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Abstract

With the rapid increase of user access, load balancing in cloud data center has become an important factor affecting
cluster stability. From the point of view of green scheduling, this paper proposed a virtual machine intelligent
scheduling strategy based on machine learning algorithm to achieve load balancing of cloud data center.
Firstly, a load forecasting algorithm based on genetic algorithm (SVR_GA), k-means clustering algorithm based
on optimized min-max, and adaptive differential evolution algorithm (ESA_DE) to enhance local search ability
are proposed to solve the load imbalance problem in cloud data center. The experimental results showed
that compared with other classical algorithms, the proposed virtual machine scheduling strategy reduces the
number of virtual machine migration by 94.5% and the energy consumption of cloud data center by 49.13%.
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1 Introduction
Load balancing plays an important role in resource
management of cloud data center. It can not only im-
prove the resource utilization of servers and prevent
servers from being overloaded, but also effectively re-
duce the migration frequency of virtual machines and
avoid unnecessary waste of resources. At present,
most load balancing strategies are optimized from the
following aspects: load balancing strategy based on
server CPU and memory resource utilization, load
balancing migration strategy based on service-level
agreement (SLA), load balancing strategy based on
network traffic prediction, load balancing strategy
based on quality of service (QoS), load balancing
strategy based on service response time prediction,
and load balancing strategy based on cloud storage.
Yu et al. proposed a stochastic load balancing scheme

which aimed to provide probabilistic guarantee against the
resource overloading with virtual machine migration,
while minimizing the total migration overhead. Our
scheme effectively addressed the prediction of the

distribution of resource demand and the multidimensional
resource requirements with stochastic characterization.
Moreover, as opposed to the previous works that mea-
sured the migration cost without considering the network
topology, our scheme explicitly took into account the dis-
tance between the source physical machine and the des-
tination physical machine for a virtual machine migration.
The trace-driven experiments showed that our scheme
outperformed the previous schemes in terms of SLA viola-
tion and the migration cost [1].
Elrotub and Gherbi adopted the machine learning

technique, which was classification, was used to make
groups of VMs based on their CPU and RAM
utilization, as well as to classify user jobs/tasks into
different groups based on their sizes and based on in-
formation from log files. The approach arranged vir-
tual machines in groups, and several tasks shared the
same VM resources. The goal of our proposal was to
allow more dynamic resources and to improve the
QoS requirements by maximizing the usage of the re-
sources and user satisfaction, such as increasing re-
source utilization and reducing the number of job
rejections [2].
Ramezani developed a multi-objective load balancing

(MO-LB) system that avoided VM migration and
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achieved system load balancing by transferring extra
workload from a set of VMs allocated on an overloaded
PM to other compatible VMs in the cluster with greater
capacity. To reduce the time factor even more and
optimize load balancing over a cloud cluster, MO-LB
contained a CPU usage prediction (CUP) sub-system.
The CUP not only predicted the performance of the
VMs but also determined a set of appropriate VMs with
the potential to execute the extra workload imposed on
the VMs of an overloaded PM [3].
Hieu et al. presented a virtual machine consolidation

algorithm with usage prediction (VMCUP) for improving
the energy efficiency of cloud data centers. Their algorithm
was executed during the virtual machine consolidation
process to estimate the short-term future CPU utilization
based on the local history of the considered servers. The
joint use of the current and predicted CPU utilization
metrics allowed a reliable characterization of overloaded
and underloaded servers, thereby reducing both the load
and the power consumption after consolidation [4].
Chen et al. proposed a load balancing algorithm based

on server running state, which could calculate compre-
hensive loading according to the CPU utilization, memory
utilization, and network traffic of the servers. Further-
more, a load balancing solution based on software-defined
networks technology (SDN) was applied in this paper, and
it was designed and implemented in OpenFlow network.
We combined network management and server state
monitor in this scheme, in which the OpenFlow switched
forward the request to the least comprehensive loading
server by modifying the packet [5].
In cloud computing, load balancing is a technique to

distribute the workload for balancing between two or
more cloud servers. Load balancing aims to optimize
resource use, maintain the cost of data center and virtual
machines, maximize throughput, minimize response time,
and avoid overload of any single resource. The main
objective of this research paper was to reduce cost and re-
sponse times using throttled load balancing policy across
VM’s in multi data center and optimize response time ser-
vice broker policy. This study has evaluated the throttled
load balancing algorithm and their scheduling criteria like
overall response time, data center processing time, and
total cost of virtual machine and data transfer cost [6].
From the perspective of green scheduling, this paper

studied the load balancing strategy of cloud data center
from three aspects: server load forecasting, virtual ma-
chine selection, and target server selection. The main
work was as follows:

1. Aiming at the optimization problem of three
parameters ε, C, and σ in the support vector
regression algorithm, a load forecasting algorithm
based on support vector regression optimized by

genetic algorithm was proposed, which could
accurately predict the CPU utilization of servers.

2. Aiming at the problem of the cluster number
and the selection of initial cluster centers in
k-means algorithm, this paper proposed a
k-means clustering algorithm based on
optimized min-max. This algorithm found
virtual machines with less migration cost,
network traffic, and performance interference
from overloaded servers.

3. In this paper, the traditional differential
evolution algorithm was improved, and an
adaptive differential evolution algorithm
(ESA_DE) was proposed to enhance the local
search ability. The virtual machine found by
clustering algorithm was migrated to the
target server with the lowest migration cost,
network traffic, and performance disturbance,
so as to achieve load balancing of cloud
data center.

2 Support vector regression load prediction based
on genetic algorithms
When the tasks on the virtual machine executed a
period of time, some tasks have been completed, and the
virtual machine where these tasks were located would
release the server resources, which might cause the ser-
ver to be in a low-load state, while some tasks required a
lot of computation, and the virtual machine where these
tasks were located would occupy as much server re-
sources as possible, resulting in the server being over-
loaded. In order to balance the load of cloud data
centers, it was necessary to predict the load status of
servers and determine whether the servers were over-
loaded or under-loaded in the next step. In order to ac-
curately predict the load state of servers, this paper
studied the traditional algorithm of support vector
regression, found out three parameters to solve the ac-
curacy of the traditional support vector regression algo-
rithm, and proposed a load prediction algorithm based
on genetic algorithm optimization support vector regres-
sion (SVR_GA).
In cloud environment, the load state of servers was re-

lated to the number of virtual machines, resource requests
for each virtual machine, virtual machine migration, the
memory size of the migrated virtual machine, network
flow, and the processing capacity of the current server.
The load state of the server was non-linear, sudden, and
periodic to some extent. Therefore, in the process of solv-
ing support vector regression, the Gauss kernel was stud-
ied as a kernel function.
The insensitive loss function of support vector regres-

sion (SVR) could be expressed as formula (1), in which
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the parameters ε represented the approximation
accuracy of training data points, that was, the maximum
allowable deviation.

Lε f xið Þ−yið Þ ¼ 0; j f xið Þ−yi j ≤ε
j f xið Þ−yi j −ε; j f xið Þ−yi j> ε

� �
ð1Þ

Therefore, the support vector regression SVR model
could be simplified to formula (2), in which parameter C
played a balancing role in the model complexity and
training error.

minω;b
1
2

ωk k2 þ C
Xm
i¼1

Lε f xið Þ−yið Þ ð2Þ

The Gauss kernel function was shown in formula (3),
in which the parameter σ represented the approximation
accuracy of the Gauss kernel function [7].

k xi; x j
� � ¼ exp −

xi−x j

�� ��2
2σ2

 !
ð3Þ

These three parameters usually needed to be set
manually by users. In order to obtain the optimal predic-
tion results, this paper used genetic algorithm to
optimize the three parameters ε, C, and σ in the process
of solving the support vector regression model. The flow
chart is shown in Fig. 1.
The load forecasting algorithm based on genetic algo-

rithm optimized support vector regression (SVR_GA) is
as follows:

3 k-means clustering algorithm-based optimized
min-max (K-Means-OMM)
The traditional k-means clustering algorithm had
the following problems: the selection of k value in
the k-means clustering algorithm was very difficult
to estimate, and it was not known in advance how

many categories the samples should be divided into.
Clustering algorithm was very sensitive to the initial
clustering mean, and different initial clustering mean
would lead to different clustering results. If the dis-
tance of the initial clustering mean was very close,
the number of iterations and the time of clustering
would be greatly increased in the process of cluster-
ing, and it was easy to fall into the local optimal so-
lution. During the implementation of the clustering
algorithm, it was necessary to constantly calculate the
mean of each cluster and adjust the sample classifica-
tion according to the mean of each cluster. When the
number of sample sets was very large, the execution
time of the algorithm was long. If there were outliers
in the sample set, the clustering mean would deviate
seriously.
Aiming at the problems of the k-means clustering al-

gorithm, this paper optimized the k-means algorithm
from two aspects of clustering number k and initial clus-
tering center and proposed an optimized min-max
k-means algorithm (K-Means-OMM) for clustering
number and initial clustering center.

3.1 Selecting k value of cluster
In the k-means clustering algorithm, selecting K value
was very important for clustering results. This paper
classified virtual machines from three aspects: migra-
tion cost, server load, and performance interference.
The clustering results of virtual machines could be dis-
played as three-dimensional cubes. Migration cost
could be divided into two categories: high migration
cost and low migration cost. Performance interference
could be divided into two categories: high-performance
interference and low-performance interference. Server
load state could be divided into three states: high load,
low load, and normal load. Therefore, this paper set K
value of 12; the specific description of the category
could be seen in Table 1.

3.2 Selection of initial clustering centers
The k-means clustering algorithm usually chose K
samples randomly as the initial clustering centers
and completed the clustering process by iteration.
Different initial clustering centers would produce dif-
ferent clustering results. The sensitivity of the
k-means algorithm to the initial clustering centers
would lead to the instability of clustering results.
The results of each clustering were different and not
the optimal solution.
In this paper, the selection of initial clustering centers

of the k-means algorithm was optimized to maximize
the distance between the initial clustering centers, which
could reduce the number of iterations and prevent the
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occurrence of local optimal solutions. In this paper,
three clustering center selection schemes were studied
experimentally.
The first scheme: randomly selected K samples as ini-

tial clustering centers and increased the number of itera-
tions in the clustering process. This method was simple
but ineffective.
The second scheme: using the min-max algorithm

to select the initial clustering centers. Firstly, a

sample was randomly selected as the first clustering
center C0; secondly, calculating the distance between
each sample point and C0, the farthest sample point
served as the second clustering center C1; calculate
the distance between the rest of the sample points
and the cluster center C0 and C1 respectively; choose
the smaller distance, and then choose the largest dis-
tance from these distance as the third clustering
center. By analogy, K clustering centers were finally
found [8].
The third scheme: this paper optimized it on the

basis of the min-max algorithm. Firstly, two sample
points farthest from each sample point were calcu-
lated as the first and second clustering centers C0

and C1. Secondly, the distances between each sam-
ple point and the clustering centers C0 and C1 were
calculated separately. The smaller distance was se-
lected to form a set, and the largest distance was
selected as the third clustering center from the
smaller set, and K clustering centers were selected
by analogy.
As shown in Algorithm 2, lines 3–10: find the two far-

thest sample points as C0 and C1; lines 11–13: calculate
the sample points and the initial clustering center C0 ,
C1, …, Cj; line 15: choose the shortest distance from the
cluster centers, and then choose the farthest distance
from the smaller set.

Fig. 1 Flow chart of support vector regression optimized by genetic algorithms

Table 1 Virtual machine classification

Serial number Migration cost Performance interference Load state

1 High High High

2 High High Low

3 High High Normal

4 High Low High

5 High Low Low

6 High Low Normal

7 Low High High

8 Low High Low

9 Low High Normal

10 Low Low High

11 Low Low Low

12 Low Low Normal
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4 Adaptive differential evolution algorithm-based
enhancing local search capacity (ESA_DE)
In this paper, the traditional differential evolution
algorithm was improved, and an adaptive differential
evolution algorithm (ESA_DE) was proposed to enhance
the local search ability. It was applied to virtual machine
migration to optimize the migration process in terms of
network traffic, migration cost, performance interfer-
ence, and energy consumption [9].
In order to achieve multi-objective optimization, four

fitness functions were designed in this paper:

(1).The network flow generated in the process of
virtual machine migration was related to the
memory size and network routing of the virtual
machine migration; this paper used Networkfitness
¼ MinðNetworkFlowV iÞ as the fitness function
of network traffic, NetworkFlowV i represented
network traffic of virtual machine i; it could be
expressed by formula (4).

Network ¼
Xm
i¼1

dti � dri ð4Þ

In formula (4), dti represented the data transmission
size of the virtual machine i when it migrated, that is,
the memory size of the virtual machine i. dri represented
the length of network links when virtual machine i mi-
grated, and the value is related to the network topology
of cloud data center, the location of the source server,
and the target server in the network topology. It could
be calculated by formula (5):

dri ¼
3� 2; routing through core switches

2� 2; routing through aggregate switches
1� 2; routing through edge switch

8<
:

9=
; ð5Þ

(2).The memory size and network bandwidth directly
affected the migration cost; this paper used
Costfitness =Min(MC) as the fitness function of the
migration cost and MC represented the migration
cost of all virtual machines.

MC ¼
Xm

1
MCV i ¼

Xm

1
0:1�

Xt0þtV i

t0
UVi ð6Þ

In formula (6), MCVi represented the migration cost of
virtual machine i, t0 represented the migration start time
of virtual machine i, tV i represented the total migration
time of virtual machine i, and UVi represented the CPU
utilization of servers occupied by migration of virtual ma-
chine i. It could be calculated by formula (7):

tV i ¼
MVi

BV i

ð7Þ

In formula (7), tV i represented the migration time of
virtual machine i, MVi represented the memory size of
virtual machine i, and BVi represented the network
bandwidth occupied by virtual machine i.

(3).When the migration of virtual machines was
completed, it would cause some performance
interference to other virtual machines on this
server, this paper used Cfitness ¼ MinðCPD

V i
Þ as

the fitness function of the performance
interference. It could be calculated by
formula (8):

CPD
i ¼ 1−a

TPD
i

−Ti
Ti ð8Þ

In formula (8), Ti represented the running time of vir-
tual machine i on a single server, TPD

i represented the run-
ning time of the virtual machine i and the virtual machine
set on a single server, and a represented regulation param-
eters of performance interference.

(4). In the process of running the server, it would use
Efitness =Min(Ei) as the fitness function of energy
consumption. Ei represented the energy consumption
of server i. It could be calculated by formula (9):

Ei ¼
Xtn

t1
P ui t j

� �� � ð9Þ

In formula (9), ui(tj) represented the CPU utilization of
server i at time tj, P(ui(tj)) represented the power of
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server i at time tj, and P(ui(tj)) could be expressed by
formula (10).

Pi uð Þ ¼ ri � Pmax
i þ 1−rið Þ � Pmax

i � ui ð10Þ

Therefore, the multi-objective energy-saving optimization
factor was shown in formula (11):

F ¼ k1Efitness þ k2Networkfitness þ k3Costfitness
þ k4Cfitness ð11Þ

In formula (11), k1, k2, k3, k4 was the balance factor of
each factor, its scope belonged to [0,1], k1 + k2 + k3 + k4 =
1, and the parameters were used to adjust and control the
influence of various factors on the comprehensive fitness.
In the process of research, we set the size of popula-

tion to N, the number of virtual machines migration to
D, the number of servers to M, and randomly generated
N individuals whose length was D. Individuals repre-
sented a virtual machine migration scheme, in which the
placement value of each virtual machine was taken from
[1, M]. The maximum iterations number was K, the mu-
tation ratio factor ϕ ∈ [0, 2], and the crossover probabil-
ity factor Pc ∈ [0, 1]. The first generation of the ith
individual was represented by:

xk 0ð Þ ¼ xk1 j 0ð Þ; xk2 j 0ð Þ;…; xkij 0ð Þ;…; xkdj 0ð Þ
� �

ð12Þ

In formula (12), xk(0), (k = 1, 2, … ,N) represented the
kth virtual machine of the 0th generation that needed to
be migrated and xkijð0Þ; ði ¼ 1; 2;…;D; j ¼ 1; 2;…;MÞ
represented the migration of the ith virtual machine to
the jth server; its range of values was randomly gener-
ated by formula (13).

x ¼ xj min þ rand 0; 1ð Þ � xj max−x j min
� � ð13Þ

In formula (13), xj _ min represented the minimum
value of vector and xj _ max represented the maximum
value of vector, mapping to [1, M].
According to the differential evolution algorithm, differ-

ent virtual machine migration schemes xt1ðgÞ, xt2ðgÞ, and
xt3ðgÞ were randomly selected from the g generation
population. The mutation operation was carried out to
generate new individuals of the population increasing the
diversity of the population. The variation scaling factor of
the difference process could be expressed as formula (14):

vector ¼ ϕ xt1 gð Þ−xt2 gð Þð Þ ð14Þ
In formula (14), xt1ðgÞ−xt2ðgÞ represented the differen-

tial vector and vector represented vectors by weighted;
constituting the variation vector by the third individual xt3

ðgÞ , a new virtual machine migration scheme was gener-
ated, and its expression was shown in formula (15):

vt g þ 1ð Þ ¼ xt3 þ vector ð15Þ
In formula (15), vt(g + 1) represented newly generated

individuals, t = 1, 2, 3,… , N.
In order to increase the diversity of the population,

cross-over operation was introduced. New mutated indi-
viduals vt(g + 1) and original individuals xt(g) were crossed
to produce new individuals utðg þ 1Þ ¼ ðut1 jðg þ 1Þ;ut2 jðg
þ1Þ;…; utdjðg þ 1ÞÞ . The expression of the crossover

process was shown in formula (16):

utij g þ 1ð Þ ¼ vtij g þ 1ð Þ; rand ið Þ≤Pcori ¼ rand tð Þ
xtij gð Þ; rand ið Þ > Pcori≠ rand tð Þ

(
ð16Þ

In formula (16), j = (1, 2, … ,M), rand (i) represented as a
random number between (0, 1), cross probability factor Pc,
and rand(t) ∈ [1,N].
Then, the population entering the next cycle was se-

lected through the selection operation, and the fitness
function of the cross-generated individual ut(g + 1) was
compared with that of the target individual xt(g). The ex-
pression of the fitness function was as follows:

xt g þ 1ð Þ ¼ ut g þ 1ð Þ; F ut g þ 1ð Þð Þ > F xt gð Þð Þ
xt gð Þ; others

�
ð17Þ

In formula (17), F(x) represented the fitness function
which individual needed to satisfy and xt(g + 1) repre-
sented individuals of the next generation.
By comparing the fitness values, the better one would

choose to enter the next generation of iteration process
and ultimately get the optimal solution [10]. The specific
process is shown in Algorithm 3:
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In the experiment, it was found that the convergence
speed of the traditional differential evolution algo-
rithm was slower and the search ability of the algo-
rithm was lower. In the process of cross-mutation,
infeasible individuals or overload were prone to occur.
In order to avoid this situation, this paper improved
the traditional differential evolution algorithm by add-
ing a local search operator. The specific process is
shown in Algorithm 4:

In the above process, a local search was performed on
the current optimal solution. Filter results in an infeas-
ible or overloaded migration program so that the solu-
tion of its neighborhood met the condition of migration
and was closer to the optimal solution.

5 Simulation experiment and result analysis
CloudSim4.0, a cloud computing simulation software,
was used to simulate the proposed model and algorithm.
The proposed server load detection algorithm
(SVR_GA), virtual machine classification selection algo-
rithm (K-Means-OMM), and server selection algorithms
based on load balancing target (ESA_DE) were com-
pared with classical algorithms.

5.1 Experimental environment and parameter
configuration
5.1.1 Experimental environment

1. Experimental server configuration:
(1) CPU: Intel® Core™ i7 4770 3.4 GHz
(2) Memory(RAM): 8.0G
(3) Hard disk: 1024G
(4) Operating System: Windows 7 (64 bits)

2. Development environment: Eclipse
4.5.1,JDK1.8.0_111

3. CloudSim version: CloudSim4.0

5.1.2 Server and virtual machine parameter

1. Server configuration
In this paper, seven types of servers are involved in
the experiment. The MIPS of server ranges from
1.86GHZ to 3.067GHz, the core number is 2-12,
the memory size is 4G-16G, the bandwidth is
1000Mbit/s, and the hard disk size is 50G-320G.

2. Virtual machine configuration
In this paper, four types of virtual machines are
involved in the experiment. The MIPS of server
ranges from 0.5GHZ to 2.5GHz, the core number is
1, the memory size is 613M-1740M, the bandwidth
is 100Mbit/s, and the hard disk size is 2.5G.

5.2 Experimental result
5.2.1 Load forecasting experiment
Figures 2, 3, and 4 are comparative experiments of
CPU utilization between the server load detection al-
gorithm (SVR_GA) and Bayesian Ridge Regression
[11], Decision Tree Regression [12], and Support Vec-
tor Regression (SVR RBF Model) in the process of
virtual machine scheduling.
Figure 2 is the CPU utilization which predicts data

comparison of the four algorithms with the actual CPU
utilization data when the server ID was 3. From the
graph, it could be seen that the predicted value of the
support vector regression Gaussian model deviated from
the actual value greatly, and the decision tree model and
the Bayesian ridge regression model deviated little from
the actual value, while the support vector regression
Gaussian model optimized by the genetic algorithm de-
viated least from the actual value.
Figure 3 shows the error comparison between the pre-

dicted CPU utilization and the actual CPU utilization of
the four algorithms when the server ID was 3. The pre-
diction error range of CPU utilization based on Bayesian
ridge regression model was − 0.42~0.23. The prediction
error range of CPU utilization based on the decision tree
model was − 0.35~0.32. The prediction error range of
CPU utilization of the support vector regression Gauss
model was − 0.53~0.25. The prediction error range of
CPU utilization of the support vector regression Gauss
model optimized by the genetic algorithm was −
0.22~0.24. Among the four algorithms, the CPU
utilization prediction error range of the proposed algo-
rithm was the smallest.
Figure 4 is a boxplot of the error between the pre-

dicted CPU utilization and the actual CPU utilization of
the four algorithms when the server ID was 3. From the
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graph, it could be clearly seen that the minimum error
of the Bayesian ridge regression model and decision tree
model is close to 0, the maximum value is near 0.2, and
there were a few outliers, which showed that the predic-
tion error of the two algorithms was small and the sta-
bility is high; the minimum error of support vector
regression Gaussian model was close to 0, the maximum
value is less than 0.1, but there were many outliers,
which showed that the algorithm had small error and
high stability. Although CPU utilization could be pre-
dicted accurately, it lacked stability due to the large
number of outliers. The maximum and minimum errors
of the support vector regression Gauss model optimized
by the genetic algorithm were close to 0, and there were
fewer outliers. It showed that the optimization algorithm
could improve the accuracy of the support vector regres-
sion Gauss model and increase the stability of the
algorithm.

5.2.2 Virtual machine classification experiment
In this paper, three initial clustering center selection
schemes were compared. The first scheme used the ran-
dom algorithm to select the initial clustering center; the
second scheme used the min-max algorithm to select
the initial clustering center; and the third scheme was
optimized on the basis of the min-max algorithm. In the
above, the performance interference of virtual machines
could be divided into two categories: high-performance

interference and low-performance interference. The ser-
ver load state could be divided into three categories:
high load, low load and normal load. Therefore, the vir-
tual machines were divided into six categories in this ex-
periment. The experimental results are shown in Fig. 5.
Figure 5 classifies 280 sample points (virtual ma-

chines). The X coordinate represented the remaining
CPU utilization of the server after the virtual ma-
chine migration, and the Y coordinate represented
the remaining performance interference after the vir-
tual machine migration. The sample points in the
graph were normalized and could not represent the
actual values.
From Fig. 5a, we could see that the random selec-

tion algorithm chose the cluster center to divide the
purple sample points into the first category, the
upper and lower parts. The upper and lower parts
were far away. The sample points in the red ellipse
were close to the sample points in the fifth category.
The random selection algorithm had some problems
in classifying the purple sample points.
From Fig. 5b, we could see that the min-max algo-

rithm chose the clustering center to divide the sample
points in the red ellipse into two categories, and the dis-
tance between these sample points was relatively close,
which should be divided into one category. The
min-max algorithm had some problems in dividing these
points.

Fig. 2 Server load prediction comparison
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From Fig. 5c, the improved min-max algorithm pro-
posed in this paper was more suitable for the division of
initial clustering centers. Therefore, this paper took the
optimized min-max algorithm as the initial clustering cen-
ter selection scheme of the k-means clustering algorithm.

5.2.3 Load balancing experiment
5.2.3.1 Migration cost Figure 6 is an experimental
comparison of the total cost of virtual machine mi-
gration between ESA_DE and IQR_MC, LRR_MMT
and MAD_RS under different number of tasks. From

Fig. 3 Comparison of server load prediction errors

Fig. 4 Comparison of server load prediction errors-box diagram
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the graph, it could be seen that the ESA_DE algo-
rithm proposed in this paper could greatly reduce
the migration cost of virtual machines under each
task number. The experimental data showed that the
ESA_DE algorithm was 80.56~ 87.22% lower than the

IQR_MC algorithm, 64.24~ 80.01% lower than the
LRR_MMT algorithm, and 79.44~ 85.95% lower than
MAD_RS algorithm.
Figure 7 is an experimental comparative analysis of

the migration cost of the ESA_DE algorithm and
IQR_MC, LRR_MMT, and MAD_RS at different
time. From the graph, we could see that in the ini-
tial stage of task execution, the migration cost of the
four algorithms were all in a high position, which
showed that the load of the data center was unbal-
anced at this time, and the load needed to be bal-
anced by virtual machine migration. Over time, the
migration cost of the four algorithms was gradually
reduced, indicating that the load of the data center
was in a relatively balanced state. The virtual ma-
chine migration cost of the ESA_DE algorithm is the
lowest among the four algorithms.

5.2.3.2 Performance interference Figure 8 is an experi-
mental comparison of the ESA_DE algorithm and
IQR_MC, LRR_MMT, and MAD_RS algorithms for vir-
tual machine performance interference under different
number of tasks. It was obvious from the graph that the
ESA_DE algorithm proposed in this paper could
minimize the performance interference between virtual
machines. The experimental data showed that the
ESA_DE algorithm was 81.91~ 88.36% lower than the
IQR_MC algorithm, 78.45~ 86.24% lower than the
LRR_MMT algorithm, and 80.02~ 87.05% lower than the
MAD_RS algorithm.
Figure 9 is an experimental comparison and analysis

of the performance interference between ESA_DE and
IQR_MC, LRR_MMT, and MAD_RS at different time.
It could be clearly seen from the graph that in the
initial stage, the performance interference of the four
algorithms was very large, which was caused by more
virtual machine migration in the initial stage; with the
gradual reduction of the migration number, the per-
formance interference between virtual machines also
decreased; and the performance interference of the
ESA_DE algorithm proposed in this paper was the
smallest among the four algorithms.

5.2.3.3 Network flow Figure 10 is an experimental com-
parative analysis of the total network flow between the
ESA_DE algorithm and IQR_MC, LRR_MMT, and
MAD_RS algorithms under different number of tasks.
Compared with other three algorithms, the ESA_DE
algorithm proposed in this paper effectively reduced the
total network flow of data center. From the experimental
data, the total network flow of the ESA_DE algorithm
was 6.1~ 7.87% of the IQR_MC algorithm, 12.52~
16.69% of the LRR_MMT algorithm, and 6.43~ 8.56% of
the MAD_RS algorithm.

Fig. 5 a Random algorithm for selecting initial clustering centers.
b Min-max algorithm for selecting initial clustering centers. c
Optimizing min-max algorithm for selecting initial clustering
centers
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Figure 11 is a comparative experiment of the aver-
age network flow between ESA_DE and IQR_MC,
LRR_MMT, and MAD_RS at different time. As could
be seen from the graph, the average network flow of
the four algorithms was IQR_MC, MAD_RS,
LRR_MMT, and ESA_DE in turn. In the vicinity of
5000, 10,000, 20,000, and other time points, the
average network flow showed a sudden increase,
which was caused by the migration of virtual ma-
chines due to server overload and the completion of
virtual machine tasks. In the whole operation cycle,

no matter how the virtual machine migrated, the
average network flow of the ESA_DE algorithm was
the lowest.

5.2.3.4 CPU utilization Figure 12 is a comparative ex-
periment of the average CPU utilization of the
ESA_DE algorithm and IQR_MC, LRR_MMT and
MAD_RS under different task numbers. From the ex-
perimental data, it could be concluded that the aver-
age CPU utilization of the IQR_MC algorithm ranged
from 39.06 to 41.36%, that of the LRR_MMT

Fig. 6 Total migration cost of the virtual machine under different task numbers

Fig. 7 Average migration cost of the virtual machine at different time
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algorithm ranged from 44.17 to 46.76%, and that of
the MAD_RS algorithm ranged from 43.52 to 46.13%.
The average CPU utilization of the ESA_DE
algorithm proposed in this paper ranged from 73.19
to 84.87%. With the increase of the number of tasks,
the average CPU utilization of the four algorithms is
also increasing. This paper proposes that the average
CPU utilization of the ESA_DE algorithm is 87.38~
106.8% higher than that of the random algorithm and
65.69~ 83.22% higher than that of the LRR_MMT al-
gorithm. It is 68.19~ 86.68% higher than the MAD_RS
algorithm. The average CPU utilization of the
ESA_DE algorithm proposed in this paper is basically
maintained above 80%. This is because the ESA_DE
algorithm balances the load status of each server in

the cloud data center through the virtual machine mi-
gration strategy.

5.2.3.5 Virtual machine migration number Figure 13
is an experimental comparison of the proposed
ESA_DE algorithm on virtual machine migration
number with IQR_MC, LRR_MMT, and MAD_RS
under different task numbers. It can be seen from the
figure that compared with the other three algorithms,
the virtual machine migration number of the ESA_DE
algorithm proposed in this paper is effectively re-
duced. Experimental data shows that the number of
virtual machine migrations of the ESA_DE algorithm
is 93.05~ 94.5% lower than that of the IQR_MC algo-
rithm, 88.79~ 91.56% lower than that of the

Fig. 8 Total performance interference of virtual machine under different task numbers

Fig. 9 Performance interference of virtual machine migration at different time
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LRR_MMT algorithm, and 92.22~ 94.17% lower than
that of the MAD_RS algorithm.

5.2.3.6 Data center energy consumption Figure 14 is a
comparison of the data center energy consumption
experiments of the ESA_DE algorithm and the
IQR_MC, LRR_MMT, and MAD_RS algorithms under
different task numbers. It can be seen from the ex-
perimental results that the data center energy con-
sumption of the four algorithms is IQR_MC,
MAD_RS, LRR_MMT, and ESA_DE algorithms from
large to small. In this paper, the data center energy
consumption of the ESA_DE algorithm is reduced by
42.44~ 49.13% compared with that of the IQR_MC al-
gorithm, 36.8~ 42.54% lower than that of the
LRR_MMT algorithm, and 37.29~44.36% lower than
that of the MAD_RS algorithm.

6 Conclusion
From the perspective of green scheduling, this paper
proposed the load forecasting algorithm (SVR_GA)
based on machine learning algorithm, virtual ma-
chine classification algorithm (K-Means-OMM), and
multi-objective optimization algorithm (ESA_DE)
based on heuristic. The SVR_GA algorithm could ac-
curately predict the CPU utilization of servers, and
the prediction error was only − 0.22~0.24; the
K-means-OMM algorithm could accurately classify
virtual machines, which was better than random se-
lection and the min-max algorithm on initialing
clustering centers; compared with the IQR_MC,
LRR_MMT, and MAD_RS algorithms, the migration cost,
network flow, and performance interference of the
ESA_DE algorithm proposed in this paper were lower
than others. The average utilization of data center is
higher than that of other algorithms, reaching about

Fig. 11 Average network flow at different time

Fig. 10 Total network flow under different task numbers
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Fig. 12 Average CPU utilization of the data center under different task numbers

Fig. 13 Virtual machine migration number under different task numbers
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80%; the maximum number of virtual machine migra-
tion is reduced by 94.5%; the maximum energy con-
sumption of data center is reduced by 49.13%; and
the goal of load balancing is achieved.
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