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Abstract

The single-phase grounding fault of power systems is influenced by a variety of factors, resulting from the developing
sizes and increasing complexity of power systems. In order to take advantage of big data in power systems, we
propose a revised method with the use of synchronized phasor measurement. The data-driven method is designed to
detect and localize the single-phase grounding fault, which reveals the correlation between eigenvalues and status of
power systems. First, it calculates the contribution of the fault to each node; it then combines with a split window to
monitor power systems in real time and to detect fault more efficiently. Based on the correlation between the
elements of the matrix, it is robust against bad data and highly sensitive to weak signals. In general, the proposed
method is applicable to various faults and well-functioning with real-time analysis. We test the proposed method with
case studies from a distribution network with 80 nodes.
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1 Introduction
The single-phase grounding fault is the default method
in power systems [1]. However, the access to high-
permeability new energy has gradually evolved power
systems into multi-source dynamic networks [2–6], which
makes the single-phase grounding fault difficult to detect
and eliminate, especially when the fault signal is weak,
such as grounded by large resistance.
Synchronized phasor measurements have expanded

access to data in power systems, which makes it easier to
extract fault features [7]. With the data of synchronized
phasor measurements, Cavalcante and Almeida presents
an approach based on the short-circuit theory, which
can accurately find the location of the fault and deal
well with the influence of the random errors inherent
in measurements [8]. In his work, the nodal impedance
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matrix Zbus needs to be constructed at first, but in prac-
tice, it is difficult to obtain accurate impedance parame-
ters because of the mix of overhead lines and cables. Liu
et al. argues locating the fault by using the relationship
in a time difference of arrival of traveling wave [9], yet
the accuracy of traveling wave velocity measurement is
difficult to achieve in traveling wave fault analysis. Jiang
et al. develops a new discrete Fourier transform (DFT)-
based algorithm, which can eliminate system noise and
measurement errors [10]; thus, the accuracy of the fault
location can be guaranteed to some degree. However,
these methods still use traditional approaches to analyze
data from synchronous measurements and do not fun-
damentally solve the key problems of fault detection and
localization. On the one hand, the features of the fault
signal are not easy to extract when it is weak. On the
other hand, noises and bad data may make the fault mis-
judged or evenmissed. This situation leads to an emerging
paradigm of big data analytics, for detection and local-
ization of the single-phase grounding faults in power
systems[11–16].
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The big data analytics make it approachable to capitalize
on data from various fields and thus provide more infor-
mation [17–32]. Many studies on big data analytics have
been applied to power systems [33–40]. Among them,
randommatrix theory (RMT) is a mathematical statistical
method which can directly mine the intrinsic connection
of a system from data; thus, it can be applied to extract
fault features and increase the accuracy of fault detec-
tion and localization. RMT aims to calculate statistical
featuresmeasured by eigenvalue statistics [34]. In the liter-
ature, correlation analysis [34], multi-event analytics [35],
and static and transient stability analysis of power systems
have been successfully utilized [36, 37]. Methods on fault
localization have been proposed as well in [38]. Based on
bat algorithm and random matrix theory, Kai introduces
fault line selection, and Weibiao et al. argues for deter-
mining the fault area by constructing augmented matrix
[38]. The accuracy of thesemethods cannot be guaranteed
when the distribution network is complex. Moreover, the
complexity of the network will slow down the calculation
speed.
Marchenko-Pastur law (M-P law) reveals the corre-

lation between the elements of the matrix, which is
one of the important laws in the random matrix the-
ory (RMT). Based on the M-P law, this paper proposes
a novel data-driven method to detect and localize the
single-phase grounding fault, where the outliers in the
spectrum of a zero-sequence matrix represent the sig-
nal of the fault, and the fault localization indices of
each node are calculated based on the outliers. By filter-
ing the outliers and combining with the network struc-
ture, the location of the fault is determined. Since the
proposed method focuses on the correlation of the ele-
ments in the matrix, it can extract information about
the fault in the situation of weak signals. Combined with
a split window, the fault detection and localization can
be efficient and in real-time. Furthermore, bad data will
not strengthen linkages between elements, so the pro-
posed method is robust against bad data and can be
well applied to the distribution network with a complex
environment.
The remainder of this paper is organized as follows.

Section 2 gives out the random matrix theory and data
processing. Section 3 presents the detection and local-
ization method of single-phase grounding fault based
on the M-P law. Section 4 validates the effectiveness of
the method proposed through three simulations. Finally,
Section 5 draws a brief conclusion.

2 Randommatrix theory and data processing
The frequently used notations in this section are given in
Table 1.
The data from synchronized phasor measurement in

power systems is typical spatial-temporal big data. It is

Table 1 Notations for RMT and data processing

Notations Means

X , x, xij A matrix, a vector, an entry of matrix

XT , xT Transpose of a matrix and a vector

μ(x), σ 2(x) Mean, variance for x

S The sample covariance matrix

N, T The row and column size of the split

Window

λ Eigenvalue of the matrix

p, n The row and column size of the matrix

v Eigenvector

X̃ A standard non-Hermitian matrix

� Data source

therefore difficult for traditional analytical tools to sat-
isfy the requirements of precision and accuracy of data
processing in a big data environment through the estab-
lishment of hypotheses and simplified models.
Random matrix theory (RMT) is an effective mathe-

matical tool to analyze complex systems. The elements
in the random matrix can be either deterministic data
or random numbers that follow certain distributions.
Although thematrix dimension of the randommatrix the-
ory needs to be infinite, a fairly accurate result can be
observed in a matrix of moderate size (dimension from
tens to hundreds) as well. This is the premise of ran-
dom matrix theory for dealing with practical engineering
problems [34].
According to RMT, when the dimensions of a random

matrix are sufficiently large, and the size is determined,
the empirical spectral distribution (ESD) of its eigenval-
ues converges to some theoretical limits, such as the Ring
law and the Marchenko-Pastur law (M-P Law) [34–38]. In
this paper, the M-P law is used to analyze the operation of
power systems and detect and localize the fault with high
speed and sensitivity.

2.1 Sample covariance matrix and M-P law
For a givenmatrixXp×n, where p and n represent the num-
ber of dimension and samples, respectively. As p, n → ∞
with c = p/n ∈ (0, 1), the covariance matrix of Xp×n can
be calculated as follows:

S = 1
n
XnX∗

n (1)

where X∗
n is the complex conjugate matrix of Xn. In

large dimensional data analysis, the analysis quantity can
be defined as the function of empirical spectrum distribu-
tion (ESD) of the sample covariance in many multivariate
statistics, so sample covariance is widely used in the ran-
dom matrix. The empirical spectrum distribution (ESD)
function is as follows:
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FS(x) = 1
p

×
p∑

i=1
I
{
λSi ≤ x

}
, x ∈ R (2)

where FS(x) is ESD and I{.} is characteristic func-
tion. The limit of empirical spectral distribution is the
limit spectral distribution. When the elements of a high-
dimensional random matrix are independently identically
distributed (IID.), with a mean of 0 and a variance of 1,
the limit spectrum distribution of the sample covariance
matrix of the random matrix converges to the following
formula with probability 1:

fc(λ) =
{ 1

2πcλσ 2 )(b − λ)(λ − a), a ≤ λ ≤ b
0, others

(3)

where a = σ 2 (
1 − √

c
)2, b = σ 2 (

1 + √
c
)2, c = p/n.

σ 2 is the variance of the matrix. This is the Marchenko-
Pastur law (M-P law) based on variables c and σ 2, which
reflects a statistical property of high-dimensional matrix,
and the eigenvalues will between a and b.
For matrices with c, both b and limit spectrum distri-

bution are deterministic, as shown in Fig. 1, where the
outliers are circled in red.

2.2 Construction of high-dimensional zero-sequence
current matrix and data processing

We use zero-sequence currents as the matrix elements
because it will help to extract fault characteristics from a
random matrix theory point of view.
Assuming there are p nodes equipped with a measur-

ing device, each node generates a corresponding zero-
sequence current at the sampling time ti, and the mea-
sured data of all nodes form a time vector:

x (ti) = [
x1ti , x2ti , · · · , xNti

]T (4)

Therefore, for a distribution network with p nodes and n
sampling points, a high-dimensional matrix with size p×n
can be constructed, that is,

Xp×n =

⎡

⎢⎢⎢⎣

X1t1 X1t2 . . . X1n
X2t1 X2t2 . . . X2n
... . . . . . . . . .

Xpt1 Xpt2 . . . Xpn

⎤

⎥⎥⎥⎦ (5)

Each row represents the same node and each column
represents the same sampling time.
To convert X into a standard non-Hermitian matrix,

X̃i = (Xi − μ (Xi)) /σ (Xi) , i = 1, 2, . . . p (6)

where Xi is the i -th column of X, and μ (Xi) and σ (Xi)
are the mean value and variance of Xi, respectively. We
then get the matrix X̃ with mean of 0 and variance of 1.
In order to conduct real-time analysis, the split window

is used to construct the above matrix, and the size of the
window is N × T , where N is the number of all synchro-
nized phasor measurements in the distribution network,
and T is selected according to c = N/T ∈ (0, 1). We use
c = 0.4 in this paper.
To facilitate the real-time analysis, the split window has

a step size of 1, that is, one new column of data is moved
into the window at each moment, and one column of his-
torical data is removed, so that the window contains T −1
column history data and 1 column of new data, that is,

X̃ (ti) = [
x̃ti−T+1, x̃ti−T+2, · · · , x̃ti

]
(7)

2.3 Adaptability analysis of the M-P law in distribution
network

In order to verify the applicability of the M-P law to
single-phase grounding fault detection and localization,
the zero-sequence current matrix with 80×200 operating
data from the 80-node distribution network is analyzed.
When the distribution network is in normal operation,
some of its parameters, such as the amplitude of volt-
age and zero sequence current, etc., fluctuate near a fixed
value, as shown in Fig. 2a; the fluctuation is caused by
measuring errors, noises, or small disturbance in network.
Then, the data shows statistical randomness, which fol-
lows the M-P law.When there is a single-phase grounding

(a) (b) (c)
Fig. 1M-P law for different c. a c=0.4, b=2.665, b c=0.6, b=3.149, c c=0.8, b=3.589
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(a) (b)

Fig. 2 Zero-sequence current data under different operating conditions. a Normal operation. b Single-phase grounding fault

fault, as shown in Fig. 2b, however, this random charac-
teristic is broken, and there is a correlation within the
system, so it no longer meets theM-P law. This means that
M-P law can successfully distinguish the fault from data,
which is the very reason that we use M-P law to analyse
the zero-sequence current matrix.
According to the M-P law, when the distribution net-

work is running normally, the limit spectrum of covari-
ance matrix of high-dimensional zero-sequence current
matrix is in good agreement with theM-P law, that is, λi ∈
(a, b), where λi is one of eigenvalues of Sn, i = 1, 2, 3 · · · n,
as shown in Fig. 3a. While there is a single-phase ground-
ing fault, because of the correlation within the network,
limit distribution of these eigenvalues will not be in line
with the M-P law anymore, and some eigenvalues will be
larger than b, as shown in Fig. 3b, where kernel density
estimation is the estimation of eigenvalues distribution;
thus, these outliers can be filtered to detect and local-
ize the grounding fault. This is the heart of the method
proposed in this paper.

3 Detection and localizationmethod of
single-phase grounding fault in distribution
network

3.1 Fault contribution value L
According to the analysis above, if there is a fault in the
distribution network, the eigenvalues of the covariance
matrix will be out of range. Those larger than b repre-
sent abnormal and important information, which can be
used for fault detection and localization. The eigenvalues
smaller than a are also characterized as abnormal infor-
mation, but since the information they carry is limited,
they can be ignored. We define the contribution of each
node to the fault as L. When no fault occurs, each node
contributes 0 to the fault, and when there is a fault, the
fault current flows from the source to the fault node, then
those nodes with fault currents will contribute to the fault
and their L will increase.

In this paper, all the eigenvalues larger than b are
screened to calculate the contribution degree of eachmea-
suring point to the fault, and the contribution of each
node to the abnormal eigenvalues is obtained by matrix
calculation.
For the normalized high-dimensional zero-sequence

current matrix X̃, the covariance matrix S is a symmet-
ric matrix, so singular value decomposition (SVD) can be
performed:

S = W�U (8)

where W and U are left and right eigenvectors, respec-
tively, which are singular value matrix. From the literature
[41],

∂λk
∂Sij

= UT
k

∂S
∂Sij

Wk (9)

Since ∂Sij
∂Sij = 1, we get,

∂λk
∂Sij

= UkjWik (10)

Therefore, the fault contribution of the i-th node can be
characterized as

∂λk
∂Si

=
n∑

j=1

(
UkjWik

)2 = W 2
ik (11)

The abnormal eigenvalues and the corresponding eigen-
vectors are used to calculate the contribution degree of
each node to the fault, the contribution degree of the
eigenvalues larger than b is added by weight, and the
weight is the value of the corresponding eigenvalue. The
contribution of the i-th node is

Li =
∑
k>b

λkW 2
ik

∑
λk>b

λk
(12)
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(a)

(b)
Fig. 3 Histogram of eigenvalue distribution in different operating conditions. a Normal operation. b Single-phase grounding fault

where λk is the k-th eigenvalue of the covariance matrix of
the high-dimensional zero-sequence current matrix. Wik
represents the i-th row element of the k-th eigenvector
Wk , which is corresponding to the k-th eigenvalue λk , and
b is calculated from (3).

3.2 Flow of single-phase grounding fault detection and
localization in distribution network

In order to achieve the purpose of quick detection and
localization, we combine the moving split window with
the fault contribution of each node in this paper and use
Li ≥ 0.1 to detect and locate the fault. For a specific
period, the fault localization process steps are as follows:

3.3 Fault localization
The distribution network is an organic system in which
each node is associated with each other. When a node
fails, other nodes will be affected to different extents.
The node through which the fault current flows has a
greater contribution to the fault, and the node without

Algorithm 1 Flow of fault detection and localization
1) determine the size of the moving split window VN×T ,
which
includes T − 1 historical data, 1 current data, and the
start time t0
2 normalize V to get Ṽ
4) calculate S, which is corresponding to Ṽ
5)for S, conduct eigenvalue decomposition, and then cal-
culate Li
(where i is the number of each node)
6) sift nodes whose L are larger than 0.1, and locate the
fault by
using the structure of the network 7) move the moving
split window. Repeat 2)-6)

fault current flowing through has a smaller contribution.
Therefore, a series of nodes with large fault contribution
values are selected to determine the fault location. This
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process first filters out the nodes that exceed a certain
threshold, and then determines the fault by combining
with the structure of a distribution network, the location
of the power supply, and the like.
In this paper, the nodes with fault distribution larger

than 0.1 are selected as the fault location information.
When there is a node with its L larger than 0.1, it can be
argued that there is a fault and the range is selected by (13).
Although random errors can arise when there is no fault
sometimes, but to simplify and emphasize the problem of
fault detection and localization, we just ignore them when
they arise in normal operation stage.

loc = arg (Li ≥ 0.1) (13)

where loc represents the location information, and
arg (Li ≥ 0.1) is a function to filter the nodes whose L are
larger than 0.1. The threshold is selected based on the dis-
tribution network model. In the simulation, we found that
some nodes have significantly lager L values than 0.1, and
when we choose these nodes to locate the fault, the results
are satisfactory. However, when we make the threshold
smaller, although the results can be obtained correctly, the
process is more complicated since more nodes will be fil-
tered. Thus, we choose 0.1 as the threshold to make the
fault detection and localization easier.

4 Simulation results and discussions
The proposed method is tested with the simulated data
in an 80-node distribution network based on PSCAD, as
shown in Figure 8 in the Appendix. With a sampling fre-
quency of 20,000 Hz, zero-sequence current of each node
can be generated. The transformers directly connected to
the two power supplies adopt 110/11 ratio. Other trans-
formers are with 10/0.38 ratio. Each branch is set to be
one node, and the synchronized phasor measurement is
installed at each node to obtain the zero sequence current.
Three cases are designed to validate the effectiveness of

the proposed method. For all cases, assume thatN = 80, T
= 200, and the data source � is 80 × 3000. The fault is set
up when t = 600.

4.1 Single-phase grounding fault of single node
4.1.1 Case 1: Single-phase grounding by small resistance
In case 1, node 4 is grounded by 10� when t = 600, and
the detection and localization results are shown in Fig. 4.
In Fig. 4a, based on the L-node-t curve, we can detect

signals based on the following analysis.
I. During the sampling time t = 1 − 617, the L of all

nodes have values less than 0.1, which means that the
system is normal without fault.
II. When t = 618, the L of node 2 and node 4 increase

to 0.1364 and 0.144, respectively. According to (13), it can
be determined that there exists a single-phase grounding
fault when t = 618. The fault time was set to be t = 600,

so the delay is only 0.9 ms, which means that the proposed
method can quickly detect the fault. Since it takes a certain
amount of time for L to rise from 0 to 0.1, and the system
requires a certain reaction time after the fault, the delay is
inevitable.
III. Only node 2 and node 4 can be filtered to locate the

fault in this case. As shown in Fig. 4b, node 4 is at the end
of the line. When it is grounded, the fault current would
flow from node 1 to node 4, and through node 2, so the
fault location can be determined at node 4.

4.1.2 Case 2: Single-phase grounding by large resistance
In order to validate the effectiveness of the proposed
method when the fault signal is weak, case 2 increases the
grounding resistance to 10k� . The results are as shown
in Fig. 5. It can be seen that the fault can be detected at
t = 743, and the delay is 7.15 ms. This means that the
weakness of the signal is reflected in the extension of time
to detect the fault in the method proposed in this paper.
In this case, a delay of 7.15 ms is still acceptable and the
method is still time-saving. Since the filtered nodes are
node 2 and node 4, the localization result is the same as
Fig. 4b.

4.1.3 Case 3: Comparison of time consumption across
differentmethods

To compare the time consumed of different methods, four
methods are implemented for case 1, that is, M1: the
method proposed in this paper, M2: the correlation anal-
ysis [38], M3: wavelet transform method [42], and M4: a
method based on RMT and Hausdorff distance. Table 2
shows the comparison results. For results of M2–M4,
please refer to the Appendix section.
In Table 2, it can be seen that M3 uses the least amount

of time, and M2 uses the most. M1 ranks third regard-
ing the amount of time consumed. In general, the method
proposed in this paper can function relatively quickly.

4.1.4 Case 4: Comparison of fourmethods when grounded
by large resistance

Case 4 compares the effectiveness across the fourmethods
when node 4 is grounded by 10 k�, as shown in Table 3.
From Table 3 and the analysis above, we can detect

signals based on the analysis below.
I. When grounded by 10 k�, the fault signal is very

weak and only the method proposed in this paper is effec-
tive, which means that our proposed method is of high
sensitivity and can react positively to different complex
scenarios in a distribution network.
II. The fault signal is strong when grounded via a small

resistance, which is beneficial to the extraction of fault
features. If grounded by a large resistance, the amplitude
of zero-sequence current of each node changes very lit-
tle, which means the fault signal can be considerably
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(a)

(b)

Fig. 4 Node 4 is grounded by 10�. a The value of L of each node when node 4 is grounded by 10�. b Schematic diagram of fault localization when
node 4 is grounded by 10�

weak and the fault characteristics are difficult to extract.
As such, MSR barely changes and M2 fails. For M3, it
monitors some electrical quantities of the bus (such as
zero-sequence voltage, zero-sequence current, etc.). Once
the value of the electrical quantity exceeds the set thresh-
old, it is considered that the fault occurs, and the fault
localization procedure can be started. However, when the
fault signal is weak, the bus voltage or current changes

little, then the fault cannot be identified and the fault
localization cannot be achieved. Based on the random
matrix and Hausdorff distance, M4 also starts by a sud-
den change of the amplitude of some electrical quantities
of the bus, so it fails with a weak fault signal as well.
III. The traditional methods have relatively decent appli-

cability when the fault signal is strong. Yet, the sensitivity
would be reduced when the fault signal is weak, and
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Fig. 5 The value of L when node 4 is grounded by 10 k�

accordingly, the fault detection and localization cannot be
performed, which can be seen as their limitations. Since
the method proposed in this paper is based on the internal
correlation of the system and monitoring the distribution
network from a global perspective with data-driven tools,
there is no need to reduce the value of L tomake it sensible
to the fault with weak signals.
In conclusion, themethod proposed is of high sensitivity

and high speed when facing single-phase grounding fault.

4.2 Simultaneous grounding fault for multi-node

4.2.1 Case 1: Two nodes grounded simultaneously
Multi-node faults may occur simultaneously in some areas
in thunderstorm days. In order to validate the effective-
ness of the proposed method in this situation, single-
phase grounding faults are set at node 4 and node 11 at
the same time, from 10 and 20�, respectively. The results
are shown in Fig. 6.
In Fig. 6a, with the L-node-t curve, we can detect signals

based on the analysis below.
I. During the sampling time t = 1 − 613, the L of all

nodes have values less than 0.1, which means that the
system is in normal operation.
II. When t = 613, there are 6 nodes whose L are larger

than 0.1, which indicates the single-phase grounding fault
of the distribution network. The fault is set to occur when
t = 600, and it is detected when t = 613, so the delay is

Table 2 Time consumption for four methods for node 4
grounded by 10�

Method Time(s)

M1 132

M2 11520

M3 67

M4 151

0.65 ms, which verifies of the rapidity of the method. In
fact, with the use of the split window, power systems can
be monitored in real time, and likewise the analysis. The
delay is due to the reaction time used by the system and
the threshold chosen for L.
III. According to the structure of the network, the fault

location can be determined as shown in Fig. 6b. For node
11, once the fault occurs, fault current will flow from the
power supply on the right side through node 27, 25, 13 to
node 11. Since node 11 is at the end of the line, the fault
can be located at node 11. For the fault at node 4, please
refer to Section 4.1. Case 1 shows the effectiveness of the
proposed method in complex fault.

4.2.2 Case 2: Comparison of time consumption across four
methods

In order to compare the time consumed of different meth-
ods, fourmethods are conducted for case 1, and the results
are shown in Table 4.
Since the two nodes are grounded by small resistance

at the same time, the fault signal is strong enough, and
the four methods are all applicable. In Table 4 , it can
be seen that compared with the single node fault situa-
tion, there is no significant change in time consumed for
M1 and M2; for M3 and M4, the time is twice as large.
In this situation, the proposed method takes the least
amount of time to detect and localize the faults, indicat-
ing that the proposed method is applicable to multi-node

Table 3 Effectiveness comparison results for node 4 grounded
by 10 k�

Method Fault detection Fault localization

M1
√ √

M2 × ×
M3 × ×
M4 × ×
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(a)

(b)

Fig. 6 Node 4 and node 11 grounded simultaneously. a The value of L when node 4 and node 11 are grounded simultaneously. b Localization
signal for node 4 and node 11 grounded simultaneously

simultaneous ground faults, which verifies the universality
of the proposed method.

4.3 Robustness verification of bad data
Due to the data instability in the synchronized phasor
measurement, the correctness of online fault diagnosis
is reduced, since based on the data-driven tools, the

Table 4 Time consumption for four methods for node 4
grounded by 10�

Method Time(s)

M1 127

M2 1156

M3 133

M4 312

proposed method has good robustness against bad data.
To validate this, the zero-sequence current of node 10 and
node 20 are set to be zero and the above three faults are
performed. Figure 7 shows the contribution to the fault of
each node at a certain time in the three fault scenarios,
and we circle the nodes whose L are larger than 0.1 in red.
It can be seen that the values of node 10 and node 20 do
not exceed the threshold in the three faults, and the nodes
filtered for fault location remain the same. The simula-
tion results are consistent with the experimental settings,
since theM-P law is based on the statistical characteristics
of the data. The correlation is enhanced when there are
faults. While there are some bad data, there is no correla-
tion between the bad data and the normal data; thus, it will
not influence the results of the analysis, which validates
the robustness of the proposed method against bad data.
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(a) (b) (c)

Fig. 7 Results of robustness to bad data. a t=635, node 4 grounded by 10�. b t=645, node 4 grounded by 10k�. c t=624, node 4 and 11 grounded
simultaneously

5 Conclusion
This paper proposes a data-driven method to detect and
localize the single-phase grounding fault from an over-
all perspective in power systems, which is universal and
can identify and locate single-phase grounding fault rela-
tively fast and sensitively. The method proposed can avoid
complicated fault feature extraction process and provide
fault location information at the same time of fault detec-
tion; thus, it is of high speed; since the method proposed
extracts fault features from the view of big data, thus, it
is universal to various scenarios. Based on the correlation
analytics of M-P law, the method is of high sensitivity and
has good robustness to the bad data.

The current work is only a preliminary exploration
of correlation analysis based on RMT, and much more
research is needed in this direction. Due to statistical
errors, sometimes, even if there is no fault in power
systems, some eigenvalues will be larger than b, though
statistical errors will not continue to occur for a period
of time. Therefore, it is necessary to consider the length
of time during which abnormal eigenvalues appear. Fur-
thermore, the proposed method can be used in any event
localization such as locations of the electricity theft and
abnormal power increases of some nodes.

Appendix

Fig. 8Model of distribution network with 80 nodes
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Fig. 9 Results for M2

Table 5 Results of M3

Node 4 8 9 22 23 D

4 – 0.01 0.01 0.01 0.01 0.01

8 0.01 – 0 0 0 0

9 0.01 0 – 0 0 0

22 0.01 0 0 – 0 0

23 0.01 0 0 0 – 0

Table 6 Results for M4

Node 5 8 22 23

E 0.4273 0.4462 0.5444 0.5184
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