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Abstract

High-altitude platforms (HAPs) are quasi-stationary aerial wireless communications platforms meant to be located in
the stratosphere, to provide wireless communications and broadband services. They have the ability to fly on demand
to temporarily or permanently serve regions with unavailable infrastructure. In this paper, we consider the
development of an efficient method for resource allocation and controlling user admissions to multicast groups in a
HAP system. Power, frequency, space and time domains are considered in the problem. The combination of these
many aspects of the problem in multicasting over an OFDMA HAP system were not, to the best of our knowledge,
addressed before. Due to the strong dependence of the total number of users that could join different multicast
groups on the possible ways we may allocate resources to the different multicast groups, it is important to consider a
joint user to multicast group assignments and radio resource management across the groups. From the service
provider’s point of view, it would be in its best interest to be able to admit as many users as possible, while satisfying
their quality of service requirements.
The problem turns out to be a mixed integer non-convex non-linear program for which branch and bound solution
framework is guaranteed to solve the problem. Branch and bound (BnB) can be also used to obtain sub-optimal
solutions with desired quality. Even though branch and bound is guaranteed to find the optimal solution, the
computational cost could be extremely high, which is why we considered different types of enhancements to BnB.
Mainly, we consider reformulations by linearizing a specific set of quadratic constraints in the derived formulation, as
well as the application of different branching techniques to find the one that performs the best. Based on the
conducted numerical experiments, it was concluded that linearization, applied for at least 100 presolving rounds, and
cloud branching achieve the best performance.
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1 Introduction to high-altitude platforms
Delivering high-capacity services over wireless medium
presents challenges, since the spectrum is limited and the
demand for its access is constantly growing. For terrestrial
cellular networks, the solution is to decrease the transmis-
sion range of a base station (BS) and deploy more base
stations which require backhaul interconnections. Clearly,
this is a costly and difficult proposition, especially for
areas with hostile geographical nature. This pressure on
the radio spectrum requires moving higher in frequency
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to K/Ka bands (26–40 Ghz), which are less heavily con-
gested and can provide significant bandwidth. The main
problem with working in K/Ka bands is that line-of-sight
(LOS) or quasi-LOS propagation is needed [1].
The visibility problem can be solved using satellite tech-

nology, which is a well-established alternative to terres-
trial infrastructures that is able to serve wide areas with
a cellular coverage, thus implementing frequency reuse
paradigms. Geostationary Earth orbit (GEOs) satellites
are located at about 36 thousand kilometers away from
the earth’s surface. Due to the large distance from the
earth’s surface, GEOs have huge antenna footprints that
can cover entire continents providing services to millions
of users. However, being far away from the earth’s sur-
face also has major drawbacks, mainly due to the very
critical free-space path loss and large propagation delays.
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The solution to these problems require large antennas
and sophisticated architectures and protocols at the cus-
tomer receivers. Furthermore, technological constraints
for on-board antennas prevent the possibility of optimiz-
ing the cell dimension on the ground, thus potentially
lowering frequency reuse efficiency and, consequently,
overall capacity. Another type of satellites is the Low Earth
Orbit (LEO) satellites which overcomes many of the draw-
backs specific to GEO satellites as they are much nearer
to the earth’s surface (200–1600 km). However, a single
LEO satellite based system would not be suitable for real-
time transmission since the satellite is frequently out of
visibility. In such a system, only store and forward tech-
niques could be used. If continuous coverage is required,
then an entire constellation of LEO satellites must be used.
Obviously this is too costly, and necessitates that efficient
handover schemes be used among the satellites.
A potential solution for these problems that has been

adopted is carrying communications relay payloads and
operating in a quasi-stationary position in the strato-
sphere layer of the atmosphere. LOS propagation paths
can be provided to most users, with modest free space
path loss and propagation delays, thus enabling services
that take advantage of the best features of both wireless
terrestrial and satellite communications. The platforms
that carry these payloads were called high-altitude plat-
forms (HAPs) [2].
HAPs are quasi-stationary aerial platforms that are

meant to be located at a height of 17–22 km above
earth’s surface in the stratosphere layer. Many of their pros
are a combination of those in both, terrestrial wireless
and satellite communication systems. Some of those pros
are [3]:

• Their ability to fly on demand to temporarily or
permanently serve regions with unavailable
telecommunications infrastructure.

• A single HAP has a large area coverage that can go up
to 150 km compared to a single terrestrial cellular
base station (BS) whose maximum radius, for macro
cells, is in the range of 20–30 km.

• Low propagation delays compared to satellites which
implies better perceived quality of service (QoS) by
the users for real-time applications like voice and
video.

• Stronger received signal strengths as compared to
satellites and hence user terminals need not be bulky.

• Deployment time is low since one platform and
ground support are sufficient to start the service.

• Much less ground-based infrastructure compared to
terrestrial cellular networks.

For the same allocated bandwidth in a specified area, ter-
restrial systems require a large number of base stations.
On the other hand, GEO satellites have cell size limitations

due to large footprints on the earth’s surface and non-
geostationary satellites face handover problems and the
need to deploy the entire constellation , thus requiring
high launching costs to place them in orbits. In this case,
HAPs seem to be an attractive choice.

2 Recent works in HAPs
Among the recent works in the area of HAPs, is the
work done by Sudheesh et al. in [4]. In their paper, they
show how spatial multiplexing could be performed to
boost the spectral efficiency. They state that in a sin-
gle HAP system with multiple antennas on-board, spatial
multiplexing cannot typically be achieved due to high cor-
relation between paths. Therefore, they proposed the use
of multiple spatially separated HAPs to perform precise
beamforming. Due to the high altitudes and imperfect
stabilization, it is challenging to acquire accurate chan-
nel state information (CSI), that is necessary for precise
beamforming. For this, the authors realize an interfer-
ence alignment technique based on a multiple antenna
tethered balloon that could be deployed and used as a
relay between the multiple HAPs and the ground stations.
In particular, a multiple-input multiple-output X network
was considered in [4], and the capacity for that network
was obtained in close form. The authors showed that a
maximum sum-rate was obtained.
In [5], Xu et al. proposed a geometry basedHAP channel

model that considers the statistical and geometry prop-
erties of terrestrial environments comprehensively for the
purpose of efficient deployment of HAPs. Based on their
proposed channel model, they also derived the LOS trans-
mission probability of air-to-ground communication and
performed the analysis for the path loss. They also pro-
posed an algorithm thatmaximizes the efficiency, in terms
of the ratio of the radius of HAP footprint to inter-HAP
distance. In [6], Dong et al. treated HAPs as mobile base
stations and considered amethod for their placement with
guarantees on QoS and user demands in a constellation
of multiple interconnected HAPs. They established QoS
metrics by considering the information isolation, integrity,
rate and availability. The user demand has been modeled
by considering the broadband size, the population distri-
bution density, and scale factor of the HAP network users.
Based on the network coverage model, they gave out the
design vector of HAPs layout optimization, i.e., number
of HAPs, downlink antenna area, power of payload, lon-
gitude of HAP and latitude of HAP. Moreover, in [6] a
nonlinear, nonconvex, and non-continuous combinatorial
optimization model was proposed. This was solved by an
improved artificial immune algorithm.
In [7], Zhang et al. considered UAV-enabled mobile

relaying. They studied a system in which a UAV is
deployed to assist in the information transmission from
a ground source to a ground destination with their direct
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link blocked. In their paper, they study two problems,
spectrum efficiency and energy efficiency maximization
for that system and revealed their trade-off with the UAV’s
propulsion energy taken into account. The type of motion
that they considered is circular, and the type of relaying
is a decode and forward in a time-division duplex mode.
They derived the optimal solutions for both problems and
showed that energy efficiency maximization requires a
larger circular trajectory radius than spectral efficiency
maximization. Their numerical results showed perfor-
mance gain for mobile relay in circular trajectory over
static relaying with a fixed relay.
In [8], the design of an active electronically steerable

antenna array (AESA) enabling broadband line-of-sight
communication from HAPs was investigated. The array is
constructed using amultitude of single chipmulti-channel
beamforming modules capable of switched bi-directional
amplitude and phase conditioning at Ka-band enabling
sharing of aperture between transmitting and receiving
functions. In [9], the authors describe the development
and test of an electrically steerable phased array antenna
for implementation in multilayer circuit board architec-
ture. The arrays were designed for use in HAPs demon-
strations to support RF links to mechanically steered user
terminals. They achieved measured performance results
for K-band 256 element receive arrays.
A very recent survey [10] on airborne communications

(ACNs) provides a perspective on general procedures of
designing ACNs, including HAPs. The paper surveyed
primary mechanisms and protocols for the design of
ACNs concerning low altitude platforms, high-altitude
platforms and integrated ACNs. It discussed specific char-
acteristics such as highly dynamic network topologies,
high network heterogeneity, weakly connected communi-
cation links, complex radio frequency (RF) propagation
model, and platform constraints (e.g., size, weight and
power) in ACNs. The authors of the paper emphasized
that these three areas are building blocks for the architec-
ture of ACNs. This architecture fastens together with a
broad range of technologies from control, networking and
transmissions.

3 Radio resource allocation and admission
control for multicasting in HAPs (Methods)

There are many aspects involved in wireless communication
networks that have an impact on performance [11–13].
Just like any wireless network, one of these crucial issues
is that a HAP needs to manage its radio resources as
efficiently as possible in order to gain the maximum
desired benefit. This benefit could be the system data
capacity, number of users that could be served in the sys-
tem, throughput fairness among the system’s users, packet
losses etc. One of the aspects that radio resource alloca-
tion (RRA) has a direct impact on is the admission of users

in the system. Simply, the availability of resources deter-
mines how many users can be admitted, or served in the
system. The radio resources that need to be managed for a
HAP havingmultiple antennas using orthogonal frequency
division multiple access (OFDMA) are the following:

1. The radio power
2. The frequency subchannels
3. The time slots over the subchannels
4. The antennas (antenna selection)

Choosing which users to admit into the system affects
the total number admitted. This is because the users have
different channel conditions due to their different posi-
tions and also due to the random nature of the radio
channel. For example, if a user is in a location where the
received signal quality is poor, and it is to be admitted
into the system, it would need considerable radio power to
compensate for the channel attenuation. This could lead
to little remaining power that is insufficient to admit other
users. If that user would have not been admitted, the HAP
might have been able to serve a larger number of users
with good channel conditions. This is a simple example
considering power only. It grows much more complex
when subchannels, time slots and antenna selections are
to be allocated too.
Multicasting is the transmission of the same informa-

tion to a group of users instead of transmitting the same
information to each user individually (unicasting). This
type of transmission saves a lot of radio resources as com-
pared to unicasting, and is therefore, usually the method
used to transmit same information to a group of users in
any network. We can have more than one multicasting
session in a HAP system and each user may want to join
more than one session at the same time. Each multicast
session transmits its data on the same set of subchannels,
time slots, and antennas with the same power level for all
users in the multicast group. RRA is needed for admission
control (AC) of multicast sessions so that efficient admis-
sion decisions are made for users wishing to join different
multicasting groups.
Since aeronautically reliable platforms and their flight

regulations are still in the development phase, the amount
of published research for telecommunication services over
HAPs, particularly RRA and AC, is limited compared
to other wireless systems, let alone RRA and AC for
multicasting in specific. Moreover, most of the big re-
search projects for HAP like SHARP, Skynet, StratSat,
HALO,CAPANINA, Helinet, and HAPCOS [14–19] star-
ted their activities between 2000-2006, a time in which
the most popular wireless interface in wireless telecom-
munications research was code division multiple access
(CDMA) based Universal Mobile Telecommunications
System (UMTS). Therefore, most of the published
research in RRA and AC was for CDMA based HAPs.
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Orthogonal Frequency Division Multiplexing (OFDM) is
one of the possible techniques to be used for transmis-
sion between the HAP and the users due to its well
known capabilities in mitigating wireless channel impair-
ments that result from high mobility and high transmis-
sion speeds [20]. Hence, the multiple access scheme that
is expected to be used in HAPs is OFDMA. Therefore,
we believe that more research in HAPs should be done
considering this type of interface.

3.1 Differences between rRA in HAP systems and
terrestrial cellular systems

RRA over a multicellular HAP system differs from con-
ventional terrestrial cellular systems mainly due to an
inherent graceful high centralization in the HAP. In the
downlink, there is one common source of RF power for
all the cells of a given HAP, while for a group of con-
tiguous cells of a terrestrial cellular system, each cell has
a separate BS each with independent RF power source.
The same is true for the spectrum, where for the HAP
the entire spectrum is shared among the HAP’s cells while
in conventional terrestrial cellular systems every cell uses
a portion of the spectrum, depending on the frequency
reuse pattern, to minimize inter-cell interference.
Also, a single HAP has the ability to have global knowl-

edge of the channel gains of the users in all its cells at all
subchannels. This is possible since all users in the HAP
service area acquire CSI with just one transmitting entity,
which is the HAP. On the other hand for terrestrial cellular
systems, CSI is acquired by the users in each cell with that
cell’s BS only. Therefore, for global CSI to be achieved at
all BSs, a broadcast transmission for each BS’s CSI over its
backhaul links would be required. This is a lot of overhead
signaling that would burden the network and is hence not
usually performed, leading to suboptimality in multicellu-
lar RRA of terrestrial cellular systems. Furthermore, the
time needed to exchange information until global CSI is
achieved for a given region of a terrestrial cellular system
is not guaranteed to facilitate dynamic multicellular RRA
at a frame by frame basis before the CSI information at
each terrestrial BS change.
A HAP can thus use the global CSI information it has

about all users, and the fact that it has one common
power and spectrum source, to centrally perform more
flexible radio allocations at the HAP with full awareness
of the inter-cell interference levels instantaneously on a
dynamic frame by frame basis. Conventional terrestrial
cellular systems either would perform RRA locally at a
single cell level, or if multicellular RRA is desired a dis-
tributed approach with heavy exchange of CSI would be
needed.
Finally, the beams of the antennas co-located on the

HAP interfere with each other, as illustrated in Fig. 1
for a single HAP system. The interference to a user in

a particular cell is due to the reception of unwanted
transmissions at boresight angles greater than angles that
subtend the neighbor cell footprints through the main-
lobes and side lobes of their antennas [21]. The collocation
of the antennas allows the HAP to centrally perform
electronic cell resizing by controlling the antenna beam-
widths and pointing angles in an RRA problem, depending
on the user distribution and/or density in a given cell, to
dynamically control co-cell interference. This is not read-
ily possible in conventional terrestrial cellular systems.

3.2 Motivations for the proposed aC-RRA scheme
This paper studies and proposes a novel admission con-
trol and radio resource allocation scheme for a single
HAP system with antennas on-board. Derivations for the
mathematical formulations are done and suitable problem
specific and structure oriented solution methodologies
are used. The problem considered in this paper is joint
AC-RRA for an OFDMA based HAP system with mul-
tiple multicasting sessions of heterogenous priorities at
each user, in the downlink. The users have heteroge-
neous priorities from the service provider point of view.
The QoS requirements of the admitted users and their
associated multicast groups’ requirements must be met,
or they should not be admitted in the first place. The
QoS requirements considered in this paper are the signal-
to-interference-noise-ratio (SINR) of a multicast session
for each user and the session’s minimum and maximum
data capacity constraints for all the multicast groups. In
our earlier works in [22–24], we considered maximizing
the spectrum utilization by serving the largest number
of users on all the available frequency-time slots. In the
extended problem in this paper, we consider maximizing
the number of highest priority users admissions, to their
most favored sessions each.
We briefly highlight the differences between the sys-

tem model we had in our earlier works [22–24] and an
extended one that we consider in this paper. From now on,
we will be referring to the system model in [22–24] as the
primary problem (P-Prob), in which:
1. The concept of “cells” was adopted where each user

falling within the foot print of antenna beam is
associated with that antenna only. Hence, a user can
only receive from one antenna at most and any
possible antenna beam overlaps are not exploited.

2. A user can request, and hence can only receive
sessions being transmitted in the cell in which the
user resides.

3. All users assumed the same level of priority to the
service provider, and all the sessions a given user
requested were all of equal importance.

4. The spectrum utilization, i.e., the number of users
each frequency-time slot can serve, was the objective
to be maximized.
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Fig. 1 Interference in a single HAP system

The extended problem (E-Prob), which this paper
focuses on, considers the following:

1. More flexibility by allowing transmission of a
multicast session to the users in a group on more
than one antenna simultaneously given an acceptable
level of SINR is met for all users in the group.

2. A user can request, and hence receive, sessions being
transmitted in any overlapped adjacent cell of the
HAP service area, hence exploiting the possible
antenna beam overlaps.

3. Each user is assumed to have heterogeneous priority
levels for different multicast sessions. Also from the
service provider’s point of view, the user priorities
could be heterogeneous.

4. The objective is to maximize the total number of
admitted users with highest priorities, each to the
sessions of highest priority to the user.

P-Prob was the first part of our research work that was
published in [22–24]. Since that problem was very rich
and considered many different aspects that were not con-
sidered together, by other researchers in previous works
for HAPs (to the best of our knowledge), we decide to go
deeper in the same problem after including the extensions
mentioned above to see if we could achieve an improve-
ment. Since there could be many ways to formulate the
same problem, we preferred to try to find a formulation
that could be solved more efficiently than the one we
obtained for P-Prob in [24]. We were successful in obtain-
ing a much smaller formulation which we believe is an
important achievement as any algorithm’s computational
effort is always function in the formulated problem size,
for the same problem class.

Formulating the problem usingmuch smaller number of
variables and constraints is an important step to reduce
the computational effort and memory requirements by
the HAP computing hardware on-board. Figure 2 shows
all the different aspects that contribute to the compu-
tational effort and memory requirements of solving an
optimization problem for multicasting joint AC-RRA.
As we show in the figure in a general sense, the key
factors of a formulation are the problem’s type (e.g.,
linear, integer, mixed integer liner), and the presence
of any special structure (e.g., knapsack, transportation,
quadratic, convex), the most suitable algorithm (e.g.,
dynamic programming, Dijktra’s algorithm, feasible direc-
tions method, branch and bound) in terms computational
efficiency can be determined. Also, as Fig. 2 shows, any
algorithm’s complexity is function in the problem size
fed to it, and the relative numbers of different types
of variables and constraints. When we have integer and
continuous variables, the impact of integer variables on
the computational effort is much stronger as compared
to the continuous variables. The same saying goes for
nonlinear constraints versus linear constraints. Therefore,
since our earlier formulation for P-Prob in [22–24] has
a huge number of binary variables and non-linear con-
straints, the huge reduction in their numbers that we
achieve in this paper for E-Prob would have crucial impact
on the computational complexity encountered in solving
the problem.
Since we are able to greatly reduce the problem size,

we are able to extend the system model (to E-Prob) while
still having a far much smaller formulation than that we
obtained and solved for in P-Prob in [24]. Hence the
aspect that we consider in comparing the two system
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Fig. 2 Illustration of all the factors that contribute to the computational effort and memory requirements in solving an AC-RRA optimization problem

models, P-Prob and E-Prob, is the formulation size for
each. This explained in Section 7.
Other than our earlier works in [22–24], we have not

seen similar models in the HAP literature, probably due to
their high complexity, which was the reason we decided
to take a step in the direction of combining the following
into one problem in this paper:

1. Power allocation to multicast groups
2. Subchannel allocation
3. Time scheduling
4. Multiple antenna selection
5. User to multicast group assignments
6. Heterogeneous user priorities
7. Reusing spectrum

3.3 Scope and contribution of the paper
For the derived efficient formulation for E-Prob in this
paper, a branch and bound framework is proposed in
which we use linear outer approximation by McCormick
underestimators as a relaxation for the formulated mixed
binary quadratically constrained program [25] and mixed
integer linear programming techniques. Different branch-
ing schemes for the branch and bound scheme are used
and their performances are evaluated by numerical exper-
iments [26]. Also, a reformulation technique that lin-
earizes a certain type of quadratic constraints in the
formulation is used and computational experiments are

conducted to evaluate the performance with and without
the reformulation linearization scheme. Domain propa-
gation methods, separating cuts and heuristics are also
used in the BnB framework for solving the formulation of
E-Prob [27], but are not be discussed in this paper. For
those, we refer the reader to the first author’s thesis [28].
The parameters used for performance comparison in

computational experiments are the following:

1. The duality gap
2. The number of branch and bound (BnB) nodes

needed
3. The number of iterations needed
4. The average number of iterations per BnB node
5. The number of instances for which a feasible solution

is found
6. The time needed to find the first feasible solution
7. The value of the objective function

4 Multicasting in a single HAP system: an efficient
formulation and an extended problem

4.1 Systemmodel
In this section, the extended system model (E-Prob), for
AC-RRA for multicasting over an OFDMA based HAP
system is provided. A simple standalone HAP architec-
ture [3] is considered for this paper. A user is allowed to
request and receive and admitted to receive sessions, that
are not only being transmitted within the cell it resides in,
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but also those being transmitted in neighboring cells, if the
signal-to-interference-ratio is acceptable. This means that
after the admission is done, a user can belong to multicast
groups in different cells across the service area.
The main difference between E-Prob and P-Prob is that

we no longer adopt the concept of user association to
“cells” as in terrestrial cellular systems. Instead, a multi-
cast group could actually receive transmission on more
than one antenna on different frequency-time slots simul-
taneously. P-Prob did not allow that since it adopted the
concept of cells where a user can receive only from the
antenna that illuminates the cell in which the user resides.
In P-Prob, a group of users that receive the samemulticast
session in different cells were considered to be separate
groups while in E-Prob, all users receiving the same mul-
ticast session are considered in the same group regardless
of the antennas they are receiving on. The second dif-
ference is that P-Prob considered that a user can only
receive multicast sessions being transmitted in the cell it
resides. If a user would like to receive a session that is
being transmitted in another cell but is not currently being
transmitted in the cell it belongs to, they would not be
able to. In E-Prob however, a user can receive a multi-
cast session being transmitted in a neighboring cell, if it is
not being transmitted in the cell in which the user resides
in. This is possible as indicates in Fig. 1, if the two trans-
missions on antennas i and j are performed on separate
sets of frequency-time slots. The possibility increases for
users near the cell boundaries, especially antennas foot-
prints do not have deterministic contours outside which
the received power is zero and hence the received powers
from each could be overlapping in certain areas as Fig. 3
shows. Finally, E-Prob considers different multicast ses-
sion priorities for user-to-session admissions, where each

user could have different priority levels for the service
provider, and each session has different levels of prior-
ity for different users. We aim at maximizing the number
of highest priority user-to-session admissions, instead of
giving all the users homogeneous priority levels as in
P-Prob.
The set of users that get admitted to receive a mul-

ticast session m are considered a multicast group with
the same index of the session, m. The HAP has multiple
antennas over which the multicast streams are transmit-
ted to the service area. A user can request to receive more
than one session and hence may be admitted to (allowed
to receive) one or more of the requested sessions. This
means that after the admission is done, a user can belong
to more than one multicast group. Any two multicast ses-
sions may not be transmitted on the same resource trio
combination (i, c, t) to avoid inseparable signal interfer-
ence, where i is the antenna index, c is the subchannel
index and t is the time slot index. For a frequency-time
slot (c, t) to be assigned to a particular user to receive ses-
sion m on antenna i, it has to satisfy a minimum SINR
threshold γ th

m,i to guarantee an acceptable bit-error-rate
performance. γ th

m,i could be different across the sessions
and antennas depending on the possibly different modu-
lation and channel coding schemes. The main notations
used for mathematically formulating the problem, are
provided in Table 1.
Figure 4 shows the power pm,i,c,t for session m being

assigned to the trio (i, c, t). The antenna, frequency
and time resources are represented graphically by three
dimensions where the antenna dimension is not neces-
sarily orthogonal to the frequency-time plane due to the
possibility of antenna foot print overlaps. Orthogonal-
ity here means the absence of interference between any
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Fig. 3 Illustration of the HAP antenna beam overlaps
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Table 1 Notation definitions for E-Prob formulation

Notation Definition

M Is the number of multicast sessions in the HAP service area.

S Is the number of HAP antennas onboard.

K Number of users in the service area.

C Is the number of available subchannels.

T Total number of time slots available over OFDMA frame.

�B Is the subchannel bandwidth.

�T Is one time slot duration.

F Is the OFDMA frame duration.

σ 2 Is the additive white Gaussian noise power per subchannel.

pm,i,c,t Is the value of the HAP power assigned for multicast
sessionm on antenna i in the frequency-time slot (c, t).

gi,k,c,t Channel gain between antenna i and user k on
frequency-time slot (c, t).

λm,k Is a binary constant that indicates whether user k requests
to join sessionm.

φm,k Is a binary variable that indicates whether a user k gets
assigned to receive multicast sessionm.

ρm,k Is a positive integer constant that represents priority for
user k on sessionm.

θm Is a binary variable that indicates whether sessionm
receives any resources, or equivalently, whether any user
gets assigned to receive the session’s transmission.

ym,i,c,t Is a binary variable that indicates whether the trio
combination (i, c, t) is assigned for sessionm.

M̂ Is a very large arbitrary number.

γ th
m,i Is the SINR value that satisfies a desired target BER for

sessionm on antenna i. Different sessions transmitted on
different antennas may be modulated and coded
differently thus requiring different SINR thresholds.

pair of trios (i, c, t) represented by the small cubes in the
figure. HAP power is allocated to each of the trio cubes
for the different multicast sessions being transmitted to
the service area. The “cubes" are assigned to the different
multicast groups and the users in the HAP service area are
assigned to these groups according to their priority value
ρm,k , quality of service (QoS) requirements and availability
of resources.
For E-Prob, there are two definitions associated with a

group’s data capacity. The minimum capacity of the group
is defined as:

R̂min
m =

S∑

i=1

C∑

c=1

T∑

t=1
rmin
m,i,c,t , (1)

where rmin
m,i,c,t is the capacity of session m over the trio

(i, c, t) for the user with the minimum SINR on (i, c, t) and
is given as:

rmin
m,i,c,t = �B�T

F
log

(
1 + min

k
xm,i,k,c,t

)
, (2)

where �B is the subchannel bandwidth, �T is the time
slot duration, F is the OFDMA frame length duration and
xm,i,k,c,t either:

• Takes the value of the SINR of the user k on the trio
combination (i, c, t) if the user gets to receive session
m,

• Takes a very large number M̂ (theoretically infinity) if
user k does not get to receive session m but some
other users do, or

• Zero if no users in the service area are assigned to
receive session m.

hence xm,i,k,c,t can be expressed as

xm,i,k,c,t =
pm,i,c,t

[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

. (3)

where gi,k,c,t is the channel gain on each antenna-
frequency-time trio combination (i, c, t) for user k, M̂ is
an arbitrarily large number whose value is considered as
infinity, and φm,k is a binary variable indicating user-to-
session admission for user k.
The channel gains gi,k,c,t depend upon the instantaneous

values of large scale fading and small scale fading. In a
HAP system, large scale fading is a result of free space path
loss and attenuation due to rain and clouds [29]. Small
scale fading is acceptably modeled as Ricean fading due to
the presence of line of sight rays from the HAP to most
of the locations in the HAP service area [1]. The channel
gain gi,k,c,t between base station (antenna) i and user k on
the frequency-time slot (c, t) can hence be given as:

gi,k,c,t =
(

Člight

4πdkfc

)2

.GH
(

i,k

)
.Gu

k .
1

A (dk)
.ϕk,c,t (4)

where

• GH
(

i,k

)
is the gain seen at an angle 
i,k between

user terminal k and antenna i boresight axis and is
defined by [21]

GH
(

i,k

) = Apeff · cos (
i,k
)n 32log2

2
(
2arccos

(
n√0.5

))2

(5)

where Apeff is the antenna’s efficiency, n is the rate of
roll-off for the raised cosine function.

• dk is the distance between the HAP and user terminal
k, Člight is the speed of light and fc is the carrier
frequency.

• A (dk) is the attenuation due to clouds and rain. This
depends on the distance between the HAP and each
user k in the service area.

• Gu
k the antenna’s gain of user terminal k.
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Fig. 4 Illustration of the multicasting AC-RRA in E-Prob

• ϕk,c,t is the Ricean small scale gain in frequency-time
slot (c, t) for user terminal k.

We also define the maximum capacity of a multicast
group as:

R̂max
m =

S∑

i=1

C∑

c=1

T∑

t=1
rmax
m,i,c,t , (6)

where rmax
m,i,c,t is the data capacity of session m over the

trio combination (i, c, t) which is defined to be the data
capacity of the user with maximum SINR on (i, c, t) and is
given as:

rmax
m,i,c,t = �B�T

F
log

(
1 + max

k
tm,i,k,c,t

)
, (7)

where tm,i,k,c,t either:

• Takes the value of the SINR of user k on the trio
combination (i, c, t) if the user gets to receive session
m, or

• Is zero if user k does not get to receive session m.

hence tm,i,k,c,t can be expressed as:

tm,i,k,c,t = gi,k,c,tpm,i,c,tφm,k∑M
m=1

∑
∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

. (8)

4.2 Key differences in the fundamental equations that
describe e-Prob and p-Prob

In our earlier work in [24], since the spatial dimension was
not considered (i.e., multiple antenna reception in areas of
overlaps were not considered), the data rate for amulticast
groupm was defined as:

R̂m =
C∑

c=1

T∑

t=1
rmin
m,i,c,t (9)

which did not sum the data rates on the different antennas
as Eqs. (1) and (6) do for E-Prob. This ruled out the pos-
sible advantage that users in a group in cell i can receive
a session being transmitted on one antenna illuminating
a neighboring cell, but not being transmitted in the one it
resides. It also prohibited a multicast group of users from
exploiting the inherent spatial diversity provided by the
multiple collocated onboard antennas, where a resource
unit is the trio antenna-frequency-time (i, c, t) allowing a
group to receive from more than one antenna simultane-
ously provided SINR is above an acceptable threshold for
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all the group’s users. In E-Prob, even if the group of users
were to receive a session on only one antenna, the sys-
tem has the flexibility to select which antenna to receive
on, as long as more than one antenna stream the session.
This was not permitted by the formulation (O) of P-prob
in [24], that was based on equation (9). Constraint set C2
of formulation (O) in [24] was given by:

zm,i,k,c,t, = zm,i,k,c′,t′ , ∀c, t : xm,i,c,t = 1,
∀c′, t′ : xm,i,c′,t′ = 1,∀m, i, k

(10)

where:

• Nm,i is the group of multicast users residing in cell i
receiving session m and can only receive
transmission from antenna i,

• zm,i,k,c,t is the set of binary decision variables that
indicated whether a user k got admitted to receive
transmission m from the antenna covering cell i on a
frequency-time slot (c, t),

• xm,i,c,t was a binary decision variable that indicated
whether a frequency-time slot (c, t) got assigned for
the group Nm,i.

This constraint ensured that the users assigned to
receive sessionm in cell i over a set of frequency time slots
should be the same in each of those assigned slots, since
in multicasting, the same set of resources are shared by
the set of users in the multicast group. The constraint at
the same time enforced the set of users receiving session
m in cell i, to receive it from the antenna of that cell only,
and treated groups receiving the same session in another
cell i′ as a different group Nm,i′ . Another constraint set
in formulation (O) in [24] that did not take into account
antenna selection and possible reception from more than
one antenna simultaneously, is constraint set C1 given by:

zm,i,k,c,t =
{ {0, 1} if λm,i,k = 1,
0 otherwise, ∀m, i, k, c, t

where λm,i,k was a binary constant that indicated whether
user k resided in cell i and sent a request to receive ses-
sion m. Since P-prob considered no cell overlaps, a user
could only physically reside in one cell and hence λm,i,k
was equal to 1 for exactly one i. This also prevented the
user from receiving transmission from any other antenna
except the one for which λm,i,k = 1, if the user got
admitted.
Note that Eq. (9) was used to impose upper and lower

data rate constraints on sessionm in cell i as

Rmin
m ≤

C∑

c=1

T∑

t=1
rmin
m,i,c,t ≤Rmax

m ∀k : zm,i,k,c,t �= 0,∀m, i (11)

which used the data rate rmin
m,i,c,t to define the data rate of

session m in cell i over the frequency-time slot (c, t) as
that of the user with the poorest SINR. For the lower data
rate constraint, this guarantees that all users in the group
receive a data rate greater than the minimum. The defini-
tion of a multicast group data rate in Eq. (9) was also used
to enforce a maximum rate Rmax

m constraint. However, it
was noticed that the upper data rate constraint may not be
necessarily satisfied for all users in a multicast group on a
particular frequency-time slot if we use the data rate of the
user with the poorest SINR in the group to solely describe
the group’s data rate. This was the reason we introduced
rmax
m,i,c,t and R̂max

m in Eqs. (7) and (6).
In P-Prob, the objective function was given in [24]:

max
M∑

m=1

S∑

i=1

K∑

k=1

C∑

c=1

T∑

t=1
zm,i,k,c,t (12)

captured the sum of the users for every multicast group
Nm,i served by each frequency-time slot (c, t) which we
define to be the spectral utilization. The objective func-
tion for P-prob did not consider user-session priorities.
However, for E-Prob, the next section provides the objec-
tive function and interprets it, showing the difference in
the objectives, showing that user-session priorities were
considered E-Prob.

4.3 Formulation of E-Prob
This section illustrates a very efficient formulation for the
extended problem. We achieve a more efficient formula-
tion than we would have had we just directly extended our
earlier formulation in [24]. The number of variables and
functional constraints in the new formulation are greatly
reduced which we believe to be a good achievement, espe-
cially that this was achieved for an extended model. Using
the newly defined variables φm,k , θm and ym,i,c,t , the E-Prob
problem’s formulation takes into account:

• The same QoS, resource and multicast transmission
requirements as in the P-Prob,

• As well as the differences in the extended system
model explained earlier in Section 4.1.

The key thing that enabled us to obtain a smaller for-
mulation, is replacing the variable zm,i,k,c,t in formulation
(OP1) in [24] with the two variables φm,k and ym,i,c,t . The
formulation is given below, and an interpretation for each
constraint set is provided right after:

max
φm,k ,θm,ym,i,c,t ,pm,i,c,t

M∑

m=1

K∑

k=1
ρm,kφm,k (HAPEff )
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s.t.

C1 : φm,k ≤ λm,k , ∀ m, k

C2 :
M∑

m=1
ym,i,c,t ≤ 1, ∀i, c, t

C3 :
S∑

i=1

C∑

c=1

T∑

t=1
ym,i,c,t ≥ φm,k , ∀m, k

C4 : ym,i,c,t ≤
K∑

k=1
φm,k , ∀ m, i, c, t

C5 : PTotalPF ym,i,c,t ≥ pm,i,c,t , ∀m, i, c, t

C6 :
M∑

m=1

S∑

i=1

C∑

i=1
pm,i,c,t ≤ PTotalPF , ∀t

C7 : pm,i,c,t ≥ 0, ∀ m, i, c, t

C8 :
gi,k,c,tpm,i,c,t + (

1 − φm,k
)
M̂

∑M
m=1

∑S
i=1 gi′,k,c,tpm,i′,c,t + σ 2

≥ ym,i,c,tγ
th
m,i, ∀m, i, k, c, t

C9 :
S∑

i=1

C∑

c=1

T∑

t=1
ym,i,c,t ≤ SCTθm, ∀ m

C10 :
S∑

i=1

C∑

c=1

T∑

t=1
ym,i,c,t ≥ θm, ∀ m

C11 : θmRmin
m ≤

C∑

c=1

T∑

t=1

S∑

s=1

�B�T
F

log
(
1 + min

k
xm,i,k,c,t

)
, ∀m

C12 :
C∑

c=1

T∑

t=1

S∑

s=1

�B�T
F

log
(
1 + max

k
tm,i,k,c,t

)
≤ Rmax

m , ∀m

The formulation that we have at hand at this point is
a The interpretation of the objective function and con-
straints inHAPEff is as follows:

• The objective function represents a weighted sum of
all admissions of different users over all sessions. The
larger weights force user-to-session admissions of
highest priorities as long as the QoS SINR and group
data capacity requirements can be satisfied. This is
different from the objective function in [22–24] which
sums all the users, assuming homogeneous priorities,
in all the frequency-time slots across all HAP cells.

• C1 ensures that if user k does not request to receive
session m (i.e., λm,k = 0) then the user can never be
assigned to receive it (i.e., φm,k is set to zero). This
constraint set is somehow similar to constraint set D1
of formulation (OP1) in [24] (P-Prob), yet consists of
M.K constraints versusM.S.K .C.T in D1 of
formulation (OP1) in [24]. The functional difference
is that D1 for P-Prob ensures that the user can be
admitted to receive session m when:

– User k is in cell i, and
– Session m is being transmitted in cell i.

In E-Prob, we do not have these two restrictions.
• C2 ensures that a given trio combination (i, c, t) can

at most be assigned to one multicast group (session).
This is equivalent to constraint set D5 of formulation
(OP1) in [24], yet consists of a much smaller number
of constraints as shown in Section 7.

• C3 ensures that user k can be assigned to multicast
group m only when the session gets assigned at least
one resource trio combination (i, c, t). This
constraint set, besides C4, are both required
inHAPEff to connect the two sets of variables φm,k
and ym,i,c,t . These were not required in formulation
(OP1) in [24] since φm,k and ym,i,c,t were captured
both in a single variable, zm,i,k,c,t .

• C4 ensures that if no users are assigned to session m,
then no resource trios (i, c, t) should be allocated to
the group.

• C5 ensures that if the trio combination (i, c, t) is not
assigned for session m then the power level assigned
for group m on (i, c, t) should be forced to zero. This
is equivalent to constraint set D10 in formulation
(OP1) in [24]. However, each constraint in C5
ofHAPEff has only two variables compared to K + 1
variables in each constraint of D10 in formulation
(OP1) in [24].

• C6 ensures that the total power at a given time slot
assigned for all multicast groups on all
antenna-frequency (i, c) pairs, must be limited to the
total available HAP power. This is exactly the same
constraint as D9 in formulation (OP1) in [24].

• C7 ensures that the power values pm,i,c,t are all
non-negative. This is exactly the same as D11 in
formulation (OP1) in [24].

• C8 is a constraint set that enforces the SINR for user
k receiving session m to be greater than a threshold
value γ th

m,i to admit the user to group m. There are
three possibilities for this for each of the constraints
in the set, which are explained as follows:

1. If the trio combination (i, c, t) is not assigned to
session m (i.e., ym,i,c,t = 0), constraint C5 forces
the power variable pm,i,c,t to be zero. This makes
the left hand side (L.H.S) in constraint (C8) either
equal to the very large number M̂, or equal to zero,
depending on the value of φm,k . Both cases satisfy
the inequality rendering the constraint redundant.

2. If the trio (i, c, t) is assigned to session m (i.e.,
ym,i,c,t = 1), but user k is not assigned to receive
m (i.e., φm,k = 0), the power variable pm,i,c,t could
take any non-zero value. In this case, the term in
the numerator of the R.H.S becomes greater than
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or equal to the very large number M̂ making the
constraint redundant.

3. For ym,i,c,t = 1, if user k is to get admitted for
session m, then φm,k = 1. In this case, the term on
the L.H.S of the constraint equivalent to the SINR
for session m to user k since the numerator
becomes the product of the power variable pm,i,c,t
times the gain of the user on the trio combination
(i, c, t) . The R.H.S. also becomes equal to the
acceptable threshold value,γ th

m,i, for session m on
antenna i. In this case the SINR constraint over
the trio combination (i, c, t) comes into effect for
user k and session m.

Constraint set C8 inHAPEff is functionally
equivalent to D3 in formulation (OP1) in [24].

• C9 and C10 together ensure that only if there are any
resources being assigned for session m, then this
must set the variable θm = 1, otherwise θm = 0 is
enforced. This is needed for the minimum data
capacity constraint C12. Constraint sets C9 and C10
have no equivalent constraint sets in formulation
(OP1) in [24].

• C11 ensures the minimum capacity Rmin
m of a

multicast session is satisfied. We use the definition of
the minimum capacity of a multicast group given in
Eq. (1). There are four possibilities for xm,i,k,c,t
(defined by Eq. 3) which are explained as follows:

1. ym,i,c,t = 0 and φm,k = 0. In this case, constraints
C5 will force the power variable pm,i,c,t to be zero
which results in, xm,i,k,c,t = 0 andmin

k
xm,i,k,c,t = 0

giving a capacity of zero on the trio combination
(i, c, t).

2. ym,i,c,t = 0 and φm,k = 1. This would have exactly
the same result as the first case, a capacity of zero
on that trio combination (i, c, t) for the same
reasons.

3. ym,i,c,t = 1 and φm,k = 0. In this case
xm,i,k,c,t = ∞ theoretically, which ensures that for
that particular user, its SINR value is never
returned by the termmin

k
xm,i,k,c,t . There are

definitely other users who have φm,k = 1,
according to constraint C4, from which the least
SINR on (i, c, t) is returned bymin

k
xm,i,k,c,t .

4. ym,i,c,t = 1 and φm,k = 1 in this case
xm,i,k,c,t = pm,i,c,tgi,k,c,t∑M

m=1
∑

∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t+σ 2 which is the

SINR of the user k and session m over the trio
combination (i, c, t). Therefore,min

k
xm,i,k,c,t

would return the minimum SINRs of all users in
group m over (i, c, t).

The variable θm ensures that the constraint is not in
effect in the case that no resources are allocated at all

for session m, i.e., θm = 0. This constraint set extends
the lower bound constraint set for C4 in formulation
(O) in [24] by summing the data capacity of session
m over all the HAP antennas. It is worth noting that
for P-Prob, constraint set D2 in formulation (OP1) in
[24] enforced all users to receive multicast sessions
from only one antenna, which is the antenna that
covers the cell they reside in.

• C12 ensures that the maximum capacity of the group
or session m, defined by Eq. (6), is satisfied. The
possibilities for tm,i,k,c,t , defined by Eq. (8), are
explained as follows:
1. For the case ym,i,c,t = 0, no matter what the value

of φm,k is, the power variable pm,i,c,t is forced to
zero by constraint C5, therefore we get
tm,i,k,c,t = 0 ∀ k, andmax

k
tm,i,k,c,t = 0.

2. For the case ym,i,c,t = 1, and user k is not assigned
to group m, i.e., φm,k = 0. In this case, tm,i,k,c,t
returns zero but the termmax

k
tm,i,k,c,t returns the

highest SINR, over (i, c, t), among all users
assigned to session/group m. We are sure that if
ym,i,c,t = 1 then there is at least one user who has
φm,k = 1 according to constraint set C5.

3. For the case ym,i,c,t = 1 and user k assigned to the
group m, i.e., φm,k = 1,
tm,i,k,c,t = pm,i,c,tgi,k,c,t∑M

m=1
∑

∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t+σ 2 and the term

max
k

tm,i,k,c,t returns the highest SINR over (i, c, t)
among all users assigned to session/group m.

Constraint set C12 inHAPEff is different from their
equivalent upper bound data capacity constraint set
C4 in formulation (O) in [24] in two aspects. The first
aspect is that C12 inHAPEff utilizes the newly
introduced concept of maximum multicast group
data capacity mentioned earlier in this paper and
given by Eqs. 6 and 7. In this way, it is guaranteed that
no user in any multicast group can have a data
capacity greater than Rmax

m . Constraint set C4 in
formulation (O) in [24] on the other hand uses the
data capacity of the user with the poorest channel
conditions to define the group’s data capacity, and it
is that data capacity that is enforced to be no more
than Rmax

m . This could lead to users with good
channel and interference conditions in a group
receiving a capacity greater than Rmax

m , which
constraint set C12 inHAPEff makes sure does not
happen. The second difference is that since E-Prob
allows the users in a group m to receive the multicast
transmission on more than one antenna
simultaneously, then the maximum data capacity of
the group is obtained by summing all the group’s data
capacities over all the antennas. This was not
considered in formulation (O) in [24].
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It is worth mentioning that the SINR constraint set
C8 in HAPEff ensures that for a given multicast session
m, no more than one antenna can be used to transmit
the session over the same frequency-time slot (c, t). This
is possible since in the L.H.S. of the constraint set, the
interference terms in the denominator include received
copies of the same desired session m from the other
antennas of the HAP from which the user is not meant
to receive in the frequency-time slot (c, t). The entire
constraint set C8 guarantees that if the SINR require-
ment is satisfied by receiving a session on one antenna
in slot (c, t), then this could not be possible simulta-
neously over any other antenna for slot (c, t) given the
assumption γ th

m,i ≥ 1.
As we can see, the problem formulation labeledHAPEff

is a mixed integer nonlinear program (MINLP), a class of
problems which is known to be NP-hard ([30], Chapter 1).
The integer variables that we have are all binary in nature,
i.e., can only take values of either 0 or 1. Constraint set C8
has a special structure of being a mixed binary quadratic
constraint set that consists only of bilinear terms. Con-
straint sets C11 and C12 are non linear mixed binary
constraints with min and max terms respectively that
complicate them further. In Section 5 reformulation tech-
niques are used to eliminate the min-max terms and
replace those constraints with multivariate polynomial
constraints. Then we show how the polynomial con-
straints are reduced to multivariate quadratic constraints
that consist only of bilinear terms in Section 6.

4.4 A cross-layer management for the optimization
problem parameters

The formulated optimization problem (HAPEff ) is a
cross-layer optimization problem. That is, in the HAP sys-
tem, these parameters are not managed in one layer. In
this section, we outline themanagement of the parameters
of the optimization problem (HAPEff ).
In an evolved packet system (EPS) core, data packets are

transported using bearers and tunnels [31]. A default EPS
bearer for a user equipment is set up during the attach
procedure. Each bearer is associated with a QoS that
describes information such as the bearer’s data rate, error
rate and delay. Considering that the HAP operates over
an LTE system, an important QoS parameter is the QoS
class identifier (QCI), which is an 8-bit parameter that
defines four other quantities. QCI priority and the tar-
get packet-error-rate are among the four quantities ([31],
Chapter 13). The priority parameter determines the val-
ues of the constants ρm,k in (HAPEff ) which are passed to
the proposed cross-layer solution procedure in Section 8.
The target packet error rate parameter would correspond
to an SINR threshold that must be met, hence the tar-
get packet error rate parameter determines the value of
γ th
m in (HAPEff ). Another QoS parameter specified in

LTE is guaranteed bit rate (GBR) which determines Rmin
m .

A GBR bearer is also associated with the maximum bit
rate (MBR) which is the highest bit rate that the bearer
can ever receiver. The parameter MBR hence provides the
value of Rmax

m to the proposed cross layer optimization
problem.
The channel state information from the physical layer

would be the channel gain values gi,k,c,t on different anten-
nas and frequency-time slots for a user k which will be an
input to the cross-layer optimization procedure. The sets
of subchannels assigned to the HAP and the total avail-
able power PTotalPF of the platform are also passed by the
physical layer as an input to the cross-layer optimization
procedure. The power allocation, subchannel allocation
and antenna selection resulting from the solution scheme
would be passed to the physical layer. The results of the
chosen time slots will be passed to the scheduler in the
MAC sublayer. The result of user to group admissions will
be passed to the network layer. Figure 5 illustrates input
parameters and outputs passed to the different layers for
the cross layer optimization problem (HAPEff ).

5 Reducing the formulationHAPEff to amixed
binary polynomial constrained problem

In this section we show how the constraint sets C11 and
C12 in HAPEff are replaced by mixed binary polyno-
mial constraints (MBPCs), some of which are quadratic.
For constraint set C11 in HAPEff , the constraint can be
rewritten in the form:

log

⎡

⎣
S∏

i=1

C∏

c=1

T∏

t=1

⎛

⎝1 + min
k

pm,i,c,t
[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

⎞

⎠

⎤

⎦

≥ θmRmin
m F

�B�T
, ∀ m.

(13)

Taking exponential of 2 for both sides of the constraint,
we get:

S∏

i=1

C∏

c=1

T∏

t=1

⎛

⎝1 + min
k

pm,i,c,t
[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

⎞

⎠

≥ 2
θmRminm F

�B�T , ∀ m.

(14)

The right hand side of the constraint can be rewritten to
give the constraint:

S∏

i=1

C∏

c=1

T∏

t=1

⎛

⎝1 + min
k

pm,i,c,t
[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

⎞

⎠

≥ R̂min
m θm + (1 − θm) , ∀ m,

(15)
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Fig. 5 Illustration of the inputs and outputs for the cross-layer optimization problem

where R̂min
m = 2

Rminm F
�B�T . Then we introduce the auxiliary

variables wm,i,c,t for the terms
⎛

⎝1 + min
k

pm,i,c,t
[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

⎞

⎠ ,

which give the following set of equations:

wm,i,c,t = min
k

⎛

⎝
pm,i,c,t

[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

⎞

⎠

+ 1, ∀ m, i, c, t.

(16)

and the following inequality set becomes valid:

pm,i,c,t
[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

≥ wm,i,c,t − 1, ∀ m, i, k, c, t.

(17)

Therefore constraint set C11 can be replaced by:
S∏

i=1

C∏

c=1

T∏

t=1
wm,i,c,t ≥ R̂min

m θm + (1 − θm) , ∀ m, (18)

and

pm,i,c,t
[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

≥ wm,i,c,t − 1, ∀ m, i, k, c, t. (19)

where wm,i,c,t ≥ 1.

For C12, the constraint set can be rewritten in the form:

log
[ S∏

i=1

C∏

c=1

T∏

t=1

(
1 + max

k

gi,k,c,tpm,i,c,tφm,k∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

)]

≤ Rmax
m F

�B�T
, ∀ m,

(20)

taking the exponent of 2 for both sides we get:
S∏

i=1

C∏

c=1

T∏

t=1

(
1 + max

k

gi,k,c,tpm,i,c,tφm,k∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

)

≤ R̂max
m , ∀ m,

(21)

where R̂max
m = 2

Rmaxm F
�B�T . Then we introduce the auxiliary

variables um,i,c,t for the terms
(
1 + max

k

gi,k,c,tpm,i,c,tφm,k∑M
m=1

∑
∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

)
,

which gives the following set of inequalities:

um,i,c,t = 1 + max
k

(
gi,k,c,tpm,i,c,tφm,k∑M

m=1
∑

∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

)
, ∀ m, i, c, t,

(22)

and the following inequality set becomes valid:
gi,k,c,tpm,i,c,tφm,k∑M

m=1
∑

∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2
≤ um,i,c,t − 1, ∀ m, i, k, c, t. (23)
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Therefore the constraint C12 can be replaced by:

S∏

i=1

C∏

c=1

T∏

t=1
um,i,c,t ≤ R̂max

m , ∀ m, (24)

and

gi,k,c,tpm,i,c,tφm,k∑M
m=1

∑
∀i′ �=i gi′ ,k,c,tpm,i′ ,c,t + σ 2

≤ um,i,c,t − 1, ∀ m, i, k, c, t.

(25)

where um,i,c,t ≥ 1. The new constraints given by (18),
(19), (24) and (25) are all polynomials where the ones
given by (19) and (25) are second degree polynomial
(quadratic). Therefore replacing constraint sets C11 and
C12 in HAPEff with (18), (19), (24) and (25) gives a
mixed binary polynomial constraint program (MBPCP).
Section 6 shows how this is further reduced to a mixed
binary quadratically constrained program (MBQCP).

6 Reduction of the formulation tomixed binary
quadratic constraints

Any MBPCP optimization problem maybe reduced to
a MBQCP by the introduction of auxiliary variables
and constraints to reduce all polynomial degrees to 2.
For example a cubic polynomial term x1x2x3 could be
modeled as x1X23 with X23 = x2x3. Using this sim-
ple reformulation technique, the polynomial constraints
obtained in the previous section, can be converted to
mixed binary quadratic constraints by replacing (18) by
the following:

wm,(1)Wm,1 ≥ R̂min
m θm + (1 − θm) , ∀ m, (26a)

Wm,j = wm,(j+1)Wm,j+1, ∀j = 1, 2, ..., n − 3, ∀ m,
(26b)

Wm,(n−2) = wm,(n−1)wm,(n), ∀ m, (26c)

where n = S.C.T and j = (i − 1) .C.T + (c − 1) .T + t for
the set of variablesWm,j while forwm,(j), j ≡ (i, c, t). Equal-
ity constraints can be replaced by inequality constraints
to give:

wm,(1)Wm,1 ≥ R̂min
m θm + (1 − θm) , ∀ m, (27a)

Wm,j ≤ wm,(j+1)Wm,j+1, ∀j = 1, 2, ..., n − 3, ∀ m,
(27b)

Wm,j ≥ wm,(j+1)Wm,j+1, ∀j = 1, 2, ..., n − 3, ∀ m,
(28a)

Wm,n−2 ≤ wm,(n−1)wm,(n), ∀ m, (28b)
Wm,n−2 ≥ wm,(n−1)wm,(n), ∀ m, (28c)

These sets replace the set of M constraints in (18) with
3M + 2M. (S.C.T − 3) quadratic constraints and adds
M × (S.C.T − 2) new variables Wm,j. Similarly the con-
straint set in (24) can be replaced by:

um,(1)Um,1 ≤ R̂max
m ∀ m, (29a)

Um,j ≤ um,(j+1)Um,j+1 ∀j = 1, 2, ..., n − 3, ∀ m, (29b)

Um,j ≥ um,(j+1)Um,j+1 ∀j = 1, 2, ..., n − 3, ∀ m, (30a)

Um,n−2 ≤ um,(n−1)um,(n) ∀ m, (30b)
Um,n−2 ≥ um,(n−1)um,(n) ∀ m. (30c)

Again, this replaces the M constraints in (24) with
3M+2M. (S.C.T − 3) quadratic constraints and addsM×
(S.C.T − 2) new variables Um,j.
The optimization problem is now an MBQCP given by:

max
φm,k ,θm,ym,i,c,t ,um,i,c,t ,Um,j ,wm,i,c,t ,Wm,j ,pm,i,c,t

M∑

m=1

K∑

k=1
ρm,kφm,k

s.t.

C1 : φm,k ≤ λm,k , ∀ m, k

C2 :
M∑

m=1
ym,i,c,t ≤ 1, ∀i, c, t

C3 :
S∑

i=1

C∑

c=1

T∑

t=1
ym,i,c,t ≥ φm,k , ∀m, k

C4 : ym,i,c,t ≤
K∑

k=1
φm,k , ∀ m, i, c, t

C5 : PTotalPF ym,i,c,t ≥ pm,i,c,t , ∀m, i, c, t

C6 :
M∑

m=1

S∑

i=1

C∑

c=1
pm,i,c,t ≤ PTotalPF , ∀t

C7 : pm,i,c,t ≥ 0, ∀ m, i, c, t

C8 :
gi,k,c,tpm,i,c,t + (

1 − φm,k
)
M̂

∑M
m=1

∑S
i=1 gi′,k,c,tpm,i′,c,t + σ 2

≥ ym,i,c,tγ
th
m,i, ∀m, i, k, c, t

C9 :
S∑

i=1

C∑

c=1

T∑

t=1
ym,i,c,t ≤ SCTθm, ∀ m

C10 :
S∑

i=1

C∑

c=1

T∑

t=1
ym,i,c,t ≥ θm, ∀ m

Q1a : wm,(1)Wm,1 ≥ R̂min
m θm + (1 − θm) , ∀ m

Q1b : Wm,j ≤ wm,(j+1)Wm,j+1 ∀j = 1, 2, ..., n − 3, ∀ m

Q1c : Wm,j ≥ wm,(j+1)Wm,j+1 ∀j = 1, 2, ..., n − 3, ∀ m
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Q1d : Wm,n−2 ≤ wm,(n−1)wm,(n), ∀ m
Q1e : Wm,n−2 ≥ wm,(n−1)wm,(n), ∀ m

Q2 :
pm,i,c,t

[
gi,k,c,t + (

1 − φm,k
)
M̂
]

∑M
m=1

∑
∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

≥ wm,i,c,t − 1,

∀ m, i, k, c, t
Q3a : um,(1)Um,1 ≤ R̂max

m , ∀ m
Q3b : Um,j ≤ um,(j+1)Um,j+1 ∀j = 1, 2, ..., n − 3, ∀ m
Q3c : Um,j ≥ um,(j+1)Um,j+1 ∀j = 1, 2, ..., n − 3, ∀ m
Q3d : Um,n−2 ≤ um,(n−1)um,(n) ∀ m
Q3e : Um,n−2 ≥ um,(n−1)um,(n) ∀ m

Q4 :
gi,k,c,tpm,i,c,tφm,k∑M

m=1
∑

∀i′ �=i gi′,k,c,tpm,i′,c,t + σ 2

≤ um,i,c,t − 1 ∀ m, i, k, c, t
φm,k , θm, ym,i,c,t ∈ {0, 1} ∀ m, i, k, c, t
0 ≤ pm,i,c,t ≤ PTotPF , 1 ≤ wm,i,c,t ≤ R̂max

m ,
1 ≤ Wm,j ≤ R̂max

m 1 ≤ um,i,c,t ≤ R̂max
m ,

0 ≤ Um,j ≤ R̂max
m , ∀ m, i, c, t.

7 Comparison of the formulation sizes with the
aid of a numerical example

In this section we illustrate the differences in the sizes of
the formulations (OP1) in [24] and HAPEff

MBQCP. We pro-
vide P-Prob’s formulation (OP1) here for reference and
comparison:

max
zm,i,k,c,t ,pm,i,c,t

M∑

m=1

S∑

i=1

K∑

k=1

C∑

c=1

T∑

t=1
zm,i,k,c,t (OP1)

s.t.

D1 : zm,i,k,c,t ≤ λm,i,k , ∀m, i, k, c, t
D2 : zm,i,k,c,t + zm,i,k′,c′,t′ ≤ 1 + zm,i,k,c′,t′ , ∀m, i;

∀k, k′ : k �= k′; ∀c, c′ : c �= c′; ∀t, t′ : t �= t′

D3 : zm,i,k,c,t ≥ Am − �
gi,k,c,tpm,i,c,t∑M

m=1
∑

∀i′∈S
i′ �=i

gi′ ,k,c,tpm,i′ ,c,t+σ 2 − �
,

∀m, i, k, c, t

D4 : zm,i,k,c,t ≤
Bm

(
∑M

m=1
∑

∀i′∈S
i′ �=i

gi′,k,c,tpm,i′,c,t + σ 2

)

gi,k,c,tpm,i,c,t
,

∀m, i, k, c, t
D5 : zm′,i,k′,c,t ≤ 1 − zm,i,k,c,t , ∀m, k : m′ �= m, k′ �= k;

∀i, c, t (31)

D6 :
C∑

c=1

T∑

t=1
zm,i,k,c,t ≥ zm,i,k,c,tymin

m , ∀m, i, k, c, t

D7 :
C∑

c=1

T∑

t=1
zm,i,k,c,t ≤ ymax

m , ∀m, i, k

D8 : zm,i,k,c,t ∈ {0, 1} , ∀m, i, k, c, t

D9 :
M∑

m=1

S∑

i=1

C∑

c=1
pm,i,c,t ≤ PtotalPF , ∀t

D10 : pm,i,c,t ≤ PtotalPF

k=K∑

k=1
zm,i,k,c,t , ∀m, i, c, t

D11 : pm,i,c,t ≥ 0, ∀m, i, c, t.

For the interpretation of the constraints we refer the
reader to, [22–24]. Considering (OP1) in [24] first, we see
that the number of variables are as follows:

• The number of binary variables, zm,i,k,c,t , is the
product MSKCT

• The number of continuous variables, pm,i,c,t , is MSCT
• Hence, giving a total number of variables

VNOP1 = MSKCT + MSCT . (32)

The number of constraints (excluding bounds and
binary constraints) in each constraint set for (OP1) in [24]
are as follows:

• Constraint set D1 comprises MSKCT constraints
• Constraint set D2 comprises

MSKCT [CT − 1] [K − 1] constraints
• Constraint set D3 comprises MSKCT constraints
• Constraint set D4 comprises MSKCT constraints,
• Constraint set D5 comprises

MSKCT [M − 1] [K − 1] constraints
• Constraint set D6 comprises MSKCT constraints
• Constraint set D7 comprises MSK constraints
• Constraint set D9 comprises T constraints
• Constraint set D10 comprises MSCT constraints

which all add up to

CNOP1 = MSKCT [CT − 1] [K − 1]
+ MSKCT [M − 1] [K − 1]
+ 4MSKCT + MSK + MSCT + T .

(33)

For the formulationHAPEff
MBQCP, we have the following

numbers of variables:

• The numbers of binary variables φm,k , θm, ym,i,c,t are
the MK, M and MSCT respectively giving a total
number of binary variablesMK + M + MSCT .

• The number of continuous variables:

– pm,i,c,t are MSCT,
– um,i,c,t are MSCT,
– wm,i,c,t are MSCT
– Um,j areM [SCT − 2], and
– Wm,j areM [SCT − 2].
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all adding up to 3MSCT + 2M [SCT − 2] continuous
variables.

The number of binary and continuous variables add up to:

VNHAPEff
MBQCP

= 4MSCT + 2M [SCT − 2]+MK +M.

(34)

The number of constraints (excluding bounds and
binary constraints) in each constraint set forHAPEff

MBQCP
are as follows:

• Constraint set C1 consists of MK constraints
• Constraint set C2 consists of SCT constraints
• Constraint set C3 consists of MK constraints
• Constraint set C4 consists of MSCT constraints
• Constraint set C5 consists of MSCT constraints
• Constraint set C6 consists of T constraints
• Constraint set C8 consists of MSKCT constraints
• Constraint set C9 consists of M constraints
• Constraint set C10 consists of M constraints
• Constraint set Q1a consists of M constraints
• Constraint set Q1b consists ofM [SCT − 3]

constraints
• Constraint set Q1c consists ofM [SCT − 3]

constraints
• Constraint set Q1d consists of M constraints
• Constraint set Q1e consists of M constraints
• Constraint set Q2 consists of MSKCT constraints
• Constraint set Q3a consists of M constraints
• Constraint set Q3b consists ofM [SCT − 3]

constraints
• Constraint set Q3c consists ofM [SCT − 3]

constraints
• Constraint set Q3d consists of M constraints
• Constraint set Q3e consists of M constraints
• Constraint set Q4 consists of MSKCT constraints

which all add up to

CNHAPEff
MBQCP

= 2MK + SCT + 2MSCT + T + 8M

+ 4M [SCT − 3] + 3MSKCT .
(35)

Finally, both the formulations (OP1) in [24] and
HAPEff

MBQCP consist of bilinear terms. By counting the
bilinear terms in (OP1) in [24] obtained from constraints
sets D3 and D4 we get:

NBiL
HAPLagrange

2
= M2S2KCT + MSKCT . (36)

Also, by counting the bilinear terms in con-
straint sets C8,Q1a,Q2,Q1b,Q1c,Q1d,Q1e,Q3a,
Q3b,Q3c,Q3d,Q3e, and Q4 we get:

NBiL
HAPEff

MBQCP
= M2S (S − 1)KCT

+ 2MSKCT [1 + M (S − 1)]
+ 4M [SCT − 3] + 6M.

(37)

We graphically illustrate a comparison of efficiency
for the two formulations (OP1) in [24] and HAPEff

MBQCP
in Figs. 6, 7, 8, 9 and 10. In these figures we com-
pare the number of binary variables, continuous vari-
ables, total number of variables, number of constraints
and number of bilinear terms for both formulations.
We refer to the indices m, i, k, c and t as the prob-
lem “dimensions". Therefore there are five dimensions for
the problem in both formulations which are the num-
ber of multicast sessions, the number of HAP antennas
on-board, the number of users in the service area, the
number of sub-channels and the number of time slots
respectively. We vary the dimensions of the problem as
follows:

• The number of multicast sessions M is varied in the
range 1 − 250.

• the number of antennas on-board S is varied in the
range 1 − 20.

• the number of users K in the service area is varied in
the range 1 − 500.

• the number of available sub-channels C is varied in
the range 1 − 32.

• the number of available sub-channels T is varied in
the range 1 − 24.

Figures 6, 7, 8, 9 and 10 are comprised of five plots
each in which one dimension is varied within its ranges
mentioned above and the others are kept fixed at val-
ues equal to their maximums in their respective ranges.
The results in Fig. 6 show that the number of binary vari-
ables for HAPEff

MBQCP is way lower than those in (OP1)
in [24]. On the other hand in Fig. 7, the number of con-
tinuous variablesHAPEff

MBQCP are almost 4 times those of
(OP1) in [24] for the worst case. However by looking at
both Figs. 6 and 7, we can see that the number of con-
tinuous variables in both formulations are much lower
than the binary variables which makes the total num-
ber of variables in Fig. 8 almost equivalent to the total
number of binary variables. Moreover, it is well known
that when there are both binary variables and continu-
ous variables in a problem, the binary variables are the
main cause of algorithmic complexity involved in solv-
ing the problem. Therefore, comparing the numbers of
continuous and binary variables in both formulations, we
see that HAPEff

MBQCP has a much lower complexity com-
pared to (OP1) in [24].
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Fig. 6 Illustration of the number of binary variables versus the different problem dimensions for (OP1) in [24] (old formulation) andHAPEff
MBQCP

(new formulation)
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Fig. 7 Illustration of the number of continuous variables versus the different problem dimensions for (OP1) in [24] (old formulation) and
HAPEff

MBQCP (new formulation)
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Fig. 8 Illustration of the total number of variables versus the different problem dimensions for (OP1) in [24] (old formulation) andHAPEff
MBQCP (new

formulation)
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Fig. 9 Illustration of the total number of constraints versus the different problem dimensions for (OP1) in [24] (old formulation) andHAPEff
MBQCP

(new formulation)
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Fig. 10 Illustration of the total number of bilinear terms versus the different problem dimensions for (OP1) in [24] (old formulation) and
HAPEff

MBQCP (new formulation)

Taking a look at the number of total constraints in
Fig. 9, we see that the number of constraints in formu-
lation HAPEff

MBQCP is far lower than (OP1) in [24]. This
comes at the cost of up to three times larger number of
bilinear terms, in the worst case, for HAPEff

MBQCP in all
dimensions as Fig. 10 shows. Notice the similar behav-
iors for both HAPEff

MBQCP and (OP1) in [24] in Fig. 10
for each dimension. For the dimensions of the number of
multicast sessions, m, and the number of HAP antenna
onboard, i, the number of bilinear for both formulations
grow quadratically. For the other three dimensions, the
growth is linear.

8 Proposed solutionmethod: branching schemes
and a presolving linearization-based
reformulation

This section explains how formulation HAPEff
MBQCP is

solved. An approach similar to those in [32] and [27] is
used in which, an outer approximation is generated by
linear underestimation of the non-convex quadratic con-
straints to relax the problem’s feasible region. The prob-
lem becomes a mixed binary linear program (MBLP) and
hence an LP solver can be used in a branch and cut algo-
rithm to solveHAPEff

MBQCP.The branch-and-bound (BnB)
algorithm recursively splits the problem into smaller sub-
problems, thereby creating a branching tree and implicitly

enumerating all potential solutions. At each subprob-
lem, domain propagation is performed to exclude fur-
ther values from the variables’ domains, and a relaxation
may be solved to achieve an upper (dual) bound. The
relaxation is then strengthened by adding further valid
constraints, which cut off the optimum of the relax-
ation. Primal heuristics are integrated in the BnB pro-
cedure to improve the lower (primal) bound. The solver
used for the experiments is Solving Constraint Integer
Programs (SCIP) which is capable of solving a non-convex
mixed integer quadratically constraint program (MIQCP)
to optimality in finite time [33]. The interdependencies
between the algorithmic components of SCIP solver are
shown in Fig. 11. An explanation for the components
used in the experiments done for HAPEff

MBQCP are pro-
vided in this section and Section 8. The components are
the following:

• Presolving
• Branching
• Separating cuts
• Domain propagation
• Primal heuristics

The two components considered in this section are the
green colored boxes in Fig. 11, which are presolving and
branching.
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Fig. 11 Flowchart illustrating the interrelation between the SCIP solver components used for solving the HAP multicasting AC-RRA problem

8.1 Presolving reformulation linearization for a particular
quadratic constraint setHAPEff

MBQCP
Presolving is a set of operations invoked before the
branch-and-bound algorithm to transform the problem
instance to an easier instance to solve. In this section, for
the presolving phase for HAPEff

MBQCP, we consider one of
the reformulations in [32] which is a linear reformulation
for bilinear terms that are a product of a binary variable ẍ
with a linear term, i.e., ẍ

∑k
j=1 aiÿ. This type of reformula-

tion is applicable to the constraint set C8 in HAPEff
MBQCP

where the terms that consist of the product of binary vari-
ables and linear terms are ym,i,c,t

∑M
m=1

∑S
i=1 gi′,k,c,tpm,i′,c,t .

The product is replaced by the auxiliary variable z and the
linear constraints:

p̃Lym,i,c,t ≤ z ≤ p̃Uym,i,c,t , (38a)

M∑

m=1

∑

∀i′ �=i
gi′ ,k,c,tpm,i,c,t − p̃L

(
1 − ym,i,c,t

) ≤ z ≤
M∑

m=1

∑

∀i′ �=i
gi′ ,k,c,tpm,i,c,t

− p̃U
(
1 − ym,i,c,t

)
,

(38b)

where

p̃L =
M∑

m=1

∑

∀i′ �=i
gi′,k,c,t p̃Lm,i,c,t , (39a)

p̃U =
M∑

m=1

∑

∀i′ �=i
gi′,k,c,t p̃Um,i,c,t , (39b)

given the local bounds p̃Lm,i,c,t and p̃Um,i,c,t . This reformu-
lation linearizes the constraint set C8 at the expense

of introducing one continuous variable for each con-
straint in the set, and four linear constraints for each
quadratic constraint in C8. In Section 8.4, the algorithmic
performance criteria, with and without, the presolving
linearization reformulation explained in this section, for
different number of presolving rounds, are presented.
After the presolving phase, the BnB algorithm is

invoked. Any reference for HAPEff
MBQCP in the rest of

this section refers to the instance after going through the
presolving phase.

8.2 Branch and bound-based solution framework
The branch and bound scheme is a general framework
used in solving non-convex problems, which include
MBLPs and MBQLPs, to divide it into smaller problems
that can be solved (conquered) and hence is a divide and
conquer algorithm [34]. The best local solution across all
the subproblems, which are referred to as nodes, is the
global solution of the entire problem. Branching is basi-
cally the splitting of a subproblem into two or more nodes.
Since the discrete variables that we have in HAPEff

MBQCP
are binary by nature, binary branching is the only choice,
i.e., no more than two children nodes for any node in the
tree. The root node is the whole problem HAPEff

MBQCP
before division while the rest of the nodes are smaller sub-
problems that have either been solved or still need to be
solved.
The bounding step avoids complete enumeration of

potential solutions of the problem. The better the dual
c̈dual and primal c̈primal bounds are, the more effective
the bounding process in excluding subproblems from
solving. The dual bound is found by solving the relax-
ation Qrelax of a node subproblem Q. The relaxation
Qrelax for HAPEff

MBQCP is obtained by replacing all the
bilinear terms individually by McCormick linear under-
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estimators [32], and by relaxing all the binary variables
into the continuous domain [0,1]. Algorithm 1 illustrates
the main procedures of a BnB framework. To simplify
the notation in the rest of our discussion, and wherever
specific reference to certain variables in our formulation
HAPEff

MBQCP is not required, all the decision variables
in HAPEff

MBQCP are represented by the decision vector ẍ.
Furthermore, an arbitrary decision variable is referred to
as ẍj, where j ∈ Ñ for any variable and if the variable is
binary then additionally j ∈ B, where Ñ is the set of all
decision variables and B is the set of all binary decision
variables inHAPEff

MBQCP.
The input to the algorithm is a presolved instance

of HAPEff
MBQCP which resembles the root node. If the

instance is feasible then the output of the algorithm is

the global optimal solution ẍ
HAPEff

MBQCP
opt and the corre-

sponding objective function value c̈
HAPEff

MBQCP
opt , otherwise

the algorithm concludes that the instance is infeasible.
The algorithm is initialized by assigning the root node
HAPEff

MBQCP into the empty node queue L̈. The Abort
procedure is invoked when the node queue is empty to
return the best feasible solution found so far ẍBFS and
its corresponding objective function value c̈primal. If the
node queue still has further unprocessed nodes the Select
procedure is invoked to choose a node Q depending on
a node selection criterion before it gets removed from
the queue. The relaxation of the selected node Qrelax
is solved using the simplex algorithm [35] after apply-
ing McCormick under-estimators to outer-approximate
the non-convex quadratic constraints of HAPEff

MBQCP. If
Qrelax is found infeasible then c̈dual is assigned the smallest
possible value (theoretically −∞) to insure that the node
gets pruned in the Bound. Otherwise ẍrelax becomes the
solution of Qrelax and c̈dual is its corresponding objective
function value.
The Bound procedure is responsible for pruning

branches from the search tree whose descendant nodes
are guaranteed not to include any solutions better than
the currently available best feasible solution (incumbent)
ẍBFS. This is known using the simple comparison between
the obtained c̈dual from the Solve procedure and the objec-
tive function value c̈primal for the incumbent. In a max-
imization problem, like HAPEff

MBQCP, if the dual (upper)
bound is lower than the primal (lower) bound value, this
is an indication that any of the descendants of the node
can never have any better feasible solutions. If the node
gets pruned, the algorithm goes back to the Abort pro-
cedure to check if there are any nodes left in the queue
L̈. If no pruning occurs, the Feasibility Check procedure
is invoked and sets the solution ẍrelax of the relaxed sub-
problem Qrelax as the solution of the Q itself only if the

Algorithm 1: Branch-and-Bound Solution Framework
for solvingHAPEff

MBQCP

1: Input: Maximization of an instance ofHAPEff
MBQCP

2: output : Optimal solution ẍ
HAPEff

MBQCP
opt with objective

function value c̈
HAPEff

MBQCP
opt or conclusion that

HAPEff
MBQCP has no solution by c̈

HAPEff
MBQCP

opt = −∞
Initialize:

3: Q ← HAPEff
MBQCP

4: L̈ = {Q}
5: c̈primal = −∞

Abort:
6: if L̈ = ∅ then

7: ẍ
HAPEff

MBQCP
opt ← ẍBFS

8: c̈
HAPEff

MBQCP
opt ← c̈primal

9: STOP
10: end if

Select:
11: ChooseQ ∈ L̈ and
12: L̈ ← L̈ \ {Q}

Solve:
13: Solve the linear relaxationQrelax after applying

McCormick under-estimators to all bilinear terms
ofHAPEff

MBQCP.
14: ifQrelax = ∅ then
15: c̈dual ← −∞
16: else
17: let ẍrelax be the optimal solution ofQrelax and c̈dual

its objective function value.
18: end if

Bound:
19: if c̈dual ≤ c̈primal then
20: Prune nodeQ
21: goto step (6)
22: end if

Feasibility Check:
23: if ẍrelax is feasible forHAPEff

MBQCP then
24: ẍBFS ← ẍrelax
25: c̈primal ← c̈dual
26: goto step (6)
27: end if

Branch:
28: DivideQ into two subproblemsQ = Q0 ∪ Q1
29: L̈ ← {Q0 ∪ Q1}
30: goto step (6).
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solution ẍrelax is feasible to Q. If ẍrelax is not feasible
to Q, the Branch procedure then gets invoked to divide
node Q into further nodes. This happens by selecting an
appropriate variable to branch on. Since all the discrete
variables in HAPEff

MBQCP are binary, then the branch-
ing is also binary. After branching takes place, the Abort
procedure gets invoked to check whether there are any
unprocessed nodes left in L̈.
The node selection indicated by the Select procedure,

the branching rules indicated by Branch and the relaxation
whose solution is used in the Bound procedure all have
a major impact on how early good feasible solutions can
be found and how fast the dual bounds decreases. They
all influence the Bound procedure which is expected to
prune large parts of the BnB tree. An explanation for dif-
ferent branching rules used in the experiments conducted
onHAPEff

MBQCP is provided in Section 8.3.

8.3 Branching
Branching is the splitting of a node into two or more
nodes by adding new upper and lower bounds on one of
the variables which is called the branching variable. By
reducing a variables domain, the created children nodes
have smaller feasible regions each, which helps reduce the
work required to find feasible solutions better than the
currently available best feasible solution ẍBFS.
One advantage of using LP relaxation within BnB is

in the branching process. Branching changes the created
children subproblems from a parent node Q by intro-
ducing new upper or lower bound to one variable which
preserves the dual feasibility of the solution obtained for
Qrelax. This enables the use of dual simplex using the
parent node solution as a warm up start and hence the
work done in solvingQrelax counts towards solving the re-
laxation of its children, which saves a lot of further com-
putational work.
For HAPEff

MBQCP, the only discrete variables are binary
and hence two nodes only are created by branching on
binary variables. A score sbranchj is calculated for each
variable using the equation [36]:

sbranchj = max
{
q̈0j , ε

}
max

{
q̈1j , ε

}
, (40)

which measures the improvement in the dual bound by
branching on the variable ẍj for j ∈ B where:

• B is the set of binary variables inHAPEff
MBQCP ,

• q̈0j is a function that is directly dependent on and
proportional to the dual bound improvement �̈0

j
over the parent subproblem’s relaxationQrelax by
setting ẍj = 0,

• q̈1j is a function that is directly dependent on and
proportional to the dual bound improvement �̈1

j
over the parent subproblem’s relaxationQrelax by
setting ẍj = 1,

• ε which is a very small positive constant which is
necessary to compare

(
�̈0

j , �̈1
j

)
and

(
�̈0

k , �̈
1
k
)
and is

set by default to ε = 10−6 in SCIP.

There many different ways by which a branching vari-
able can be selected, and of course, they can have
different performances in bound improvement which
are illustrated in the results provided in Section 8.4.
The following branching schemes are considered for
HAPEff

MBQCP [28, 36].

8.3.1 Random branching
As the name indicates, there is nothing done in this
technique except arbitrarily selecting any unfixed binary
variable that violates the binary condition.

8.3.2 Most infeasible branching
This rule chooses the variable with the smallest tendency
to be rounded either downwards or upwards. Hence for
binary variables with fractional values in the solution of
Qrelax, the one that is closest to 0.5 receives the highest
score. The score function for a fractional binary variable
is given as:

sbranchj = min
{
ẍrelaxj , 1 − ẍrelaxj

}
, j ∈ B. (41)

8.3.3 Pseudocost branching
This type of branching keeps a history for the average per-
formance of each variable that has been branched on so
far. This is measured as the average improvement in the
bound for all the times the variable has been branched on.
To obtain the variable scores, first the unit bound change
for ẍj is found using

ς0
j = �̈0

ẍrelaxj
and ς1

j = �̈1
(
1 − ẍrelaxj

) . (42)

Let the aggregate unit bound changes be σ̈ 0
j and σ̈ 1

j over
all nodes for which ẍj was selected for branching and the
numbers of these nodes be η0j and η1j then the pseudocosts
of ẍj are the averages:

�0
j = σ̈ 0

j

η0j
and �1

j = σ̈ 1
j

η1j
. (43)

The score is then given as:
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sbranchj = max
{
ẍjrelax�

0
j , ε

}
.max

{(
1 − ẍjrelax

)
�1

j , ε
}
.

(44)

During the course of Algorithm 1, a variable that has not
yet been selected for branching is termed to be uninitial-
ized, a term that will be used in subsequent subsections.

8.3.4 Strong branching
Strong branching can be summarized as solving the lin-
ear relaxations that result from branching on each binary
branching candidate and choosing the variable that gives
the best bound improvement to branch on. It is hence
expected that to obtain the optimal solution for a prob-
lem instance, the number of nodes required to be explored
is going to be low but the number of simplex LP iter-
ations is going to be too high which consumes a lot of
processing time. The full set of branching candidates Fcand
are all binary variables with fractional values. The entire
set could be used in strong branching or only a subset
F ⊂ Fcand.

8.3.5 Hybrid strong/pseudocost branching
Strong branching and pseudocost branching both have
their advantages and draw backs. For strong branching,
as mentioned in Section 8.3.4, the number of nodes to
be explored before the optimal solution is reached is
expected to be low. However, the time and LP iterations
expended could be too high. On the other hand, pseudo-
cost branching is not expected to expend too many LP
iterations (and hence time) to obtain the optimal solu-
tion, but would require more branching operations to do
so and hence more number of nodes. This is because at
the very beginning of the BnB tree, the pseudocost branch-
ing scheme has no history to use for guiding its choice on
branching. Since the branching decisions near the top of
the BnB tree are the most crucial, the absence of early his-
tory information would lead to more node explorations. If
the optimal solution is not the main objective and obtain-
ing solutions with low duality gap is desired in a given
time, it is expected that strong branching would return a
large duality gap since the rate of improvement is expected
to be slow for the given solution time due to the high
number of LP iterations required. A hybrid branching
technique, that combines both schemes, aims to get the
best of each and reduce as much as possible the cons
each has. It is achieved by implementing strong branch-
ing in the upper part of BnB tree up to a certain depth d.
For nodes that are deeper than d in the tree, pseudocost
branching is applied.

8.3.6 Reliability branching
The branching decision based on pseudocosts either in
pure pseudocost branching or in hybrid strong/pseudocost

branching are based on uninitialized values which neg-
atively affect the selection of branching variables. Relia-
bility branching uses strong branching for variables with
uninitialized pseudocosts (defined in Section 8.3.3), and
hence is more dynamic than hybrid strong/pseudocost
branching which uses strong branching for a fixed depth
in the BnB tree. Furthermore, to use the pseudocosts for
branching, reliability branching requires that the history
for the branching variable be collected for at least ηrel
problems, where ηrel is the reliability parameter. Hence
if min

{
η0j , η1j

}
≤ ηrel the variable ẍj is called unreliable.

Moreover, the work expended in strong branching can
be reduced by using a small subset of branching variable
candidates F ⊂ Fcand as well as performing only a few
simplex iterations for each candidate in F to estimate the
changes in the dual bound. The dual bound is the value
of the objective function ofQrelax. Since the change in the
objective function value is greatest in the first few simplex
iterations compared to later iterations, the estimate for the
dual bound is expected to be close to the actual value.
The ηrel dynamically changes to restrict the number of

strong branching simplex iterations for a given node Q
to [37] :

γ̂max
SB = csbiterquot γ̂LP + γ̂ root

SB + γ̂fixed, (45)

where

• γ̂max
SB is the number of simplex iterations for the

strong branching done inQ
• γ̂LP is the number of regular simplex iterations
• csbiterquot is maximal fraction of strong branching LP

iterations compared to node relaxation LP iterations,
• γ̂fixed is a fixed number that can be pre-set.

If the number of strong branching LP iterations γ̂SB
exceeds γ̂max

SB , then ηrel is set to zero and pseudo-
cost branching is used. If γ̂SB ∈ [

csbiterquot γ̂max
SB , γ̂max

SB
]
,

ηrel decreases from ηmax
rel to ηmin

rel linearly. If γ̂SB <

csbiterquotγLP, then ηrel increases in proportion to the quo-
tient γ̂LP

γ̂max
SB

.

8.3.7 Inference branching
This technique exploits domain propagation of branching
variables. Its main idea is that it selects the variable whose
domain tightening (variable fixation in case of binary
variables) produces the most domain reductions in other
variables. The impact of a variable on domain deduc-
tions is obtained from history information, like pseudocost
branching, that measures the average inferred domain
deductions �̈1

j and �̈0
j given by [36]:
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�̈1
j = φ̈1

j

ν̈1j
and �̈0

j = φ̈0
j

ν̈0j
, (46)

where

• φ̈1
j and φ̈0

j are the total deductions by setting the
binary variable ẍj to 1 or 0 respectively,

• ν̈1j and ν̈0j are the numbers of corresponding
subproblems for which domain propagation has been
applied.

For uninitialized binary variables, clique and implication
tables are used to calculate the inference values [36].

8.3.8 Cloud branching
All branching strategies described above deal with only
one optimal fractional solution for Qrelax. Whereas LP
relaxations are known to be largely degenerate, multi-
ple equivalent optimal solutions are the rule rather than
the exception. Therefore considering only one optimal
solution yields high possibilities of taking arbitrary, or
inefficient branching decisions. Cloud branching exploits
the knowledge of a cloud of multiple alternative optimal
solutions of the given LP relaxation using dual degener-
acy in a mixed integer program [38]. For a given cloud
C = {

ẍ1, ...ẍk
}
of optimal solutions of the LP relaxation,

the initial set of branching variable candidates F (C) con-
tains all the variables that are fractional in at least one
solution of the cloud C. The cloud of solutions is gener-
ated in the context of strong branching which solves the
LPs that would result from branching on all candidates.
The first step in the cloud branching strategy is to gen-

erate a cloud of alternative optimal solutions for the LP
relaxation Qrelax of a node Q. This is done by restricting
search for the basic feasible variables to the optimal hyper-
plane of the polyhedron. To implement this type of search,
the variables of a given optimal solution, whose reduced
costs are non-zero need to be fixed in the search proce-
dure. To move from one basis to another on the optimal
hyperplane, an auxiliary objective function is needed. The
one used in our numerical experiments is a feasibility like
pump objective function that is implemented in the SCIP
solver and was proposed in [38] whose coefficients for the
binary variables j ∈ B are given as:

cj =
{

−1 if 0 < ẍ∗
j < 0.5

1 if 0.5 ≤ ẍ∗
j < 1. (47)

Using iterations of the primal simplex algorithm on the
resulting auxiliary LPQAux, an alternative optimum basis
to the LP relaxation of the BnB node can be obtained that
has the closest hamming distance to the nearest integral
point.

After obtaining a cloud C, the cloud interval for a vari-
able ẍj ∈ F (C) is given by

[
lCj ,uCj

]
, where:

lCj = min
{
ẍij|ẍi ∈ C

}
, (48a)

uCj = max
{
ẍij|ẍi ∈ C

}
. (48b)

Accordingly, the set F (C) is partitioned into three which
are:

F2 =
{
j ∈ F (C) |0 < lCj ∧ uCj < 1

}
, (49a)

F0 =
{
j ∈ F (C) |lCj = 0 ∧ uCj = 1

}
, (49b)

F1 = F (C) \ (F2 ∪ F0) , (49c)

which shows that for binary variables, the only type of dis-
crete variables in HAPEff

MBQCP, F2 contains the fractional
variables of all the solutions in the cloud C.
Branching on the variables in F0 guarantees that the

dual bound in both branching directions will not improve.
Those in F1 are guaranteed not to improve the bound in
only one direction but hopefully will improve in the other
direction. The candidates in F2 are expected to improve
the dual bound in both directions. The cloud purpose is
to filter out as many LPs so that strong branching only
needs to solve a small subset of those. As long as there are
any candidates existing in the set F2, the other two sets
are ignored and only the LPs for the candidates in F2 are
solved.

8.4 Computational experiments, results, and discussions
This section discusses the experiments conducted
for HAPEff

MBQCP and presents the numerical results
obtained for the algorithmic procedures given in
Sections 8.1 and 8.3 to evaluate their performances. Two
different experiment sets are provided in this section.
The first experiment set (Section 8.5) compares the
performance of activating-versus-deactivating the refor-
mulation linearizion technique, at the presolving phase,
for the quadratic constraint set C8 in HAPEff

MBQCP which
was explained in Section 8.1. The second experiment set
(Section 8.6) compares the performance of the different
branching techniques explained in Section 8.3. The per-
formance for each set of experiments is measured using
the following criteria:

1. The duality gap
2. Number of LP iterations expended
3. Number of nodes in the search tree
4. Average number of LP iterations per node
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The experiments were performed in Matlab, for which
the open source optimization toolbox OPTI (version 2.16)
[39] provided the interface with the SCIP 3.2.0 solver [33].
SCIP 3.2.0 is the solver used in all the experiments con-
ducted forHAPEff

MBQCP. The experiments were performed
on a machine with a 6 core 3.5 GHz Intel Xeon proces-
sor. Using the parallel processing toolbox in Matlab, we
were able to conduct different experiments in parallel. For
example, to conduct experiments on different branching
strategies, each CPU core performed the experiment of
a specific branching strategy for the same set of problem
instances in parallel. The generic SCIP solver settings used
in all the experiment sets performed are given in Table 2.
One hundred instances were solved for each experi-

ment. Each instance has a size of 527 variables and 4261
constraints out of which 107 variables are binary and 2844
constraints are quadratic. To obtain the channel gain gi,k,c,t
values, a simulation was conducted using the parame-
ters in Table 3, Eq. (4) in this paper and (13), (14) and
(15) from our earlier work in [24]. The channel consists
of a free space pathloss propagation model, Ricean fad-
ing as suggested in [1], the rain attenuation model in [29],
the HAP aperture antenna model in [21] and parabolic
reflector user antennas. In the simulation, the user posi-
tions change during every iteration according to a uni-
form probability distribution about the HAP footprint
centers. The degree of overlap between antenna foot-
prints is defined as the ratio between the overlap distance
doverlap, illustrated in Fig. 12, and the HAP antenna foot-
print radius rfootprint . Figure 3 in Section 1 illustrates the
overlapped HAP antenna footprints in our experiments.
To evaluate the average performance of all the instances

for each experiment, arithmetic, geometric and shifted
geometric means were used. For the shifted geomet-
ric mean, the shifting parameters values used are the
following:

1. 50, for the dual gap
2. 100, for the number of BnB nodes
3. 1000, for the number of LP iterations

The shifted geometric mean of a sample ω1,ω2, ...,ωk is
given in[36]:

Table 2 Generic SCIP solver settings for all experiment sets
conducted

Parameter Value

Solving time limit 10 min

LP iteration limit per node 105 iterations

BnB node limit 107 nodes

Feasibility tolerance 1−12

Integrality tolerance 1−7

Table 3 Simulation parameters for HAP multicasting
environment

Parameter Value

Number of multicasting sessions (M) 2

Number of antennas on board (S) 7

Number of users in the service area (K ) 10

Number of available subchannels (C) 3

Number of available time slots (T ) 2

HAP height 20 km

Degree of antenna beam footprint overlap 105%

HAP antenna footprint radius (rfootprint) 500 m

HAP antenna side lobe level − 40 dB

SINR threshold
(
γ th
m,i

)
35

Noise power spectral density (No) − 173 dBm/Hz

Maximum capacity requirements
(
Rmax
m

)
20 Mbps

Minimum capacity requirements
(
Rmin
m

)
10 Mbps

Carrier Frequency 2.1 GHz

Total HAP Power
(
PTotalPF

)
1 Watt

OFDMA frame length 20 ms

Total Bandwidth 15 MHz

Rice Factor (dB) 20 dB

Rain Attenuation Factor (χ ) 3 dB/Km

Set of values for the user-over-session priority levels (ρm,k)ρm,k ∈ {1, 2, 3, 4, 5}
The binary constants indicating the admission request

of user k for sessionm (λm,k) λm,k = 1∀ m, k

User antenna diameter
(
DAnt
user

)
0.75 m

ψs =
⎛

⎝
k∏

j=1
max

{
ωj + s, 1

}
⎞

⎠
1/k

− s, (50)

where s is the shifting parameter. For geometric mean,
s = 0. In the comments made on the results in the follow-
ing subsections, we use the shifted geometric means for
comparison except for the average number of LP iterations
per node which uses only arithmetic means.
The duality gap is calculated in all the experiments, in

percentage, using the formula:

� =
∣∣c̈dual − c̈primal

∣∣

min
(|c̈dual| ,

∣∣c̈primal
∣∣) . (51)

8.5 Computational experiments and results:
reformulation linearization at presolving phase

In this sub-section, the experimental procedures and
results for the reformulation linearization technique
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Fig. 12 Two overlapping antenna beam footprints

explained in Section 8.1 are provided. The reformulation
technique is invoked at the presolving phase and hence
the experiments illustrate the performance of activating-
versus-deactivating the linearization for the number of
presolving rounds 1, 5, 25, 50 and 100. The following set-
tings were considered for the reformulation linearization
experiments:

1. Node selection scheme is best first search with a
maximum plunging depth in the BnB tree of 2 [33],

2. Most infeasible branching scheme was used and

3. The only heuristic used was the Undercover
heuristic [40].

In Figs. 13, 14, 15, and 16 the duality gap, the num-
ber of LP iterations, the number of BnB nodes and
the average number of LP iterations per node are illus-
trated for the reformulation linearization experiments.
In those figures, RndNumi:‘.’, indicates the number of
presolving rounds is i for either: “A,” activated refor-
mulation linearization or “D,” deactivated reformulation
linearization.

Fig. 13 Reformulation linearization results: duality gap
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Fig. 14 Reformulation linearization results: number of LP iterations

We can see that for a single presolving round, the dual
gap is almost the same in both “A” and “D.” The number
of BnB nodes is slightly lower by around 11% for “A” com-
pared to “D.” The number of LP iterations and the average
number of LP iterations per node are almost equal for “A”
and “D.”

A small increase in the number of presolving rounds to
5 yields an increase in the dual gap for both cases “A” and
“D” as shown in Fig. 13. However, the dual gap for “D” is
lower than that of “A” by around 30% at the expense of a
much larger number of nodes in comparison to “A” (more
than 2700%). The number of explored nodes is lower for

Fig. 15 Reformulation linearization results: number of BnB nodes
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Fig. 16 Reformulation linearization results: average number of LP iterations per node

both “A” and “D” for five presolving rounds as compared to
one presolving round as Fig. 15 shows. For “A,” it is lower
by around 99% and “D” is lower by 50% . The number of LP
iterations decreases by around 85% for “A” and increases
by 15% for “D” making it higher than “A” by almost 800%.
According to Fig. 16, the number of average LP iterations
expended per node for five presolving rounds is around
2500% higher for “A” compared to “D.” Comparing five
presolving rounds versus one, the average number of LP
iterations per node increased by 5100% for “A” but only by
100% for “D.”
Increasing the number of presolving rounds from 5 to

25 shows that the duality gap reduces for both ‘A’ and
‘D’ by 29% and 31% respectively (almost same reduction),
while “D” still has a lower dual gap by 30% compared to
‘A’. The reduction in dual gap achieved by increasing the
number of presolving rounds from 5 to 25, is accompanied
by a reduction in the number of nodes in “D” by about
31% and a very small increase in the number of nodes in
“A.” For 25 presolving rounds, the number of LP iterations
for “A” is lower than “D” by about 65% but the number
of average LP iterations per node is much higher by
about 2450%.
For presolving rounds 25, 50 and 100, it can be seen in

Fig. 13 that ‘D’ maintains the same duality gap while that
of “A” keeps decreasing. For 100 presolving rounds, we
can see that “A” has a duality gap lower than “D” by 60%.

The number of BnB nodes gradually decreases slightly
for “D” when increasing the presolving rounds in the
range 25, 50, and 100 while that for “A” keeps increasing
such that the number of nodes for 100 rounds increases
by about 900%. However at 100 presolving rounds, the
number of nodes for “A” is lower than “D” by about 70%.
Figure 14 shows that the number of LP iterations for pre-
solving rounds 25, 50, and 100 remains approximately
the same for “D” but increases slightly for “A.” For pre-
solving rounds 5, 25, 50, and 100, it can be seen from
Fig. 16 that the average number of LP iterations per node
decreases enormously versus the number of rounds for
“A” and becomes equivalent to “D” whose average LP iter-
ations per node remains the same for rounds 5, 25, 50,
and 100.
From the results, we can hence conclude that it is ben-

eficial to use the reformulation linearizion technique for
constraint setC8 with a high number of presolving rounds
(around 100).

8.6 Computational experiments and results: branching
schemes

In this section, the experimental procedures and results
for the branching techniques given in Section 8.3 are
provided. Strong Branching is not considered by itself in
the experiments due to its expected high computational
effort and time. However as explained in Section 8.3, it is
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a component of hybrid strong/psedocost, reliability and
cloud branching where its effect will be seen in those
branching schemes. The following settings are considered
for the experiments conducted for the branching
schemes:
1. Separating cuts are deactivated.
2. Node selection scheme is best first search with a

maximum plunging depth in the BnB tree of 2 [33].
3. Up to one round of presolving before starting the

BnB algorithm.
4. For hybrid strong/pseudocost branching, maximum

strong branching depths of d̃strong = 1 and
d̃strong = 2 are tried in two different experiments.

5. For reliability branching the following settings are
considered:

• The maximum value for the reliability threshold
is ηmax

rel = 5,
• the minimum value for the reliability threshold

is ηmin
rel = 1,

• γ̂fixed = 0 in Equation (5.8) in [28],
• maximum size of the set of strong branching

candidates, F = 15,

• maximum number of strong branching simplex
iterations per branching variable is
γ̂sbiterbrancand = 100,

• the ratio csbiterquot in Equation (5.8) in [28] is set
to csbiterquot = 0.05 and csbiterquot = 0.2 for two
different experiments.

Figures 17, 18, 19, and 20 show the duality gap, num-
ber of LP iterations, number of BnB nodes and the average
number of LP iterations per node for the different branch-
ing schemes. In those figures, HybDepth1 andHybDepth2
are the hybrid strong/pseudocost branching with strong
branching invoked up to maximum depths of 1 and 2
respectively. Furthermore, Relratio = 0.05 and Relratio =
0.2 refer to reliability branching with csbiterquot = 0.05
and csbiterquot = 0.2. It can be seen that random branch-
ing has the highest duality gap, which is expected since
the selection of branching candidates does not take into
account the direction of change of the dual bound.
The lowest duality gap was achieved (almost equally)
by inference branching, pseudocost branching, hybrid
strong/pseudocost branching (d̃strong = 1), and surpris-
inglymost infeasible branching. The second lowest are the

Fig. 17 Branching results: duality gap
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Fig. 18 Branching results: number of LP iterations

cloud branching and reliability branching with csbiterquot =
0.05 equally both having a higher duality gap than the
lowest four by about 18%. Finally the second highest
duality gap is obtained by reliability branching with
csbiterquot = 0.2 with a duality gap higher than the lowest
four by 50%.
Comparingpseudocost branching versushybridstrong/pseu-

docost branching with d̃strong = 1, it can be seen that
they almost perform equally in terms of duality gap,
number of expended LP iterations, number of nodes
and the average LP iterations per node. Increasing the
depth for strong branching to d̃strong = 2 in hybrid
strong/pseudocost branching leads to an increase in the
duality gap by 32%. This is because when more strong
branching is involved, a slightly greater number of LP
iterations per node are expended as shown in Fig. 20,
meaning that in a given time limit, fewer nodes are
explored as shown in Fig. 19. When fewer nodes are
explored for a given time limit, the overall dual bound
improvement could be lower, even though the improve-
ment per node can be higher for strong branching.
The same reasoning applies for reliability branching

in the two experiments in which csbiterquot = 0.05
and csbiterquot = 0.2.
Among the four branching schemes that give the lowest

duality gaps, inference branching needs the largest num-
ber of nodes and LP iterations as Figs. 18 and 19 show.
Cloud branching expends the lowest number of nodes and
LP iterations among all the branching schemes but has
the second lowest duality gap. It requires 64% less number
of nodes and 58% less number of LP iterations compared
to most infeasible branching. Although cloud branching is
based on strong branching, the cloud reduces out many
LPs so that strong branching solves a small subset of those.
It hence gives a better duality gap than HybDepth2 and
reliability branching at csbiterquot = 0.2 requiring lower
number of BnB nodes and LP iterations. It also gives an
equally good duality gap for lower number of BnB nodes
and LP iterations compared to reliability branching with
csbiterquot = 0.05.
According to the observations and analysis based on

the results in Figs. 17, 18, 19, and 20, cloud branching
seems to have a good trade-off balance of all the criteria of
interest.
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Fig. 19 Branching results: number of BnB nodes

9 Conclusions
In this paper, we extended a problem in our earlier works
and we were successful in obtaining a more efficient
formulation. For the problem considered in this paper, a
user was allowed to join any session being transmitted in
all the neighboring cells provided the SINR threshold was
met where as P-Prob, the problem we considered in our
earlier works, a user only can join a subset of the sessions
being transmitted in the one cell which is the one the user
resides in. Moreover, E-Prob allowed a multicast group
to receive transmission of a session on more than one
antenna simultaneously, which is a more flexible proposal
that utilizes the space dimension, that was not utilized in
the primary problem. Also, the extended problem took
into account heterogeneous user and session priorities
which were considered to be homogeneous in P-Prob. We
were successful in obtaining HAPEff

MBQCP, a formulation
that is far more efficient in terms of the size compared
to formulation (OP1) in [24], the formulation used for
P-Prob. The more efficient formulation HAPEff

MBQCP was
a separate achievement on its own that was used in E-
Prob. In other words, if E-Prob was reduced to P-Prob,

HAPEff
MBQCP would still be much more efficient than

(OP1) in [24].
We used a BnB based solution framework proposed

for solving HAPEff
MBQCP. Two aspects of the solution

framework were considered, a presolving reformulation
linearization for a particular set of quadratic constraints
in the formulation and a number of different branch-
ing schemes. For the presolving reformulation lineariza-
tion, the aim was to find whether it would make the
solution procedure more efficient and to evaluate the
tradeoffs. According to the results obtained from the ex-
periments that we conducted, we found that reformu-
lation linearization is recommended when applying at
least 100 presolving rounds as this gave the lowest dual-
ity gap as well as low number of LP iterations and nodes
as compared not applying the reformulation lineariza-
tion technique. For the branching schemes, we showed
that cloud branching has a good tradeoff between the
duality gap, number of LP iterations and number of
BnB nodes when compared with the other branching
schemes.
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Fig. 20 Branching results: average number of LP iterations per node

Finally, it is worth noting that the complexity analysis
of the proposed algorithm is a challenging problem which
deserves to be investigated as a future research work.
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