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Abstract

Interference alignment (IA) is a key technology for achieving the capacity scaling required by next generation wireless
networks, which is proved to obtain the maximum degrees of freedom (DoF). The aim of this paper is to propose
interference alignment schemes through manifold optimization theory for K-user interference channel. We limit the
optimization only at transmitters and relax the hypothesis of channel reciprocity to mitigate the overhead caused by
alternation between the forward and reverse links significantly. Firstly, we introduce a classical algorithm based on the
steepest descent (SD) algorithm in a multi-dimensional complex space to achieve feasible IA. Then, we reform the
optimization problem on Stiefel manifold and propose a novel SD algorithm based on this manifold with lower
dimensions. Moreover, aiming at further reducing the complexity, the Grassmann manifold is introduced to derive
corresponding algorithm for reaching the perfect IA. Numerical simulations show that the proposed algorithms on
manifolds have better performance both on system throughput and convergence than classical methods and also
achieve the maximum DoF.
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1 Introduction
Interference alignment (IA) has been envisioned as a
promising technique [1, 2] to meet the overwhelming
growth of data network traffic which is the main challenge
of the next wireless networks. Compared with what is pre-
viously believed, it can obtain even more higher network
capacity [3]. Generally speaking, there are three domi-
nant interference alignment schemes: The first scheme is
based on full channel state information (CSI), assuming
the transmitters have the priori perfect CSI; the second
one is based on limited (imperfect) CSI; and the third one
do not need the CSI, which is called blind interference
alignment. Except for the full CSI interference alignment
scheme, the other schemes have no complete degrees of
freedom (DoF) region even the total DoF for the K-user
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interference channel [4, 5], thus the feasibility of imperfect
CSI interference alignment and blind interference align-
ment is still an open problem. Consequently, in this paper,
we focus on the full CSI interference alignment scheme.
And the sum capacity of K-user M × M multiple-input
multiple-output (MIMO) interference channel is

Csum = KM
2

log(1 + SNR) + o(log(SNR)) (1)

where degrees of freedom (DoF) is defined as

DoF = lim
SNR→∞

Csum
log(SNR)

(2)

In this case, DoF is KM/2. It means each transmitter-
receiver pair can communicate with M/2 DoF, irrespec-
tive of the number of interferers.
A feasible scheme to align interference is to design such

a precoding that coordinates transmitting directions, for
the purpose that the interference is forced to overlap as
much as possible, and 1/2 signaling space is reserved for
the desired signals at most. Based on the channel reci-
procity’s assumption, some pioneer studies such as [6–10]
iteratively optimize both the precoding matrices and
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interference suppression filters, by alternating between
the uplinks and downlinks to align the interference in a
distributed way. However, with the hypothesis of chan-
nel reciprocity, the application of these algorithms are
only restricted within TDD systems. Moreover, at each
node tight synchronization and feedback are needed for
alternation between the downlinks and uplinks; when the
channel varies fast, it may introduce too much overhead.
Moreover, during each iteration process of optimization
the transmitters and receivers exchange their “roles.” Thus
this scheme is improper for the receivers with limited
ability of computing.
On the other hand, most of the previous works above

employ traditional constrained optimization techniques
that work in high dimensional complex space. Unavoid-
ably, several shortcomings are accompanied with the
traditional constrained optimization techniques such as
low-converging speed and high-complexity.
To overcome these limitations, in this paper, we intro-

duce optimization onmatrix manifolds into the precoding
scheme for interference alignment and limit the optimiza-
tion only at the transmitters’ side. Optimization n onman-
ifolds consist the merits of lower complexity and better
numerical properties. Firstly, for the sake of comparison,
by employing classical constrained optimization method,
a steepest descent (SD) algorithm in multi-dimensional
complex space is provided to design the precoder of
interference alignment. Then, we reformulate the con-
strained optimization problem to an unconstrained and
non-degraded one on the complex Stiefel manifold with
lower dimensions. We locally parameterize the manifold
by Euclidean projection from the tangent space onto the
manifold instead of the traditional method by moving
descent step along the geodesic in [11, 12]. Thus, the SD
algorithm on Stiefel manifold is proposed to achieve fea-
sible interference alignment. To further reduce the com-
putation complexity in terms of dimensions of manifold,
we explore the unitary invariance property of our cost
function and solve the optimization problem on the com-
plex Grassmannmanifold, then present the corresponding
SD algorithm on the Grassmannmanifold for interference
alignment precoding design.
We not only generalize optimization algorithm on

manifolds, but also turn the algorithm into an efficient
numerical procedure to achieve perfect interference align-
ment. Moreover, by limiting the optimization algorithms
performed at the transmitters’ side only, all the three
proposed algorithms are transparent at the receivers.
Additionally, overhead generated by synchronization and
feedback no longer exists since only transmitters partici-
pate in the iteration. Furthermore, by relaxing the assump-
tion of channel reciprocity, our algorithms are applicable
to both TDD and FDD systems. Furthermore, numerical
simulation shows that the novel algorithms on manifolds

have better convergence performance and higher system
capacity than previous methods. Finally, we prove the
convergence of the proposed algorithms.
The paper is organized as follows: System model of

interference alignment is presented in Section 2, followed
by the detailed procedures of all three proposed SDmeth-
ods for interference alignment in Section 3. In Section 4,
numerical simulations and the corresponding discussion
are stated. And the conclusion is given in the last section.
Notation: We use bold uppercase letters for matrices or

vectors. XT and X† denote the transpose and the conju-
gate transpose (Hermitian) of the matrix X, respectively.
Assuming the eigenvalues of a matrix X and their cor-
responding eigenvectors are sorted in ascending order,
λiX denotes the ith eigenvalue of the matrix X. Then, I
represents the identity matrix. Moreover, tr(·) indicates
the trace operation. And the Euclidean norm of X is
‖X‖ =

√
tr(X†X). �X� denotes the subspace spanned by

the columns of X. Cn×p represents the n × p dimensional
complex space assuming n > p. R+ represents positive
real number space.�{·} and �{·} denote the real and imag-
inary parts of a complex quantity, respectively. Finally κ =
{1, . . . ,K} is the set of integers from 1 to K.

2 Systemmodel
Consider the K-user wireless MIMO interference chan-
nel depicted in Fig. 1 where each transmitter and receiver
are equipped with M[k] and N [k] antennas, respectively.
Each transmitter communicates with its corresponding
receiver and creates interference to all the other receivers.
d[k] is the desired number of data streams between the
kth transmitter-receiver pair. Additionally, H[kj] denotes
the N [k] × M[j] channel coefficients matrix from the jth
transmitter to the kth receiver and is assumed to have i.i.d.

1Tx 1Rx

2Rx

kRx

2Tx

kTx

Fig. 1 K-user MIMO interference channel
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complex Gaussian random variables, drawn from a con-
tinuous distribution. Moreover, H is prior known at the
transmitters. Finally the received signal vector at receiver
k after zero-forcing the interference is denoted by

Y [k]=U [k]†Y [k]=U [k]†

⎛

⎝
K∑

j=1
H[kj]V [j]S[j] + W [k]

⎞

⎠ , k ∈ κ

(3)

where each element of the d[j] × 1 vector S[j] repre-
sents an independently encoded Gaussian symbol with
power P[j]/d[j] that beamformed with the corresponding
M[j] × d[j] precoding matrix V [j] and then transmitted
by the transmitter j. U [k] is the N [k] × d[k] interference
zero-forcing filter at the receiver k. And W [k] is the i.i.d.
complex Gaussian noise with zero mean unit variance.

2.1 Feasibility of interference alignment
The quality of alignment is measured by the interfer-
ence power remaining in the intended signal subspace
at each receiver. From [6], it can be obtained that the
d[k]-dimensional received signal subspace that contains
the least interference is the space spanned by the eigen-
vectors corresponding to the d[k]-smallest eigenvalues of
the interference covariance matrixQ[k]. Consequently, we
try to minimize the sum of interference power spilled
to the desired signal subspaces, by minimizing the sum
of the absolute value of d[k]-smallest eigenvalues of the
interference covariance matrix at each receiver to cre-
ate d[k]-dimensional interference-free subspace for the
desired signal.

2.2 Cost function
As previously stated, we try to minimize the sum of the
d[k]-smallest eigenvalues (in absolute value) of the inter-
ference covariance matrix at each receiver over the set
of precoding matrices V [1], . . . ,V [K ] [7]. Therefore, we
define the cost function as follows:

min
V [1],...,V [K ]

f =
K∑

k=1

d[k]∑

i=1

∣∣∣λiQ[k]

∣∣∣ , k, j ∈ κ

subject to V [j]†V [j] = Id[j]

(4)

where

Q[k] =
K∑

j=1
j 
=k

P[j]

d[j]
H[kj]V [j]V [j]†H[kj]† (5)

is the interference covariance matrix at receiver k. With
the assumption that all the eigenvalues are sorted in
ascending order, λiQ[k] represents the ith eigenvalue of the
corresponding interference covariance matrix Q[k]. And
because Q[k] is a Hermitian matrix, all its eigenvalues are

real. Therefore, the cost function f (V ), f : Cn×p → R
+ is

built.

3 Methods on different topologies for
interference alignment

3.1 The steepest descent algorithm in complex space for
iA

Since our cost function: f (V ), f : Cn×p → R
+ is differ-

entiable, intuitively, the steepest descent method can be
employed to make the cost function converge to a local
optimal point efficiently. Therefore, we will first find the
closed-form expression of the steepest descent direction
in C

n×p, then employ a property step size rule for each
iteration.
As previously stated, the steepest descent method is

tightly related to derivative and differentiation. In order to
get the derivative of f (V ) over V , two Jacobian matrices
blocks are employed as:

df =
[
D[1]
R . . . D[K ]

R

]
⎡

⎢⎢
⎣

dV [1]
R
.
.

dV [K ]
R

⎤

⎥⎥
⎦

+
[
D[1]
I . . . D[K ]

I

]
⎡

⎢⎢
⎣

dV [1]
I
.
.

dV [K ]
I

⎤

⎥⎥
⎦

(6)

where V [j]
R = � {

V [j]}, and V [j]
I = � {

V [j]}. D[j]
R and D[j]

I
are the d[j] × M[j] Jacobian matrices which denote the
partial differential relation of the cost function over the
real and imaginary parts of V [j], respectively. The detail
of mathematical derivations can be found in [7, 13]. Thus,
the derivative of f over V [j] is given by

D[j]
V =

(
D[j]
R + iD[j]

I

)T
(7)

The inner product typically defined in the Euclidean
multi-dimensional space is given as follows:

〈Z1,Z2〉 = tr
(
Z†
2Z1

)
(8)

Then, under the given inner product, the steepest descent
direction is:

Z[j] = −D[j]
V = −

(
D[j]
R + iD[j]

I

)T
(9)

Once the formulation of steepest descent direction Z[j] is
defined in (9), it is necessary to choose a suitable posi-
tive step size β[j] for each iteration. The Armijo step size
rule [14] states that β[j] should be chosen to satisfy the
following inequalities:

f (V ) − f
(
V + βZ[j]

)
≥ 1

2
β[j]

〈
Z[j],Z[j]

〉
(10)

f (V ) − f
(
V + 2βZ[j]

)
< β[j]

〈
Z[j],Z[j]

〉
(11)
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Rule (10) guarantees that the step β[j]Z[j] will expressively
decrease the cost function, whereas (11) undertakes that
the step 2β[j]Z[j] would not be a better choice. A direct
procedure for acquiring a suitable β[j] is to keep on dou-
bling β[j] until (11) no longer holds and then halving β[j]

until it satisfies (10). It can be proved that such β[j] can
always be found [15].
Consolidating all the ideas stated above, we present

our algorithm in Algorithm 1. In Step 3 and Step 4, the
Armijo step rule is performed to find a proper conver-
gence step length. Generally speaking, Step 3 ensures the
chosen step β[j] will significantly reduce the cost function
while Step 4 prevents β[j] from being too large that may
miss the potential optimal point. The operator gs(·)means
Gram-Schmidt Orthogonalization [16] of a matrix, which
guarantees the newly computed solution V [j] (or B[j]

1 , B[j]
2

) still satisfies the unitary constraint.
Discussion:

(i) The inner product and the gradient direction are
defined in different topologies in [7]. However, it is
considered to be inappropriate because the gradient
is defined after the inner product is given only. In

Algorithm1The Steepest Descent Algorithm in Complex
Space for IA

Start with arbitrary precoding matrices V [1], ...,V [K ], set

initial step size β[j] = 1 and begin iteration.

for j = 1...K

(1) Compute the Jacobian matrix D[j]
R and D[j]

I

(2) Get the steepest descent direction

Z[j] = −D[j]
V = −(D[j]

R + iD[j]
I )T

(3) Compute B[j]
1 = gs(V [j] + 2β[j]Z[j]),

if f (V [1], ...,VK ) − f (V [1], ...,V [j−1],B[j]
1 ,V [j+1]...V [K ])

≥ β[j]tr(Z[j]†Z[j]), then set β[j] := 2β[j], repeat Step 3.

(4) Compute B[j]
2 = gs(V [j] + β[j]Z[j]),

if f (V [1], ...,V [K ]) − f (V [1], ...,V [j−1],B[j]
2 ,V [j+1]...V [K ])

< 1
2β[j]tr(Z[j]†Z[j]), then set β[j] := 1

2β[j], repeat Step 4.

(5)V [j] = gs(V [j] + β[j]Z[j])

(6) Continue till the cost function f is sufficiently small.

other words, the inner product and the gradient
direction must be defined in the same topology. Our
proposed algorithm rectifies the topology flaw in [7]
and thus avoids the risk of non-convergence.

(ii) It can be concluded that Algorithm 1 belongs to the
classical optimization method [17], which means it
works in multi-dimensional space Cn×p with the
dimensions:

dim(Cn×p) = np (12)

Obviously, the algorithm complexity increases with
the dimensions. As previous discussed, optimization
algorithms on manifolds work in an embedded or
quotient space whose dimension will be much smaller
than that of classical constrained optimization
methods. Thus, optimization algorithms on
manifolds not only have lower complexity, but also
perform better numerical properties. The
corresponding algorithms on manifolds will be stated
for IA in the next two subsections.

3.2 The steepest descent algorithm on complex stiefel
manifold for iA

Informally, a manifold is a space that is “modeled on”
Euclidean space. It can be defined as a subset of Euclidean
space which is locally the graph of a smooth function.
Conceptually, the simplest approach to optimize a dif-

ferentiable function is to continuously translate a test
point in the direction of the steepest descent on the con-
straint set until one reaches a point where the gradient is
equal to zero. However, there are two challenges for opti-
mization onmanifolds. First, in order to define algorithms
on manifolds, these operations above must be translated
into the language of differential geometry. Second, once
the test point shifts along the steepest descent direc-
tion, it must be retracted back to the manifold. There-
fore, after reformulating the optimization problem on the
Stiefel manifold, we introduce definitions about project
operation and tangent space for retraction and gradient,
respectively.
In many cases, the underlying symmetry property

can be exploited to reformulate the problem as a non-
degenerate optimization problem onmanifolds associated
with the original matrix representation. Thus, the con-
straint condition V [j]†V [j] = I in the cost function (4)
inspires us to solve the problem on the complex Stiefel
manifold. The complex Stiefel manifold [16] St(n, p) is the
set satisfying

St(n, p) = {X ∈ C
n×p : X†X = I} (13)

St(n, p) naturally embeds in C
n×p and inherits the usual

topology of Cn×p. It is a compact manifold and from [18],
we can get:
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dim(St(n, p)) = np − 1
2
p(p + 1) (14)

Another important definition is the projection. Assum-
ing Y ∈ C

n×p is a rank-p matrix, the projection operator
πst(·) : Cn×p → St(n, p) is given by

πst(Y ) = arg min
X∈St(n,p)

‖Y − X‖2 (15)

It can be proved that there exists a unique solution if Y
has full column rank [18]. From (15), it can be acquired
that the projection of an arbitrary rank-p matrix Y onto
the Stiefel manifold is defined to be the point on the Stiefel
manifold closest to Y in the Euclidean norm [19]. More-
over, if the singular value decomposition (SVD) of Y is
Y = U

∑
V †, then

πst(Y ) = UIn×pV † (16)

Consider X ∈ St(n, p) and its disturbing point πst(X +
εY ) ∈ St(n, p) for certain directions matrix Y ∈ C

n×p and
scalar ε ∈ R . If Y satisfies f (πst(X + εY )) = f (X)+O(ε2)
whichmeans certain directionsY do not cause πst(X+εY )

tomove away fromX as ε increases. The collection of such
directionsY is called the normal space atX of St(n, p) [18].
The tangent space TX(n, p) is defined to be the orthogonal
complement of the normal space, which can be roughly
illustrated as Fig. 2. And the mathematical expression of
the tangent space TX(n, p) at X ∈ St(n, p) is defined by

TX(n, p) = {
Z ∈ C

n×p : Z = XA + X⊥B,A ∈ C
p×p,

A + A† = 0,B ∈ C
(n−p)×p

}

(17)

in which X⊥ ∈ C
n×(n−p) is defined to be any matrix satis-

fying [X X⊥]† [X X⊥] = I and is the complement of X ∈
St(n, p). Also from [16], it can be obtained that the gradi-
ent of our cost function is in the tangent space TX(n, p).
And the dimension of TX(n, p) is:

dim(TX(n, p)) = p(2n − p) (18)

( , )S t n p

( , )
X

T n p

( )f X

Fig. 2 Tangent space of Stiefel manifold

Obviously the steepest descent algorithm requires the
computation of the gradient. As we previously emphasize,
the gradient is only defined after TX(n, p) is given an inner
product:

〈Z1,Z2〉 = �
{
tr(Z†

2

(
I − 1

2
XX†

)
Z1)

}
(19)

where Z1,Z2 ∈ TX(n, p) and X ∈ St(n, p). The derivation
of (19) can be found in [16]. Therefore, under the defined
inner product, the steepest descent direction of the cost
function f (X) at the point X ∈ St(n, p) is

Z = XD†
XX − DX (20)

where DX is the derivative of f (X).
The proposed SD algorithm on complex Stiefel mani-

fold is presented in Algorithm 2. From (19) and (20), it can
be easily obtained that the inner product needed for the
Armijo step rule is

〈
Z[j],Z[j]

〉
= �

{
tr
(
Z[j]†

(
I − 1

2
V [j]V [j]†

)
Z[j]

)}

(21)

which is used in Step 4 and 5, and the steepest descent on
Stiefel manifold of our cost function is

Z[j] = V [j]D[j]†
V V [j] − D[j]

V (22)

which is used in Step 3. Noticing that the project opera-
tion πst(·) in Step 6 (Steps 4 and 5) guarantees the newly
computed solution V [j] (or B[j]

1 , B[j]
2 ) after iteration still

satisfies V [j] ∈ St(n, p). Using the method of SVD, we can
easily compute the project operation. Discussion:

(i) As previous stated, the algorithms in [11, 12] were
performed by moving the descent step along the
geodesic of the constrained surface within each
iteration. A disadvantage of this method is the
redundant computational cost for calculating the
path of a geodesic. In this paper, we locally
parameterize the manifold by Euclidean projection
from the tangent space onto the manifold instead of
moving along a geodesic, to achieve a modest
reduction in the computational complexity of the
algorithms.

(ii) Recall (12) and (18), it can be obtained that when we
reformulate the problem from C

n×p to St(n, p), the
dimension of the optimization problem decreases
from np to np − 1

2p(p + 1). Although such
dimension-dissension can be observed clearly, we
still intend to reduce the dimensions of the space
which the optimization algorithm works in. Thus, the
Grassmannmanifold and its corresponding algorithm
for IA are stated in the following subsection.
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Algorithm 2 The Steepest Descent Algorithm on Com-
plex Stiefel Manifold for IA

Start with arbitrary precoding matrices V [1], ...,V [K ],

for j = 1...K

(1) Compute the Jacobian matrix D[j]
R and D[j]

I

(2) Then get the derivative of f :

D[j]
V = (D[j]

R + iD[j]
I )T

(3) Get the steepest descent direction

Z[j] = V [j]D[j]†
V V [j] − D[j]

V

(4) Compute B[j]
1 = πst(V [j] + 2β[j]Z[j]),

if f (V [1], ...,VK ) − f (V [1], ...,V [j−1],B[j]
1 ,V [j+1]...V [K ]) ≥

β[j]�{tr(Z[j]†(I − 1
2V

[j]V [j]†)Z[j])}, then set β[j] := 2β[j],

and repeat Step 4.

(5) Compute B[j]
2 = πst(V [j] + β[j]Z[j]),

if f (V [1], ...,V [K ]) − f (V [1], ...,V [j−1],B[j]
2 ,V [j+1]...V [K ]) <

1
2β[j]�{tr(Z[j]†(I − 1

2V
[j]V [j]†)Z[j])}, then set β[j] := 1

2β[j],

and repeat Step 5.

(6)V [j] = πst(V [j] + β[j]Z[j])

(7) Continue till the cost function f is sufficiently small.

3.3 The steepest descent algorithm on complex
grassmannmanifold for iA

Notice that our cost function f (V ) satisfies f (VU) = f (V )

for any unitary matrix U . Because

Q[k](VU) =
K∑

j=1
j 
=k

P[j]

d[j]
H[kj]V [j]U [j]U [j]†V [j]†H[kj]†

=
K∑

j=1
j 
=k

P[j]

d[j]
H[kj]V [j]IV [j]†H[kj]†

= Q[k](V ) (23)

which means that multiplying unitary matrix U does not
change the eigenvalues and their corresponding eigenvec-
tors of the interference covariance matrix at each receiver.
Thus, our cost function f should be minimized on the

Grassmann manifold rather than on the Stiefel manifold.
This is because the Grassmann manifold treats V and VU
as equivalent points, leading to a further reduction in the
dimension of the optimization problem. Similar with the
previous subsection, we firstly introduce the definition
about the Grassmann manifold, then present the project
operation and tangent space of Grassmann manifold for
retraction and gradient, respectively.
The complex GrassmannmanifoldGr(n, p) is defined to

be the set of all p-dimensional complex subspaces ofCn×p.
The Grassmann manifold can be thought as a quotient
space of the Stiefel manifold: Gr(n, p) � St(n, p)/St(p, p).
Quotient space is more difficult to visualize, as it is not
defined as a set of matrices; rather, each point of the
quotient space is an equivalence class of n × pmatrices.
However, we can understand quotient space in this

way: assuming X ∈ St(n, p) is a point on the Stiefel
manifold, the columns of X span an orthonormal basis
for a p-dimensional quotient subspace. That is to say, if
�X� denotes the subspace spanned by the columns of X,
then X ∈ St(n, p) implies �X� ∈ Gr(n, p). Therefore,
there is a one-to-one mapping between points on the
Grassmann manifold Gr(n, p) and equivalence classes of
St(n, p). From (14), it can be acquired that:

dim(Gr(n, p)) = dim(St(n, p)) − dim(St(p, p))
= p(n − p) (24)

Let Y ∈ C
n×p be a rank-p matrix. The projection oper-

ator πgr(·) : C
n×p → Gr(n, p) onto the Grassmann

manifold is defined to be

πgr(Y ) =
⌊
arg min

X∈St(n,p)
‖Y − X‖2

⌋
(25)

It also can be proved that there exists a unique solution if
Y has full column rank [18]. From (25), it can be acquired
that the projection of an arbitrary rank-p matrix Y onto
the Grassmannn manifold is defined to be the subspace
spanned by the point on the Stiefel manifold closest to Y
in the Euclidean norm. Furthermore, if the QR decom-
position of Y is Y = QR, the following equality holds:

πgr(Y ) = ⌊
QIn×p

⌋
(26)

The proof of (26) also can be found in [16]. From (26), it is
obvious that πgr(Y ) is the subspace spanned by the first p
columns of Q.
As discussed before, Grassmann manifold is a quotient

space of the Stiefel manifold, thus its tangent space is a
subspace of the Stiefel manifold’s tangent space [18]. IfX ∈
St(n, p), the tangent space T�X�(n, p) at �X� ∈ Gr(n, p) of
Grassmann manifold is:

T�X�(n, p) =
{
Z ∈ C

n×p : Z = X⊥B,B ∈ C
(n−p)×p

}
(27)
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Recall (18), the dimension of the tangent space T�X�(n, p)
of the complex Grassmann manifold is:

dim (T�X�(n, p)) = dim(TX(n, p)) − dim(TX(p, p))
= p(2n − 2p) (28)

Moreover, the inner product of T�X�(n, p) is given by:

〈Z1,Z2〉 = �{tr(Z2
†Z1)}, Z1,Z2 ∈ T�X�(n, p),

X ∈ St(n, p) (29)

The derivation of (29) can be found in [16]. Therefore,
under the defined inner product, the steepest descent
direction [16] of the cost function f (X) at the point X ∈
Gr(n, p) is:

Z = −(I − XX†)DX (30)

where DX is the derivative of f (X).
The proposed SD algorithm on the complex Grassmann

manifold is presented in Algorithm 3. Similar with the
previous proposed algorithms, the Armijo step rule is per-
formed to find a proper convergence step length. From

Algorithm 3 The Steepest Descent Algorithm on Com-
plex Grassmann Manifold for IA

Start with arbitrary precoding matrices V [1], ...,V [K ],

for j = 1...K

(1) Compute the Jacobian matrix D[j]
R and D[j]

I

(2) Then get the derivative of f :

D[j]
V = (D[j]

R + iD[j]
I )T

(3) Get the steepest descent direction

Z[j] = −(I − V [j]V [j]H)D[j]
V

(4) Compute B[j]
1 = πgr(V [j] + 2β[j]Z[j]),

if f (V [1], ...,VK ) − f (V [1], ...,V [j−1],B[j]
1 ,V [j+1]...V [K ]) ≥

β[j]tr(Z[j]HZ[j]), then set β[j] := 2β[j], and repeat Step 4.

(5) Compute B[j]
2 = πgr(V [j] + β[j]Z[j]),

if f (V [1], ...,V [K ]) − f (V [1], ...,V [j−1],B[j]
2 ,V [j+1]...V [K ]) <

1
2β[j]tr(Z[j]HZ[j]), then set β[j] := 1

2β[j], and repeat Step 5.

(6)V [j] = πgr(V [j] + β[j]Z[j])

(7) Continue till the cost function f is sufficiently small.

(29) and (30), it can be easily concluded that the inner
product needed for the Armijo step rule is

〈
Z[j],Z[j]

〉
= tr

(
Z[j]†Z[j]

)
(31)

which is used in Step 4 and 5, and the steepest descent on
Grassmann manifold of our cost function is

Z[j] = −
(
I − V [j]V [j]†

)
D[j]
V (32)

which is used in Step 3. And the project operation πgr(·)
in Step 6 (Step 4, 5) retracts the newly computed solu-
tion V [j] (or B[j]

1 , B[j]
2 ) back onto Grassmann manifold

Gr(n, p). Using QR decomposition, we can easily compute
the project operation.
Discussion:

(i) Comparing dim(Gr(n, p)) = p(n − p) in (24) with
dim(St(n, p)) = np − 1

2p(p + 1) in (14), a further
dimension reduction can be observed. Similarly,
from (28), we can see another advantage of using the
Grassmann manifold rather than the Stiefel manifold
which is that T�X�(n, p) has only p(2n − 2p)
dimensions, whereas tangent space of St(n, p) has
p(2n − p) dimensions. And from [20], it can be
obtained that in our system model, if each
transceiver is equipped with same amount of antenna
(M = N), then

K∑

k=1
d[k] = K · d = K · M

2
(33)

and

d = M
2

(34)

(ii) Recall (12), (14), and (24), we can get that if M is large
enough (M not only can represent the number of
antennas each transceiver equipped, but also can refer
to the number of time extension slots [1, 20]), hence

dim(St(M, d))

dim
(
C M×d) ≈ 3

4
(35)

which is a clear evidence for dimension-descension.
And

dim(Gr(M, d))

dim
(
CM×d) = 1

2
(36)

holds for any integer M. (36) means that optimization
on Grassmann manifold would reduce dimension
further. The trend of dimension-descension can be
roughly illustrated in Fig. 3.

4 Numerical results and discussion
Without symbol extension, the feasible condition of k-
user interference alignment [20] is given by:

M[j] + N [j] ≥ (K + 1)d[j] (37)



Zhang et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:196 Page 8 of 11

n pn p

( , )Gr n p
X

†( , ) :St n p X X I

Fig. 3 Trend of dimension-descension

For satisfying feasibility and simple computation, we con-
sider a 3-user 2 × 2 MIMO interference channel where
the desired DoF per user d[j] is 1. All the algorithms are
executed under the same scenario including randomly
generated channel coefficients, initial precoding matrices,
and convergence step length. We simulated the proposed
three SD algorithms through 100 simulation realizations.
In order to compare the convergence performance,

the average values of 100 realizations results are illus-
trated in Fig. 4. It can be observed that the algorithms
on manifolds have better convergence performance com-
paring with the classical optimization method as our
expectation.
Meanwhile, since there are two interference sig-

nals at each receiver, as shown in Fig. 5, the angles

between the spaces spanned by each interference signals
asymptotically converge to zero within one simulation
realization, which is another evidence for achieving the
perfect interference alignment.
Finally, we compare the system sum-rate of the pro-

posed algorithms. Figure 6 shows that the SD algorithm
on Stiefel manifold and the SD algorithm on Grassmann
manifold almost have the same performance and out-
perform the other classical optimization algorithms (Dis-
tributed IA in [6, 7]). More importantly, at high SNR, the
DoF of the three proposed algorithms nearly achieve 3,
which is the maximum theoretical value (KM/2 = 3) .
Therefore, the perfect interference alignment is success-
fully achieved.
Three reasons leading to the fact that the proposed

algorithms on manifolds have better performance are pre-
sented below:

(i) The advantage of the proposed algorithms is
attributed to the reason that we reformulate the
constrained optimization problem to an
unconstrained one on manifolds with lower
complexity and better numerical properties; then,
locally parameterize the manifolds by a Euclidean
projection of the tangent space on to the manifolds
instead of moving along the geodesic, as stated in the
previous sections. Moreover, the convergence
performance curve of SD algorithm on the Stiefel
manifold and the curve of SD algorithm on the
Grassmann manifold almost overlap. Recall that
optimization on the Grassmann manifold would
reduce dimension further; therefore, the SD
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Fig. 4 Convergence performance
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(a)

(b)

(c)
Fig. 5 Angles between interfering spaces at each receiver. a SD
algorithm in complex space. b SD algorithm on Stiefel manifold. c SD
algorithm on Grassmann manifold

algorithm on the Grassmann manifold will guarantee
performance and reduce the computation
complexity at the same time.

(ii) It is noticed that our cost function actually is the
interference power spilled from the interference
space to the desired signal space. With the better
convergence performance, the SD algorithms on
manifolds will have less remnant interference in the
desired signal space within same iteration times.
Therefore, it’s guaranteed to achieve higher SINR
[21]:

SINR = signal power
noise + remnant interference

(38)

which leads to high capacity.
(iii) At each receiver, the zero-forcing filter is adopted. It

will project the desired signal power and the remnant
interference onto the subspace which is orthogonal
with the subspace spanned by the interference. After
performing the SD algorithms on manifolds, it is
observed that in the Euclidean norm distance, the
subspace spanned by desired signal is more close to
the orthogonal complement of the interference
subspace. Therefore, even the proposed algorithms
on manifolds finally get the same remnant
interference as the classical optimization methods
results. The algorithms on manifolds will suffer from
less power lose during the projection operated by
zero-forcing filter; hence, higher system capacity can
be achieved.

Above all, we didn’t just correct the defects of our pre-
vious results. More importantly, many innovations and
improvements are made in this paper. Firstly, through
the in-depth study of matrix manifold, many novel man-
ifold conceptions (such as Stiefel manifold, Grassmann
manifold, quotient space, dimension decrease, and pro-
jection) are introduced as the theoretical foundation to
support reformulation of interference alignment objec-
tive function on manifolds and also promote the pro-
posed algorithms lower complexity, better convergence
performance and higher system capacity. Secondly, from a
self-contained system perspective, we cite part of our pre-
vious result in Section 3 Algorithm 1 and propose novel
algorithms on three different topologies (complex space,
Stiefel manifold, and Grassmann manifold) for interfer-
ence alignment. More importantly, we uniform the flow
of the three proposed algorithms to make the compari-
son of algorithms’ results become more meaningful and
logicality.
We notice that better throughputs may be attained by

using non-unitary precoding, or by applying power water-
filling in the equivalent non-interfering MIMO channels.
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Nevertheless, these methods to increase throughputs can
be performed as the second step after the interference
alignment is achieved. Thus in this paper, we only need to
concentrate on the first step to find the perfect solutions
of interference alignment.
More importantly, we notice that the limited CSI will

give a disturbance to our algorithm [22–24]. However,
its negative influence on our algorithm is tolerable due
to three main reasons. First, the proof for the con-
vergence of our proposed algorithm is solid: our cost
function is non-negative with the low bound zero. It
monotonically decreases within each iteration; there-
fore, it must converge to a solution. Second, due to the
property of steepest decent method, our algorithm will
converge to a local optimum point even with a dis-
turbance. Third, the numerical property of manifolds
will guarantee the residual interference (the value of
local optimum point) is very small which leads to high
capacity.

5 Conclusion and future work
In this paper, we focus on the interference alignment
schemes by employing manifold optimization theory. By
restricting the optimization only at the transmitters’ side,
the overhead induced by alternation between the forward
and reverse links will be alleviated significantly. A classi-
cal SD algorithm in multi-dimensional complex space is
proposed first. Then, we reform the optimization problem
on Stiefel manifold and propose a novel SD algorithm on
this manifold with lower dimensions. Moreover, aiming at
further reducing the complexity, the Grassmann manifold

is introduced to derive the corresponding algorithm for
reaching the perfect interference alignment. Numerical
simulations show that comparing with previous methods,
the proposed algorithms on manifolds have better con-
vergence performance, higher system capacity, and also
achieve the maximum DoF.
In our future work, we will employ Newton-type

method on manifolds to achieve quadratic convergence
and try to find global optimum results. On the other
hand, we already begin the research on Grassmannian dif-
ferential quantization theory and deep-learning method
[25] to offer a efficient feedback strategy for limited CSI
interference alignment. This complicated work is still in
progress.
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