
for training. The same method is used in training ICNet.
From Fig. 3, we can see that the mIoU of this network is
higher than ICNet in every training, and it is the first
network to make the mloU reach 50%.

We use the model with the last iteration number of 5
K as the training pre-training model, in which the size of
the training image is set to 720 x 720, the batch size is
set to 16, the iteration number is set to 60K, and the
other hyperparameters remain unchanged. As can be
seen from Table 3, the mIoU of AtICNet is higher than
that of ICNet in the training process, which indicates
that the performance of the improved model is better
than that of ICNet.
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Table 3 The last training result AtiCNet's mloU is higher than
ICNet. The evaluation time is only 11 s longer than that of ICNet

ICNet AtICNet
mioU (%) 4867 50.19
Training memory (M) 4553 8649
Evaluation memory (M) 7111 7655
Evaluation time (S) 124 135

Figure 4 is a comparison of the segmentation effects of
different networks. As can be seen from the figure,
AtICNet has some improvements in the details of seg-
mentation compared with ICNet. For example, in the
part II, the road and the pedestrians on both sides of the
road are clearer in the segmentation results obtained by
AtICNet, and for the greening on both sides of the road
in part IV, AtICNet is more detailed than ICNet,
especially the lawn under the trees.

(a) Original image

(b) ICNet

Fig. 4 Comparison of ICNet and AtICNet results. a Original image. b ICNet. ¢ AtICNet

(C) AtICNet
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5 Discussion

This paper mainly improves the spatial pyramid pool
structure of ICNet. Each layer of the pyramid is reset to
(Ix1), (2x2), (3x3), and (6 x 6) sub-regions respect-
ively, from which 50 sub-regions can be obtained. A
50-dimensional feature can be obtained by extracting an
eigenvalue from each sub-region. Each layer of the im-
proved pyramid model includes padding, atrous convo-
lution, conventional convolution, batch normalization,
and average pooling. Finally, the feature maps of differ-
ent scales obtained by the model are cascaded to realize
the aggregation of different kinds of spatial relations. As
can be seen from Table 2 and Fig. 3, the mIoU of AtIC-
Net is significantly higher than that of ICNet, reaching
1.53% in Table 3, which indicates that the accuracy of
image segmentation has been improved, because more
global information can be obtained through a pyramid
model. Through training, it is found that the recognition
accuracy of the network for small objects has also been
greatly improved, which provides good support for auto-
matic recognition and machine perception, so it can be
well applied in the field of automatic driving.

Abbreviations

ASPP: Atrous spatial pyramid pooling; AtICNet: Atrous image cascade
network; DCNN: Deep convolutional neural networks; FCN: Fully
convolutional networks; ICNet: Image cascade network; PSPNet: Pyramid
scene parsing network; ResNet: Residual neural network

Acknowledgements

The authors would like to thank prof. F.J. Duan and associate prof. JJ. Jiang
from Tianjin University in China for having started the collaboration which
lead to this work.

Funding

This work has been partly supported by National Natural Science Foundation
of China (Grant No: 61701344), Tianjin Normal University Application
Development Foundation (52XK1601), Tianjin Normal University Doctoral
Foundation (52XB1603, 52XB1713), and Tianjin Higher Education Creative
Team Funds Program in China.

Availability of data and materials
The datasets used and analyzed during the current study are publicly
available online.

Authors’ contribution

JC gives the overall research direction and ideas, carried out the improved
CNN studies, and helped to draft the manuscript. CW read the relevant
literature and books and drafts the article and makes the corresponding
experimental simulation. YT also gives the original ideas and research
direction and makes the corresponding experimental simulation. All authors
read and approved the final manuscript.

Authors’ information

JC was born in Wuhu, China, in 1976. He received the M.S. degree from
Tianjin Normal University and the Ph.D. degree from Tianjin University, in
2005 and 2013 respectively. Since 2005, he has been working at Tianjin
Normal University in China. He is an associate professor of Tianjin Key
Laboratory of Wireless Mobile Communications and Power Transmission. His
research interests include image and acoustic signal acquisition and
processing, broadband sensor array signal processing, and artificial
intelligence.

CW was born in Shandong, China, in 1992. He received the B.S. degree from

Qingdao Agricultural University of Haidu College in 2016. He is currently

(2019) 2019:146 Page 7 of 7

working toward the M.S. degree of Tianjin Normal University. His research
interests include image processing and artificial intelligence.

YT was born in Tianjin, China, in 1982. She received the B.S. and M.S. degree
from Tianjin Normal University, the Ph. D degree from Tianjin University in
2004, 2007 and 2015 respectively. Since 2007, she has been working at
Tianjin Normal University in China. She is a lecturer of Tianjin Key Laboratory
of Wireless Mobile Communications and Power Transmission. Her research
interests include computer vision and digital signal processing.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 26 January 2019 Accepted: 18 April 2019
Published online: 03 June 2019

References

1. A Krizhevsky, I. Sutskever, GE. Hinton, in ImageNet Classification with Deep
Convolutional Neural Networks (Harrahs and Harveys,Lake Tahoe, 2012). Neural
Information Processing Systems (NIPS) (2012)

2. R.Girshick, J. Donahue, T. Darrell, J. Malik, in Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation (IEEEColumbus, 2014).
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014),
pp. 580-587

3. SQ. Ren, KM. He, R. Girshick, J. Sun, Neural Information Processing Systems
(NIPS). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks (Palais des Congrés de Montréal, Montreal, 2015), p. 2015

4. HS, Zhao, XJ. Qi, XY. Shen, J.P. Shi, J.Y. Jia, in 2018 European Conference on
Computer Vision (ECCV). ICNet for Real-Time Semantic Segmentation on High-
Resolution Images (GASTEIG Cultural Center, Munich, 2018), pp. 405-420

5. HS. Zhao, JP. Shi, XJ. Qi, XG. Wang, J.Y. Jia, in Pyramid scene parsing
network (IEEEHawaii, 2017). IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017), pp. 2881-2890
KM. He, XY. Zhang, S.Q. Ren, J. Sun, in Deep Residual Learning for Image
Recognition (IEEELas Vegas 2016). IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016), pp. 770-778

7. J.Long, E. Shelhamer, T. Darrell, in Fully convolutional networks for semantic
segmentation (IEEEBoston, 2015). IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2015), pp. 3431-3340

8. C. Szegedy, A. Toshev, D. Erhan, in Deep neural networks for object detection
(Harrahs and Harveys,Lake Tahoe, 2013). Neural Information Processing
Systems (NIPS) (2013)

9. F.Yu, V. Koltun, in Multi-scale context aggregation by dilated convolutions
(Caribe Hilton, San Juan, Puerto Rico, 2016). International Conference of
Learning Representation (ICLR) (2016)

10.  KM. He, X\Y. Zhang, S.Q. Ren, J. Sun, Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 37(9), 1904-1916 (Sept. 2015)

11. V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 39(12), 2481-2495 (Dec. 2017)

12. LC Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, DeepLab:
Semantic image segmentation with deep convolutional nets, Atrous
convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell.
40(4), 834-848 (April. 2018)

13. LC Chen, Y. Yang, J. Wang, W. Xu, AL. Yuille. in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Attention to scale: Scale-
aware semantic image segmentation (IEEELas Vegas, 2016), pp. 3640-3649



	Abstract
	Introduction
	Related work
	Method
	Atrous convolution and receptive field
	Spatial pyramid and multi-scale feature extraction

	Experiments results
	Datasets and evaluation metrics
	Experimental detail and evaluation

	Discussion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contribution
	Authors’ information
	Competing interests
	Publisher’s Note
	References

