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Abstract

In this paper, we propose a new Bi-Population QUasi-Affine TRansformation Evolution (BP-QUATRE) algorithm for
global optimization. The proposed BP-QUATRE algorithm divides the population into two subpopulations with sort
strategy, and each subpopulation adopts a different mutation strategy to keep the balance between the fast
convergence and population diversity. What is more, the proposed BP-QUATRE algorithm dynamically adjusts scale
factor with a linear decrease strategy to make a good balance between exploration and exploitation capability. We
compare the proposed algorithm with two QUATRE variants, PSO-IW, and DE algorithms on the CEC2013 test suite.
The experimental results demonstrate that the proposed BP-QUATRE algorithm outperforms the competing
algorithms. We also apply the proposed algorithm to dynamic deployment in wireless sensor networks. The
simulation results show that the proposed BP-QUATRE algorithm has better coverage rate than the other

competing algorithms.

Keywords: Differential evolution, Particle swarm optimization, Bi-population, QUATRE algorithm, Global
optimization, Dynamic deployment, Wireless sensor networks

1 Introduction

In the last few decades, there have been many optimization
demands arising not only from the scientific community
but also from various real-world applications. Generally,
the approach to solving these optimization problems often
begins with designing the objective function which can
model the objectives of optimization problems [1]. Many
optimization approaches have been proposed to meet these
demands aiming at finding optimal solutions. Some
Swarm-based intelligence optimization algorithms, such as
particle swarm optimization (PSO) [2], ant colony
optimization (ACO) [3], differential evolution (DE) [1],
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artificial bee colony (ABC) optimization [4], and QUasi-
Affine TRansformation Evolution (QUATRE) algorithm [5],
and so on, have been developed to tackle these complex
optimization problems.

QUATRE algorithm was first presented by Meng et al.
in [5] that discussed the relationship between QUATRE
algorithm and the other two swarm-based intelligence
algorithms PSO and DE. In 1995, Kennedy and Eberhart
firstly introduced the PSO algorithm [2]. As PSO is
simple, powerful, and straightforward to implement,
many researchers have studied this technique and devel-
oped various improved variants [6-8]. DE was intro-
duced by Storn and Price [1] in 1995, which was
arguably one of the most powerful optimization
algorithms. As well, many DE variants have been
proposed to enhance the performance of DE algorithm
[9-11], and QUATRE algorithm is one of them proposed
to conquer representational or positional bias of DE
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algorithm [12]. QUATRE’s conventional notation is
“QUATRE/x/y” which denotes types of QUATRE vari-
ants. It is worth noting that the notation of QUATRE is
more general than the DE’s notation “DE/x/y/z” [13].

The canonical QUATRE algorithm and its variants can
be found in literatures [12—17]. The QUATRE has the ad-
vantages of simplicity, few control parameters to set, and
convenient to be used, but it has some weaknesses as the
DE algorithm such as it will be premature convergence,
and will search stagnation and may be easily trapped into
local optima. Population diversity plays important role in
alleviating these weaknesses. Therefore, it is important to
keep the balance between diversity and convergence. In
[16], S-QUATRE has been proposed which uses sort strat-
egy to improve the performance of QUATRE algorithm.
And S-QUATRE divides the population into the better and
the worse groups and evolves the individuals in the worse
group. The other algorithms which partition population
into two groups or several subpopulations to maintain
population diversity and to enhance the performance of al-
gorithms, such as CMA-ES, PSO, DE and CSO, can be
found in previous literature [18-22]. On the other hand,
both mutation strategies and control parameter scale factor
F have significant effects on the performance of QUATRE
variants. Different mutation strategies in QUATRE algo-
rithm have different performance over various optimization
problems [13] because different mutation strategy has dif-
ferent search ability and convergence rate. Usually, similar
to the DE algorithm, adopting larger F value in QUATRE
algorithm means the algorithm is more focused on explor-
ation, while a smaller F value means more exploitation [23].
Therefore, in this paper, in order to improve the perform-
ance of QUATRE algorithm, we propose a novel Bi-
Population QUATRE algorithm with a sort strategy and a
linear decrease scale factor F (BP-QUATRE), and each sub-
population has a different mutation strategy.

The remainder of the paper is arranged as follows. In
Section 2, we briefly review the QUATRE algorithm. Our
proposed Bi-Population QUasi-Affine TRansformation Evolu-
tion (BP-QUATRE) algorithm is given in Section 3. In Section
4, we apply the proposed algorithm to dynamic deployment
in wireless sensor networks. What is more, the experimental
analysis of our proposed algorithm under CEC2013 test suite
and simulation results in wireless sensor networks are pre-
sented in Section 4. Finally, Section 6 gives the conclusion.

2 Canonical QUATRE algorithm

Meng et al. have proposed the QUATRE algorithm for
solving optimization problems [5]. QUATRE is an abbre-
viation of QUasi-Affine TRansformation Evolution, and
the reason the authors naming the algorithm QUATRE
is that individuals in QUATRE algorithm evolve by using
an affine transformation-like equation. The detailed evo-
lution equation of QUATRE is as follows.
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X«<M@X+M®B (1)

where M is an evolution matrix and M is a binary inverted
matrix of M. The elements of them are either 0 or 1. The
binary invert operation means to invert the values of the
matrix. The reverse values of zero elements are ones,
while the reverse values of one elements are zeros. Equa-
tion 2 shows an example of binary inverse operation.

1 01 1 1
M= 1 1 M= 0 0 1 } 2)
1 1 .. 1 0 0 0

M is transformed from an initial matrix M;,; which is
initialized by a lower triangular matrix with the elements
equaling to ones. Transforming from M;,; to M contains
two consecutive steps. In the first step, every element in
each row vector of My, is randomly permuted. In the
second step, the sequence of the row vectors is ran-
domly permuted with all elements of each row vector
unchanged. An example of the transformation with ps =
D is given in Eq. 3. Usually, the population size ps is lar-
ger than the dimension, while the matrix M;,; needs to
be extended according to population size ps. Equation 4
shows an example of ps=2D + 2. Generally, when ps %
D =k, the first k rows of the D x D lower triangular
matrix are included in M;,; and adaptively change M ac-
cording to Myy; [12].

1 1
1 1
Mini = 1o 1
1 1 1 1 1
=M (3)
M1 1 M1 17
1 1 1
1 1 1 1 1
1 1
M, =11 1 ~11 1 .. 1
1
1 1 1 1 1
1 1 1 1
11 | |
=M (4)
X=Xy, X 6 s Xi, Gr oor s Xps, gltis the population

matrix with ps individuals. X; g =[x, Xi2, ..., Xip] is the
ith row vector of the matrix X, which denotes the loca-
tion of ith individual of the Gth generation, and each in-
dividual X; ¢ is a candidate solution for an optimization
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problem, and D denotes the dimension number of ob-
jective function, where i€ {1,2, ..., ps}. The operation
“®” stands for component-wise multiplication of the ele-
ments in each matrix, which is the same as “.*” operation
in Matlab software. B=[B; g, By, G - . Bps, al*
is the donor matrix, and it has several different calcula-
tion schemes (mutation strategies) which are listed in

Egs. (5)-(8) [7].

.y Bi, Gy -

QUATRE /best/1 : B = Xgpestc + F - (Xe1.6-Xe2.6)

(5)
QUATRE/ rand/1: B = Xy06 + F- (Xi1,6-Xr2.6)

(6)
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QUATRE/target/1: B =X+ F- (Xng-Xng) (7)

QUATRE //target-to-best/1B
=X+ F- (XghestcX) + F+ (Xi1.6-Xi26) (8)

ngest, G= [ngest, G ngest, Gy eee ngest, G]Txgbest,
G = [Xabest, G Xgbest, Gr - » Xgpest, Gl denotes a row
vector-duplicated matrix with each row vector equaling
to the global best individual Xgpes, g of the Gth gener-
ation. F can be considered as amplification factor, whose
value region is (0, 1] for most optimization problems. X;;
& X2, g and X3, g are a set of random matrices which are
generated by randomly permutating the sequence of row
vectors in the matrix X of the Gth generation.

[ Initialization ]

Yes

Worse

Generate matrices
Mworse and Mworse

v

Calculate Byorse using
QUATRE/target-to-best/1

v

Evolve individuals
according to Eq.1.

Division with sort strategy

No
Better

Generate matrices
Mbetter and Mbetter

v

Calculate Bypetter using
QUATRE/ best/1

v

Evolve individuals
according to Eq.1.

4>| Subpopulation merging |<_
v

| Update F using linear decrease strategy l—

r‘@utput the global optimD

Fig. 1 The main framework of BP-QUATRE. The flowchart of BPQUATRE algorithm consists of population initialization, population division,
subpopulation evolution, subpopulation merging and approach of updating parameter scale factor F. Gen is the current generation number and
MaxGen is the maximum generation number. Better means the subpopulation with better fitness values (ie., with the lower fitness values for a
minimization problem). Worse means the subpopulation with worse fitness values. The better subpopulation evolves by adopting mutation
strategy “QUATRE/best/1" to make good exploitation around the individuals with better fitness values and to have good convergence rate. The
better subpopulation evolves by adopting mutation strategy “QUATRE/best/1” to make good exploitation around the individuals with better
fitness values and to have good convergence rate. The worse subpopulation evolves by using mutation strategy “QUATRE/target-to-best/1" to
make a good exploration around the individuals with worse fitness values and to preserve population diversity
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3 Bi-population QUATRE algorithm with sort
strategy and linear decrease scale factor F
(BP-QUATRE)

In this section, we describe the main idea of our proposed
algorithm BP-QUATRE. As mentioned above, because eas-
ily trapping into local optima and premature convergence
is the weakness of QUATRE algorithm. In order to alleviate
the above weaknesses, BP-QUATRE consisting of popula-
tion initialization, population division, subpopulation evolu-
tion, subpopulation merging, and an approach to update
the parameter scale factor F, is proposed in this paper. The
main framework of BP-QUATRE is shown in Fig. 1.

3.1 Bi-population division and mutation strategies
Usually, as conventional evolutionary algorithms, the QUA-
TRE algorithm suffers from the problem of premature con-
vergence, i.e., the population is too early to lose diversity
and fall into local optima. Multi-population approach helps
to increase population diversity and alleviate premature
convergence [20]. Inspired by this, we use a Bi-population
approach to enhance the diversity of the population. In our
proposed algorithm, the individuals in the population are
firstly sorted after initialization according to the fitness
values, and then the entire population is equally divided
into two subpopulations based on the sorted sequence, say
POPbetter ANA POPyorser Tespectively. As we know, different
mutation strategy of QUATRE algorithm has different
search abilities. Mutation strategy “QUATRE/best/1” uses
the best individual to guide the population and has a fast
convergence rate and good local search ability around the
best individual. Therefore, the subpopulation poppetter
evolves by adopting mutation strategy “QUATRE/best/1” to
make good exploitation around the individuals with better
fitness values and to have good convergence rate. On the
other hand, mutation strategy “QUATRE/target-to-best/1”
is a strong exploration-biased strategy, because this strategy
generates donor individual using the best individual and
two random selected individuals. Thus, the subpopulation
POPworse €Volves by using mutation strategy “QUATRE/tar-
get-to-best/1” to make a good exploration around the indi-
viduals with worse fitness values and to preserve
population diversity. Therefore, this bi-population division
and different subpopulation having different mutation strat-
egy approach can make a trade-off between the population
diversity and convergence rate.

3.2 Linear decrease scale factor

Scale factor plays an essential role in balancing exploration
and exploitation ability of QUATRE algorithm during the
search phases. In [5], the authors illustrate the effect of differ-
ent scaling factor values on the performance of the QUATRE
algorithm. And there is no fixed parameter setting which can
achieve the best performance for all kinds of problems. It is
significant to find a good method to dynamically adjust the
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scaling factor value. According to [6, 24] for most population-
based optimization algorithm, it is a good idea for the algo-
rithm to have more exploration ability in the early stages of
the search in order to sample diverse zones of the search
space. In the later stages of the search, the algorithm should
possess more exploitation ability to search the relatively small
space where the potential global optimum lies in. Namely, at
the beginning of the search, the scale factor of the algorithm
should be larger. While with the increment of generations,
the scale factor of algorithm should be decreased to increase
the exploitation ability. Hence, we use the linear decrease
strategy proposed in [6] to dynamically adjust the value of
scale factor which can be described as fellow.

F = Frax—(Fmax—Fmin) - Gen/MaxGen 9)

where Fp,,, and Fpy, are the predetermined maximum
and minimum values of scale factor F. Gen is the current
generation number, and MaxGen is the maximum gen-
eration number.

The pseudo code of BP-QUATRE algorithm is shown
in Algorithm 1.

Algorithm 1 BP-QUATRE Algorithm

Initialization:

Initialize the searching space V, dimension D, Gen=1,
the benchmark function f(X), randomly Initialize the
population X with ps individuals, and evaluate the fitness
values of all individuals.

Iteration:
1: while Gen < MaxGen || !stopCriterion do
2: Sort individuals based on fitness values and

then divide them into popperrer and popyorse according
to sort order

3: Generate matrices Mpetter and Myyorse USINg
Eq. 4. Generate matrices Mpger and M,,q.e using Eq.
4.

4: Calculate donor matrix Bypeger using Eq. 5.
Calculate donor matrix By, using Eq. 8.

5: Evolve individuals in each sub-population
using Eq. 1.

6: Evaluate fitness values of all individuals.

7: for i =1tops do

8: if f(X;) < f(Xppest;i) then

9: Xpbesti = Xi

10: end if

11: end for

12: X = Xpbest 5 ngest = Opt{prest }

13: Update scale factor F according to Eq.9.

14: Gen = Gen+1

15: end while

Output:

The global optimum Xgpes: , global best fitness value

f(Xpbest )

4 Apply the proposed BP-QUATRE algorithm to
dynamic deployment in wireless sensor networks
In this section, we apply the proposed BP-QUATRE al-
gorithm to dynamic deployment in wireless sensor net-
works (WSN). The WSN becomes a popular research
field [25-29] due to its great value in real-world
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applications such as environment monitoring, healthcare
applications, and forest fire detection. The WSN is com-
posed of a large number of battery-powered, multifunc-
tional, and resources-constrained sensor nodes. The
performance of the whole WSN depends on the pos-
ition of the sensors which affect the coverage, con-
nectivity, energy efficiency, and network lifetime. In
some applications, the locations of the sensors are
predetermined by static ways. However, in some cases
such as battlefield, underwater, and disaster-affected
regions where is difficult to predetermine the loca-
tions by static ways, only dynamic deployment strat-
egies can be adopted. In dynamic deployment, the
sensors are first randomly placed within the area of
interest and then sensors can relocate their locations
by using information from other sensor nodes. But
random initial deployment may not ensure effective
coverage. In order to enhance the coverage rate of
the whole WSN, a number of algorithms have been
developed for dynamic node deployment, including
virtual force [30], Voronoi diagram [31], and swarm
intelligence  algorithms  [33-36]. Many swarm
intelligence algorithms are employed in sensor deploy-
ment, such as the particle swarm optimization (PSO)
[32, 33], artificial bee colony algorithm (ABC) [34],
differential evolution (DE) [35], and so forth. In this
study, the proposed QUATRE algorithm is first ap-
plied to dynamic deployment in WSN with the aim
of improving the coverage rate. The proposed algo-
rithm is compared with PSO-based and DE-based dy-
namic deployment algorithm.

4.1 Sensor detection model

Without losing generality, this paper assumes that each
sensor node can move and has the same sensor radius and
communication range. There are two sensor detection
models in wireless sensor networks: binary detection
model and probability detection model [36]. In the binary
detection model, the detected possibility of the event con-
cerned is 1 within the sensing radius. Otherwise, the prob-
ability is 0. This model can be expressed by the Eq. 9 [37].

1, dP,si) <r

Cuy(Pys1) = { 0, otherwise (10)

where r represents sensor radius and d(P, s;) denotes the
Euclidean distance between point P and the sensor node
s;. Although the binary sensor model is relatively simple,
the uncertainties in measurement are not taken into ac-
count. Generally, sensor detections are imprecise in
practical, so the detection probability C,,(P,s;) needs to
be presented in probabilistic terms. Therefore, we use
the probabilistic detection model in the paper, which
can be expressed by the Eq. 10 [38].
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1, d(P,s;) <r-re
CX,Y(P7 si) = e(—m)\lﬁl/)\zﬁ2+m)7 r—re < d(P,s;)<r + re
0, d(P,si) > r+re
(11)

where 7,(0 < r, <) is the measure of uncertainty. ay, ay 1,
and P, are detection parameters related to the characteris-
tics of sensors. A; =r.—-r+d(P,s;) and Ay =r.+r-d(Ps)
are the input parameters. In general, the detection probabil-
ity covered by sensor node may be less than 1. This means
that it is necessary to overlap the sensor detection area to
compensate for the potential low detection probability
[39]. And we assume that sensors observe independ-
ently. Considering a point P (x, y) in the overlap re-
gion of a set of sensors S, the joint detection
probability of point P can be calculated by the Eq. 11.

Cey(8) = 1- [J (1-Cyy (P, 51))

s;eS

(12)

Let Cy, is the threshold of predefined effective detec-
tion probability. This implies that the point P (x, y) can
be effectively covered if

min {Cxy(S)}2Cn (13)

4.2 Dynamic deployment based on BP-QUATRE algorithm
The purpose of sensor deployment algorithm is to deter-
mine an optimal sensor distribution in the region of
interest, which is similar to the swarm intelligence
algorithm for solving complex optimization problems.
Therefore, it is possible to apply BP-QUATRE algorithm
to the dynamic deployment problem of WSN.

In the BP-QUATRE algorithm, the individual is com-
posed of the coordinate representing its position in the
solution space. In dynamic deployment, the individual
represents the deployment of the sensors in the sensed
area. Supposing the number of sensors is N, the dimen-
sion of the individual is set to 2 N and the individual en-
coding is expressed as X; = [x{;, X%, X}, X5, ..., X}y XA
The elements represent the x and y coordinates of sen-
sors from 1 to N in turn.

The fitness function of the BP-QUATRE corresponds
to the coverage rate of the network. Coverage rate is an

Table 1 Parameters settings

Algorithm Parameters settings

BP-QUATRE Frax=0.9, Fmin=04

QUATRE variants F=07

PSO-IW Wmax =09, Wmin=04,cl1=2,c2=2
DE F=0.7,Cr=0.
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Table 2 Performance for BP-QUATRE, QUATRE/target-to-best/1, and QUATRE/best/1

30D QUATRE/target-to-best/1 QUATRE/best/1 BP-QUATRE

Best Mean Std Best Mean Std Best Mean Std
1 0.0000E+ 00 4.5475E-15 3.2155E-14 0.0000E+ 00 22737E-14 6.8905E-14 0.0000E+ 00 59117E-14 1.0075E-13
2 34918E+ 04 2.0307E+ 05 9.1401E+ 04 6.5779E+ 04 3.2526E+ 05 1.7428E+ 05 8.0342E+ 04 3.2499E+ 05 1.8932E+ 05
3 3.3344E-08 1.2152E+ 04 4.2407E+ 04 6.4313E-02 1.1505E+ 06 3.0040E+ 06 4.0302E-05 6.8721E+ 05 2.9931E+ 06
4 1.3712E+ 00 9.6559E+ 00 7.2335E+ 00 4.1346E+ 00 2.1215E+ 01 1.5656E+ 01 6.7090E+ 00 3.8516E+01 2.5066E+ 01
5 0.0000E+ 00 1.0914E-13 2.2504E-14 0.0000E+ 00 1.0914E-13 2.2504E-14 0.0000E+ 00 1.1369E-13 2.2968E-14
6 2.8398E-09 1.8153E+ 00 6.2792E+ 00 2.9877E-04 7.3092E+ 00 1.0870E+ 01 4.5328E-03 1.0260E+ 01 8.0606E+ 00
7 1.9057E-01 3.8445E+ 00 4.0489E+ 00 1.1364E+ 00 2.1349E+ 01 1.7591E+ 01 7.2738E-02 4.9636E+ 00 3.9591E+ 00
8 2.0749E+ 01 2.0933E+ 01 5.1788E-02 2.0849E+ 01 2.1004E+ 01 5.8828E-02 2.0827E+ 01 2.0953E+ 01 4.7373E-02
9 1.0130E+ 01 2.6120E+ 01 6.0410E+ 00 5.8076E+ 00 1.6079E+ 01 5.5873E+ 00 9.7462E+ 00 2.2635E+ 01 5.7088E+ 00
10 5.6843E-14 2.7047E-02 1.5235E-02 0.0000E+ 00 2.3154E-02 1.5496E-02 7.3960E-03 2.0791E-02 1.1579E-02
Il 2.3082E+ 01 2.7925E+ 01 2.5361E+ 00 1.3929E+ 01 26411E+ 01 8.3326E+ 00 1.7053E-13 4.4972E+ 00 1.8006E+ 00
12 9.0630E+ 01 1.1724E+ 02 1.3886E+ 01 3.9359E+ 01 7.5733E+01 1.8919E+ 01 1.9899E+ 01 5.3234E+ 01 1.5281E+ 01
13 1.0132E+ 02 1.3263E+ 02 1.5255E+ 01 5.2197E+01 1.1252E+ 02 3.2964E+ 01 5.8213E+01 1.0634E+ 02 2.4064E+ 01
14 9.9796E+ 02 1.3914E+ 03 1.9533E+ 02 1.0081E+ 02 8.1082E+ 02 2.6067E+ 02 1.0878E+ 01 1.9290E+ 02 1.2680E+ 02
15 53901E+ 03 6.3005E+ 03 3.4954E+ 02 3.3512E+ 03 5.1268E+ 03 7.7891E+ 02 2.7376E+ 03 4.0668E+ 03 5.3740E+ 02
16 1.8510E+ 00 2.3565E+ 00 24224E-01 1.3247E+ 00 24246E+ 00 4.5226E-01 9.4808E-01 1.8071E+ 00 4.0821E-01
17 5.5094E+ 01 6.1017E+ 01 2.5301E+ 00 2.1370E+01 5.5165E+ 01 1.1812E+ 01 1.7609E+ 00 3.0571E+01 7.3126E+ 00
18 1.6116E+ 02 1.8968E+ 02 9.6887E+ 00 1.0816E+ 02 1.6029E+ 02 2.5169E+ 01 5.2189E+ 01 1.0584E+ 02 2.3166E+ 01
19 2.7404E+ 00 4.6348E+ 00 4.7267E-01 1.6863E+ 00 3.6567E+ 00 7.7921E-01 1.0161E+ 00 1.7223E+ 00 3.4349E-01
20 1.0903E+ 01 1.1871E+ 01 3.6616E-01 1.0342E+ 01 1.2062E+ 01 6.4629E-01 1.0035E+ 01 1.1254E+ 01 4.9221E-01
21 2.0000E+ 02 3.0384E+ 02 7.7553E+ 01 2.0000E+ 02 3.1932E+ 02 8.3201E+ 01 2.0000E+ 02 3.0271E+ 02 8.2769E+ 01
22 1.0740E+ 03 14937E+ 03 1.9286E+ 02 4.5570E+ 02 8.3787E+ 02 2.5055E+ 02 6.2475E+ 01 24699E+ 02 1.0913E+ 02
23 45981E+ 03 6.0880E+ 03 53171E+02 3.7200E+ 03 53213E+03 84120E+ 02 2.6820E+ 03 4.0320E+ 03 7.2841E+ 02
24 2.0017E+ 02 2.1733E4+02 1.4867E+ 01 2.1116E+02 2.3769E+ 02 1.1610E+ 01 2.0020E+ 02 2.3468E+ 02 1.6071E+ 01
25 2.3653E+ 02 2.5235E+ 02 8.2988E+ 00 24178E+ 02 2.5758E+ 02 8.0331E+ 00 241448+ 02 2.5694E+ 02 1.2474E+ 01
26 2.0001E+ 02 24606E+ 02 6.6115E+ 01 2.0001E+ 02 24558E+ 02 6.4221E+ 01 2.0001E+ 02 2.1684E+ 02 46111E+01
27 3.2346E+ 02 6.1723E+ 02 1.7389E+ 02 5.5559E+ 02 6.9637E+ 02 9.3585E+ 01 4.1966E+ 02 7.5219E+ 02 1.5375E+ 02
28 1.0000E+ 02 3.5818E+ 02 2.5128E+ 02 1.0000E+ 02 3.7948E+ 02 2.8873E+ 02 3.0000E+ 02 3.0000E+ 02 2.9792E-13
win 9 10 14 3 1 4 12 16 9
lose 15 17 13 21 26 23 13 12 19
draw 4 1 1 4 1 1 3 0 0
important aspect to measure the performance of WSN. m
Let each sensor can cover an area C; and A is the total CR = T (15)

size of the region of interest. Then, the coverage rate CR
is calculated by the Eq. 13.
UCi
A

CR = ieN (14)

However, it is too complicated to calculate the cover-
age rate of randomly deployed sensor networks by Eq.
13. Therefore, this paper uses the grid scanning method
[37] to evaluate the coverage rate. According to [37], CR

is evaluated as the Eq. 14.

5 Experimental results and discussion

A set of experiments was conducted to evaluate the per-
formance of the proposed algorithm BP-QUATRE and
its application to dynamic deployment in WSN.

5.1 Experimental results for BP-QUATRE
In this subsection, we evaluate the performance of the
proposed BP-QUATRE algorithm on CEC2013 [40] test
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Table 3 Performance for BP-QUATRE, PSO-IW, and DE algorithms

(2019) 2019:175

Page 7 of 12

30D PSO-IW DE/best/1/bin BP-QUATRE

Best Mean Std Best Mean Std Best Mean Std
1 1.8516E-02 20880E+03  23796E+03  2.2737E-13 22737E-13 0.0000E+00  0.0000E+00  59117E-14 1.0075E-13
2 9.2004E+ 05 2.9077E+ 07 4.8633E+ 07 1.4886E+ 07 2.6850E+ 07 7.1628E+ 06 8.0342E+ 04 3.2499E+ 05 1.8932E+ 05
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10 1.4411E+ 00 5.7765E+ 02 4.3368E+ 02 6.7846E+ 00 1.5520E+ 01 4.3221E+ 00 7.3960E-03 2.0791E-02 1.1579E-02
" 7.2539E+ 01 1.6044E+ 02 3.8346E+ 01 5.6843E-14 6.9647E-01 1.0101E+ 00 1.7053E-13 4.4972E+ 00 1.8006E+ 00
12 9.8398E+ 01 1.8126E+ 02 6.7573E+ 01 1.1538E+ 02 1.5072E+ 02 1.5277E+ 01 1.9899E+ 01 5.3234E+ 01 1.5281E+ 01
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win 3 2 0 2 4 17 22 22 11
lose 25 26 28 25 24 " 5 6 17
draw 0 0 0 1 0 0 1 0 0

suite for real-parameter optimization, which includes
unimodal functions (f1-f5), multimodal functions (f6-
f20), and composition functions (f21-f28). The names
and search ranges of this 28 benchmark functions can
be found in [40], and they are shifted to the same global
best location O{oy, 04, ..., 04}

Firstly, we compare the BP-QUATRE with the two
QUATRE variants “QUATRE/target-to-best/1” and
“QUATRE/best/1” as BP-QUATRE employs these two
mutation strategies. Then, we compare the BP-QUATRE
with inertia weight PSO and standard DE due to the

relationship among them as described in ref [5]. The
parameter settings of the algorithms are shown in
Table 1. The dimensions of all functions are set to
30. The population size ps is set to 100 for each algo-
rithm, and the maximal number of function evalu-
ation (NFE) is 3,000,000. We run each algorithm on
each benchmark function 50 times independently.
The best, mean, and standard deviation of the func-
tion error are collected in Table 2 and Table 3. The
simulation results of some benchmark functions are
shown in Fig. 2.
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Fig. 2 Fitness errors vs. number of function evaluations of functions 8, f12, f15, and f24. The figure presents the fitness error and the
convergence speed comparison by employing the best value of 50 runs obtained by each competing algorithm on 30-D optimization. The
functions f8, f12, f15, and f24 figures are presented here. NFE means number of function evaluations

Number of function evaluations
(d) function24-30D

From Table 2, we can see that BP-QUATRE has
significantly better performance than the other two
QUATRE variants over 28 benchmark functions. The
BP-QUATRE finds 12 best values and 16 mean values of
CEC2013 benchmark functions in comparison QUATRE
variants. This is because the BP-QUATRE can take ad-
vantage of different mutation strategies to maintain
population diversity, and its linear decrease scale factor

control strategy is helpful to balance exploration and
exploitation ability. For the standard deviation, the
“QUATRE/target-to-best/1” has better performance than
“QUATRE/best/1” and BP-QUATRE algorithms, and BP-
QUATRE algorithm has better performance than “QUA-
TRE/best/1.” In addition, we can observe that QUATRE
variants with different mutation strategies have different
performance. The “QUATRE/target-to-best/1” performs
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better on unimodal and composition functions than
“QUATRE/best/1,”, while the “QUATRE/best/1” performs
better on multimodal functions than “QUATRE/target-to-
best/1.”

From Table 3, we can see that, for the best value, the
PSO-IW algorithm finds 3 minimum values of 28
benchmark functions. The DE algorithm finds 2 mini-
mum values of 28 benchmark functions. While our pro-
posed BP-QUATRE algorithm finds 22 minimum values

of 28 benchmark functions in comparison with PSO-
IW and DE algorithms, and thus, it has overall better
performance than the contrasted algorithms. For the
mean, our proposed algorithm also has significantly
better performance than the competing algorithms. For
the standard deviation, the DE algorithm has better
performance than PSO-IW and BP-QUATRE algo-
rithms, and BP-QUATRE algorithm has better perform-
ance than PSO-IW algorithm. Overall, our proposed
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Fig. 4 Comparison of coverage rates of the proposed algorithm
with the other algorithms, e.g., PSO-IW, DE, QUATRE/best/1 and
QUATRE/targetto-best/1

BP-QUATRE algorithm has better performance than
the other two competing algorithms.

5.2 Simulation results for dynamic deployment in WSN
Simulations are conducted to evaluate the performance
of BP-QUATRE algorithm in the dynamic deployment of
WSN. The simulation results of the proposed algorithm
are compared with the results of the PSO-IW, DE, and
two QUATRE variants.

To make the simulation results more reliable, the par-
ameter settings such as the target area, the number of
sensors, and their detection radius are according to [34].
The monitored target area is a square region with a size
of 100m x 100 m, and 100 sensor nodes are scattered
randomly on this target region. The parameter settings
for the probabilistic detection model are a; =1, ay =0,
B1=1, and B, =1.5. And the detection radius of each
sensor node is 7 m, the uncertainty parameter of meas-
urement 7, is 3.5 m, and the communication radius r, is
21 m. The effective detection threshold cy, is 0.7. The
control parameters of each algorithm are the same as in

(2019) 2019:175 Page 10 of 12

Section 5.1 except that the acceleration coefficients cl
and c2 of the PSO are set to 1. The population size ps is
set to 40, and the number of iterations is 1000. We run
each algorithm 10 times independently with the same
initialization.

One of initial deployments and the final best deploy-
ments of WSN after executing all competing algorithms
based on the probabilistic detection model are shown in
Fig. 3. The best convergences of each algorithm are
shown in Fig. 4 by coverage rate for the number of itera-
tions. The best, mean, and standard deviation of the
coverage rates for the mentioned algorithms are given in
Table 4. Obviously, it can be seen that our proposed BP-
QUATRE has better performance than other two QUA-
TRE variants and all QUATRE algorithms have better
performance than PSO-IW and DE algorithm. In other
words, BP-QUATRE has better coverage rate than the
other four competing algorithms in the dynamic deploy-
ment of WSN. This is certainly related to the more
powerful exploration and exploitation capability of the
BP-QUATRE algorithm.

6 Conclusion

This paper proposes a novel BP-QUATRE algorithm
for optimization problems. In BP-QUATRE, the
population is divided into two subpopulations with
sort strategy, and each subpopulation employs a dif-
ferent mutation strategy to balance between the di-
versity and convergence rate. In addition, adjusting
scale factor with linear decrease strategy is adopted
in BP-QUATRE algorithm to balance between ex-
ploration and exploitation ability. The proposed
algorithm is verified under CEC2013 test suite. The
experimental results demonstrate that the proposed
BP-QUATRE algorithm not only has better perform-
ance than QUATRE variants “QUATRE/target-to-
best/1” and “QUATRE/best/1,” but also has better
performance than the PSO-IW algorithm and DE
algorithm. We also apply the proposed BP-QUATRE
algorithm to dynamic deployment in WSN. The
simulation results demonstrate that the proposed
BP-QUATRE algorithm has better coverage rate than
the other competing algorithms. In the future work,
we will apply BL-QUATRE algorithm to classify
music genre [41].

Table 4 Performance for competing algorithms in the dynamic deployment of WSN

PSO-IW DE QUATRE/best/1 QUATRE/target-to-best/1 BP-QUATRE
Best 0.8873 09183 0.9367 0.9305 0.9389
Mean 0.8629 09143 09212 09187 0.9362
Worse 0.8443 0.9084 09149 09123 0.9331
Std 0.0117 0.0030 0.0067 0.0053 0.0021
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