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Abstract

The application of long-range communication technologies such as LoRa to certain environments like smart
cities/industries is a natural step forward towards the future loT. However, the strict limitations imposed in some
countries on the duty cycle of ISM bands can jeopardize this technological progress. To overcome this and, at the
same time, improve loT nodes' transmission and power efficiency, a novel mathematical model has been derived. Its
numerical analysis leads to a closed-form formula that characterizes node performance in terms of its transmission
policy. The maximization of this formula—required to increase node performance—is then posed as an optimization
problem whose solution yields smart transmission policies that maximize throughput while limiting energy
consumption. The results achieved under this approach are compared to those obtained using the ADR algorithm
(the most extended mechanism for choosing transmission parameters in LoRaWAN networks) and to
random/conservative policies to further highlight the benefits of the proposal. Results reveal that the proposed
method outperforms ADR by 33.20%, the conservative policy by 91.81%, and the random policy by 238.8%.
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1 Introduction

As IoT-based technologies are becoming cheaper and
more robust, their presence in multiple sectors of our
society is also increasing. Accordingly, unexplored and
challenging situations are being faced by new deploy-
ments which, in addition, are generally expected to pro-
vide high performance at very low cost.

Among these particularly demanding environments are
those characterized by their vast monitored extensions.
Smart cities and smart industries illustrate perfect exam-
ples of these environments. Such IoT deployments focus
on how smart machines and infrastructures can improve
either citizens’ quality of life or production efficiency. By
fundamentally making use of machine-to-machine com-
munications, these 10T deployments strive to maximize
three different factors:

1. Network performance: Information should be timely
transmitted, avoiding delays [1]. However, high
throughput may not be a strict requirement as,
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usually, short-sized packets are transmitted very
infrequently.

2. Network robustness and safety: IoT should be
fault-tolerant and resilient to damage as information
must keep flowing under all circumstances [2].

3. Network cost efficiency:

(a) Reducing operational expenditure: For
example, avoiding replacing batteries by
reducing the consumption of IoT nodes,
providing high scalability to facilitate
extending the network, etc.

(b) Reducing capital expenditure: For instance,
providing wide network coverage—that
reduces number of gateways—reducing costs
per IoT node, etc. [3].

Thus, smart cities/industries represent an attractive
niche for new long-range IoT technologies. Moreover,
their (1) license-free approach, (2) extremely low-power
consumption, (3) reduced costs, and (4) robust commu-
nication schemes help attain the three aforementioned
factors. In this interesting subset of IoT-based technolo-
gies, a very big player has recently attracted the attention
of industry and academic communities: LoRa [4], short
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for long range. Reckoning with a proprietary modulation
scheme based on the chirp spread spectrum, this technol-
ogy has been geared towards the monitoring of very large
tracts of land (with coverage ranges as large as 700 km [5])
while providing remarkable lifespans (longer than 2 years
with two AA batteries [6]). These two features make LoRa
extremely well-suited for application in large and harsh
environments such as the abovementioned.

Unfortunately, due to its use of the industrial, scien-
tific, and medical (ISM) license-free frequency band, LoRa
deployments are subject to rigorous legal regulations in
many countries. Specifically, when no listen-before-talk
mechanisms are employed, as is the case with this par-
ticular technology [7], the maximum time ISM bands can
be occupied per hour is regulated by what it is called the
transmission duty cycle (TDC). For instance, in Europe,
the ETSI TR 103 526 document [8] rules that, for the
868.0-868.8 MHz band, the maximum allowed transmis-
sion DC is 1%!. Hence, IoT devices cannot occupy the
ISM band for more than 36s/h, preventing them from
transmitting new packets if this limit is reached. Similar
restrictions are observed in other parts of the globe for
other bands, such as for the 779-787 MHz band in China
or the 950-956 MHz band in Japan.

Due to this very tight band usage restriction, it is cru-
cial to regard the TDC as the very scarce resource it
is and manage it in a planned and optimal way. This
intelligent use of the band is of special relevance in IoT
networks where different prioritized events may be gener-
ated (e.g., industrial networks with machinery of different
importance). In such networks, one should guarantee that
enough TDC is saved for future high-priority events,
while ensuring that low-priority ones are only reported
when network activity is low enough. Furthermore, in
LoRa-based wide-area networks (LoRaWAN networks),
packets can be issued under different transmission config-
urations, which in turn, entail different TDC consumption
and different packet reception rates (PRR). Therefore,
optimal transmission policies should be derived to ensure
that (1) geographical TDC regulations are met and (2) the
performance of these long-range networks is maximized.

In this sense and when maximizing the performance of
battery-powered network nodes, not only should the band
usage be considered, but also transmission-related factors
such as power expenditure must be examined. Extending
the lifespan of IoT networks results in a further reduction
of operational costs, which in turn decreases deployment
costs. Hence, a broader definition of node performance
that encompasses power and band usage efficiency shall
be described for later analytical constrained optimization.

! Note that throughout the rest of the document, TDC will be used to denote
the precise amount (in seconds) of time that nodes can access the medium per
hour (e.g. 36 seconds), whereas DC will represent the percentage of such an
hour (e.g. 1%).
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Unfortunately, to the best of the authors knowledge, pre-
vious works on this matter have either overlooked the
importance of the TDC as one of the performance-
limiting factors (e.g., focusing only on power efficiency)
or solely devoted their efforts to overcoming the TDC
limitation (without maximizing performance).

However, the derivation of transmission policies that
regard performance and battery of nodes (in TDC-
limited environments) is shown to lead to an NP-
hard optimization problem. To overcome this, we tune
and apply two widely known meta-heuristics that are
later proved to be well-fitted to run in hardware-
constrained IoT devices—outperforming other traditional
approaches.

1.1 Main contributions

With the aim of filling the research gaps presented in the
previous paragraphs, the key contributions of this paper
are now stated:

e To the best knowledge of the authors, we present the
first mathematical model of IoT LoRa devices that
helps define and evaluate node performance in terms
of power and band usage efficiency.

e The derivation of optimal transmission policies is
posed as a constrained optimization problem. This
maximizes the throughput while complying with the
TDC regulation of each country and keeping the
energy consumption below a given maximum value.
Note that these policies take into consideration the
full context of nodes (i.e., TDC limitation, priority of
generated events, battery life) when deciding on
action to be taken.

e Two widely known meta-heuristics are proposed for
the computation of the transmission policies. These
heuristics are implemented in hardware-limited [oT
devices and are shown to be an absolute requirement
to timely solve the constrained problem described
above.

® A comparison between transmission policies (in
terms of performance) to further highlight the
benefits of the proposed approach

The rest of the paper is organized into the fol-
lowing sections. The methods for this work are out-
lined in Section 2. Related work is presented next in
Section 3. In Section 4, the dynamics of the TDC con-
sumption and event generation are described to facil-
itate the mathematical modeling of node performance
and energy consumption in Section 5. Section 6 formu-
lates the problem of optimizing node performance and
two meta-heuristics are proposed to solve it. Section 7
presents the results of comparing the suggested policy-
derivation method to other classical and popular policies
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in terms of throughput. Finally, Section 8 outlines the
main conclusions.

2 Methods
In this paper, we mathematically model the performance
of LoRa nodes in terms of their behavior when reporting
events. Analytically, our study copes with the complex-
ity of LoRaWAN networks by modeling the internal state
of nodes using the Markov mathematical framework. By
doing so, we derive a closed-form formula for node perfor-
mance that can be mathematically optimized with classic
maximization algorithms. Our approach is shown to be
able to run in hardware-constrained IoT devices (LoPy
nodes) and to outperform traditional LoRaWAN solutions
(such as adaptive data rate).

A visual representation of the approach outlined here
can be found in Fig. 1.

3 Related work

The related work section is subdivided in two main parts:
first, we comment on previous works related to LoRa-
based IoT networks and later, we focus on how some
of these works have looked into the derivation of smart
strategies for packet transmissions.

3.1 Research on LoRa-based loT networks

In the past few years, there has been a tremendous
increase in the interest of long-range IoT networks for
the monitoring of smart cities and smart industries.
LoRa [4] has been the main actor in this revolution.
Its long-lasting and long-distance coverage features have
attracted the attention of many researchers [9-14]. Most
of these published works on LoRa are mainly focused on
either (1) analyzing, (2) comparing, or (3) predicting its
performance:

e Regarding the first task, analyzing LoRa performance,
a large amount of different scenarios have been
considered in the literature: civil infrastructures such
as public transport [9] or bridges [10], line-of-sight
and obstructed communications [11], industrial
environments [12], precision agriculture [15, 16], etc.

e With respect to the second task, comparing LoRa
performance, thanks to the popularity of this
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technology, all the long-range, low-power alternatives
have been analyzed and their differences outlined.
Among them, we highlight license-free alternatives
such as Sigfox [17] or Weightless [18], as well as
licensed options such as NB-IoT [19].

e Finally, regarding LoRa performance prediction, two
works stand out for their rigorousness: The work in
[13] thoroughly evaluated the potential throughput
and coverage range of an IoT-based smart city
deployment under different propagation conditions,
via simulation. And [20] very carefully investigated
the energy cost of different transmission
configurations for a specific LoRa transceiver and
environment.

Although these works analyzed valuable scenarios in
which LoRa performance is generally well studied and
detailed, none of the above papers attempt to system-
atically optimize network conditions or maximize any
kind of figure of merit. Furthermore, with the notable
exception of [14] which studied the impact of sub-band
selection on LoRa nodes, the previously mentioned works
lacked the generalization power that comes with univer-
sal, theoretical models. This reflects the still immature
state of this type of long-range networks, as deduced by
the sheer amount of solid optimization papers available
for general wireless sensor networks [21-24].

Two more aspects are worth analyzing in the current
literature: the TDC-limitation problem and the power
consumption in LoRa-based networks.

First, with respect to the TDC-limitation problem, two
recent works [25, 26] have highlighted the importance of
this factor and proposed a scheme in which the TDC lim-
itation is met in an aggregated-fashion. There, the TDC
limitation is met, on average, by the entire network, but
certain individual nodes are allowed to exceed it, which
may violate geographical regulations. In the same line,
the work in [27] has remarked that the effects of TDC
shortage can reduce the capacity and performance of
large-scale deployments.

Regarding power consumption in LoRa-based net-
works, this is a more well-studied topic and many works
could be discussed. Among these, we highlight [20] and
[28] that analyzed the impact on battery lifetime of the
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Fig. 1 Methods employed. Methods employed for the derivation of optimal policies in LoRa nodes
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different transmission parameters as well as [29] that
mathematically extended it to encompass CPU, memory,
and peripheral consumption. It is worth mentioning that
the focus of these three papers is on analyzing and/or
modeling, not on optimizing; thus, our interest in taking
an optimization-centered approach.

3.2 Research on optimal transmission policies

In [30], the mathematical framework of reinforcement
learning is applied to the problem of determining under
which configuration should packets be transmitted in
LoRaWAN networks. The derived transmission policies
maximize a predefined reward metric. Although this
metric is intrinsically related to throughput, battery con-
sumption is neglected; thus, jeopardizing the effective-
ness of such transmission policies in battery-powered IoT
deployments. Furthermore, once the transmission pol-
icy is computed, it is downloaded to IoT nodes and not
changed anymore (as it must be computed in more pow-
erful devices such as LoRa Gateways). On the contrary,
our approach is to let IoT devices update the derived
optimal policies by making the policy derivation process
computable in resource-constrained devices.

In [31], a different approach is taken to derive trans-
mission policies. Instead of finding the optimal configu-
ration under which an event should be reported, authors
modeled an energy harvesting sensing unit that must
determine the rate at which events should be reported
to prevent nodes from quickly depleting their batter-
ies. This, in contrast to our proposal, assumes a peri-
odic monitoring-reporting approach, in which IoT nodes
decide when events will be sensed and reported (and con-
siders that every time a sensor is pulled, worth-reporting
events are generated). Although very detailed mathemat-
ical models of the energy harvesting and consumption
processes are proposed, authors assumed that there is
only one valid reporting configuration (that consumes
energy according to a given random distribution). This
fails to capture the nature of modern IoT devices whose
consumption depends on transmission configuration and
thus, hinders its applicability to real deployments.

In a similar fashion and for scenarios in which multiple
physical phenomena are monitored by single IoT nodes,
authors in [32] proposed a method for determining not
only the optimal frequency at which the events/readings
should be measured, but also a way to decide which
events should be reported according to users’ preferences.
This work also assumes that there is only one way in
which events can be reported (and thus, does not adapt
transmission configurations) as well as fails to provide
low-complexity approaches for deriving optimal actions in
hardware-constrained devices.

All in all, the derivation of optimal transmission poli-
cies can be considered an active research area that
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encompasses classic IoT networks. For example, in
[33, 34], packet size is found to have an important effect on
IoT cognitive radio sensor networks and is consequently
optimized to maximize network performance.

Although there are several works that either (1) exclu-
sively evaluate the performance of LoRa nodes or (2)
devote their efforts to the derivation of transmission poli-
cies, as far as we can tell, the academic community is
still in need of studies that try to optimize transmis-
sion performance of LoRa nodes by deriving transmission
policies that jointly optimize performance and power con-
sumption. This is even more the case if prioritized events
and TDC-restrictions are considered or computationally
feasible solutions are to be provided.

4 System model

In IoT deployments, it is fairly common that in the inter-
est of extending the lifespan of the network, nodes remain
in deep sleep mode most of the time. However, with some
periodicity (of T seconds), they wake up, sense some phys-
ical parameters, and report related events if required. This
is called a sensing cycle, and the data of generated events is
sent to LoRaWAN gateways, which stay awake and ready
at all times. In this type of deployments, and especially
for environments such as smart cities/industries (where a
wide variety of phenomena can be monitored), reported
events may have different priorities, which would reflect
the severity of the detected phenomenon. As will be elab-
orated on this section, the main idea is that network
nodes prioritize important events when deciding whether
to report them and under which appropriate transmission
configuration.

Regarding these transmission configurations, one of
the main benefits of LoRa is its flexibility in terms of
adjustable parameters, especially when compared to its
direct competitors [35]. Each packet transmission can be
generated under a specific bandwidth (BW), central fre-
quency (CFEQ), coding rate (CR), spreading factor (SF),
and transmission power (TXP). The BW indicates the
range of frequencies over which the communication will
take place, whereas the CFEQ determines its offset in
terms of hertzs. The CR denotes the ratio between the
number of payload bits and the length (in bits) of the
error-correction code. Smaller values imply stronger error
protection but longer packets. The SF is defined as the
ratio between the symbol rate and chip rate. Higher val-
ues increase the sensitivity and range of communications
at the expense of increasing the time-on-air (ToA) of
packets. For instance, for an 11-byte payload, when trans-
mitting at SF11 instead of SF10, the ToA increases from
370 to 823 ms, respectively. Finally, the TXP regulates the
output power of the generated packet. These parameters
play a crucial role in determining the final performance
of the network. Hence, we need to optimally choose them
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with respect to the specific conditions of nodes. That is,
we need to determine the optimal transmission policy.

Although the BW of the communication is a parameter
that must be shared between the nodes and the gateways,
the special characteristics of the LoRa modulation allow
the gateways to receive packets sent with different values
of CFEQ, CR, SF, and TXP transmission parameters. This
lets LoRa nodes choose the configuration that is found to
be optimal when reporting every individual event (based
on path losses and other physical propagation phenom-
ena). If not for the TDC and battery limitations, nodes
would simply choose the SE/CR/TXP for which an accept-
able communication robustness had been attained. How-
ever, to (1) comply with TDC regulations and (2) increase
the performance of nodes while extending their lifespan, a
trade-off must be considered when deciding transmission
configurations.

As introduced in Section 1, the maximum time nodes
can use the wireless channel is regulated by the TDC.
The specific value, in terms of allowed seconds per hour,
depends on the chosen sub-band and operating country.
To better illustrate the problem and derive specific results,
we will consider the case of the 868.0-868.8 MHz sub-
band under the European ETSI TR 103 526 (the standard
applicable to the largest number of countries). Although
this directive defines up to 9 channels, only three of them
(the so-called default channels) are mandatory for all end
devices; thus, we will be focusing on these three. The
aggregated TDC time of the three channels cannot exceed
36s/h (1% of the total time). Thus, from a TDC perspec-
tive, they operate as a single channel. It is worth noting
that the LoRa standard forces nodes to undergo a silent
period after every packet transmission. This silent period
(Torg) varies with the DC of the band and with the ToA
of the last transmitted packet (Ton). Thereby, the TDC
regulation is not only met in a “per hour” fashion, but
also between any two packet transmissions. Formally, the
silent period is defined by Eq. 1.

Ton
T = — — T 1
OFF = 7 ~ ON (1)

As an example, consider that a DC limitation of 1%
applies and the last packet took 0.1s to be transmitted
(Ton = 0.1s). In this scenario, the node radio must
remain silent for Toppr = 9.9 s before any further transmis-
sion. Although this scheme is aimed at reducing packet
collisions and providing a fair access to the shared wire-
less medium, it effectively prevents nodes from transmit-
ting packets in bursts. It should also be noted that, if
an event is generated during a Topr period, it must be
queued or dropped. Considering the special case of time-
sensitive scenarios such as smart industries, the real-time
nature of reported events may make queuing unfeasible.
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Therefore, intelligently managing the use of the transmis-
sion band (i.e., the consumption of TDC) is of particular
importance in such environments. Since real-time moni-
toring is assumed in this work, queuing events have not
been considered—that is, events are dropped if generated
during a Topr period.

In light of the above, we propose a novel scheme in
which the TDC is regarded as a commodity. It can be con-
sumed, with packet transmissions and can be “recharged”
and stored over time (throughout the paper, we have
employed the common terminology of referring to the
act of “accumulating” TDC as “recharging” it; this ter-
minology is useful to think of the TDC as any other
limited, rechargeable resource such as battery). More
specifically, depending on the transmission configuration
(BW/CR/SF) some TDC is consumed, based on Toy;, and
depending on the transmission DC limitation, some TDC
is recharged over time. To compute the pace at which the
TDC is recharged, one might consider that at the begin-
ning of each sensing cycle, T' seconds have elapsed, and
thus, some TDC has been stored. More formally, each
sensing cycle, T - DC seconds of TDC are recharged.

Consequently, a Markov process can be used to math-
ematically model the evolution of the remaining TDC in
an arbitrary node. At the beginning of its lifespan, the IoT
node is considered to have 36 s of TDC, again assuming a
DC of 1%. When it transmits, the state of the node evolves
to reflect the consumption of TDC, based on the specific
employed transmission configuration. Conversely, at the
beginning of each sensing cycle, such a node regains 7-DC
seconds of TDC. The maximum storable TDC (TDCpiax)
is 36 s. To force nodes to undergo a Torr period after each
event reported, transmission will only be permitted when
nodes reach the TDCyax state, known as transmittable
state. If nodes were allowed to transmit as long as they
had enough TDC (that is, TDC > 0), the Togr restric-
tion would be violated. On the other hand, as commented
before, this Topr period also ensures that no more than
36 s of TDC are consumed per hour.

This Markovian model is depicted in Fig. 2. Note that
the Markovian states represent the stored TDC. The states
have been discretized (in milliseconds) to facilitate their
analysis, but any arbitrarily small slot length (Q) can be
employed to increase the model precision. At the begin-
ning of each sensing cycle (of, e.g., T = 5s), T - DC =
0.05s (or 50 ms) are recharged, and thus, the node transi-
tions from left to right. Conversely, when a packet is sent,
the node transitions from the rightmost state to a state
with less TDC, based on the type and length of the packet
as well as on the transmission configuration.

To model the generation of events, one can consider
that an event is generated randomly every sensing cycle
with a probability A;, where the sub-index i indicates the
type of such an event. Thus, the set of all the different
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Fig. 2 Markovian model of TDC. Markovian model for the TDC consumption/recharge scheme. A sensing cycle of T = 55,a DC of 1%, and a
Ton = 0.5's have been considered in this representation. States indicate the stored TDC, expressed in milliseconds. When the node has enough TDC
to transmit (that is, it is in a transmittable state where TDC = TDCyax), transmissions are allowed (denoted in green). Otherwise, transmissions are not

A conforms the vector A = (Ag, A1,..., Ax). Where Ag
defines the probability of not generating any event and
equals 2o = 1 — {( XAi. Note that 0 < A; < 1 and

g Ai = 1—it is worth mentioning that A can be inter-
preted as the average number of events generated every T'
seconds, that is the event generation rate and will always
be less or equal to 1. Furthermore, each of these events
reports phenomena of different importance (to be deter-
mined by network designers/operators). The vector G =
(0,41, ....gx) models the priority of each event. Note that
the first item in this vector corresponds to the priority of
a non-generated event and, consequently, equals zero. For
the sake of clarity, and without loss of generality, we will
analyze the case in which only two types of events may
be generated, low-priority and high-priority events (with
types i = 1 and i = 2, respectively). However, the proce-
dure presented here can be easily extended to any number
(K) of different packet priorities. As the generation of
events is considered to be independent, that is, the gen-
eration of an event of a given priority does not condition
the generation of the next event, we can model the packet
generation as illustrated in Fig. 3. Note that each state
j € {0,1,2} indicates that an event of priority j has been
generated.

The two Markov chains (represented in Figs. 2 and 3)
fully describe the state of a node from the transmission
perspective. Only when a given IoT node has enough
TDC, i.e, it is in the transmittable state, and an event has
been generated during its sensing cycle, state 1 or 2 of the
second chain, can a transmission be issued.

5 Concept of performance

Since long-range IoT networks are mainly employed
to monitor and report important phenomena, the
performance of such networks can be naturally mea-
sured in terms of how much information is reported

(which directly depends on the probability of generating
events ;).

The priority of reported events (g;) is also considered to
influence the performance of nodes. This way, reporting
on more critical aspects of the environment is encour-
aged. Therefore, transmitting events of higher priority has
a more positive impact on the performance (i.e., the per-
formance increases linearly with the priorities of reported
events). Similarly, the amount of total information con-
veyed (in terms of bytes) also affects node performance.
Events with longer payloads (of L; bytes) have a larger
impact on the performance.

Finally, as explained in Section 4, packets can be trans-
mitted under different configurations. The specific selec-
tion of BW/CR/SE/TXP dictates the robustness of the
packet transmission. Specifically, for a given signal-to-
noise ratio (SNR), the tuple (BW,CR;, SF;, TXP;) fully

no event
is generated

a high-priority
event is generated

a low-priority
event is generated 2
Fig. 3 Markovian model of the event generation scheme. Note that
states in this diagram represent the type (priority) of the generated
event
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determines the packet reception rate (PRR) of a reported
event i. Since the PRR can be regarded as the probability
of a packet being successfully received, the node perfor-
mance is weighted by the PRR of transmitted packets to
compute the expected amount of information successfully
received. From an implementation point of view, nodes
can learn about the SNR perceived by the gateway by pig-
gybacking such information in any downlink packet (e.g.,
when joining the LoRaWAN network for the first time).
Finally, Eq. 2 models the node performance.

Y20 L g - PRR(BW, CR;, SE;, TXP;)
B T

The performance of a node (y) is computed as the
expected amount of prioritized bytes reported per second,
a metric similar to throughput that encompasses the pri-
ority of the reported information and the probability of
being successfully received. Since nodes are considered to
generate events of two different priorities (i € {1,2}), each
with a specific event generation probability 1;, the per-
formance of a node is the sum of the performance values
obtained for both type of events. Note the presence of the
sensing cycle period (T) in the denominator to compute
the throughput in bytes per second and not in bytes per
sensing cycle (as A represents the probability with which
an event is generated in a sensing cycle).

Furthermore, instead of directly using A;, the effec-
tive event-generation probability ()Lfff) is considered. This
term accounts for the probability with which events of
type i are generated while the node is in the transmit-
table state. As indicated in Section 4, for an event of
type i to be reported, two conditions must be met: (1)
an event of type i is sensed (this happens with probabil-
ity A;) and (2) the node is in the transmittable state (this
happens with probability P(transmittable)). If the latter is
not met, not enough TDC is available and thus, the event
cannot be reported. Since the event generation process is
independent of the TDC state of the node, the effective
event-generation rate can be computed as the product of
both variables, that is, )Lfff = A; - P(transmittable).

The specific value of P(transmittable) depends on the
transmission policy, the probabilities with which these
events are generated, and the pace at which the TDC is
recharged. These parameters influence how nodes evolve
over TDC states (depicted in Fig. 2) and determine the
probability of a node being in the P(transmittable) state.
The analysis of the Markov chain of Fig. 2 leads to the
following equation (its complete derivation is detailed in
Appendix 1):

()

1
1+ 30 (el =D A

Where C; indicates the TDC consumption associated
with the action chosen for events of type i, in other words,

P(transmittable) = 3)
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the Ton for transmitting the event of type i. The final form
of the performance metric is described in Eq. 4.
% 1 hi-Li-gi- PRR(BW, CR;, SF;, TXP;)
T+ Y (Trpe] =D - hi)

A careful look at Eqgs. 3 and 4 reveals the trade-
off between robustness and TDC consumption. More
robust/conservative values of CR/SF lead to higher values
of PRR; however, they also enlarge the ToA of pack-
ets and hence, TDC consumption (C;). This, in turn,
decreases P(transmittable) and A?ff which has a negative
impact on y. Note that, due to the nature of LoRa deploy-
ments, IoT nodes are only aware and responsible for their
behavior; thus, performance has been formulated from
a node-centric perspective. This implies that, although
non-negligible, interferences are omitted as the nature of
LoRa networks (sporadic transmissions of small pieces of
information) make collisions very scarce—see Appendix 2
for more details and for a description of where/when
this assumption holds true. Furthermore, a node cannot
sense which transmission configuration is, a priori, less
prone to interferences (as there is no carrier detection in
LoRa?); thus, they are supposed to be evenly distributed
over all the configurations. To consider interferences, it
should be gateways and not nodes, the entities in charge of
computing transmission policies. This would place a big
computational burden on these devices that may not be
able to handle it—consider that LoRa gateways may be in
charge of dozens or hundreds of end devices.

Equation 4 models the performance of nodes exclusively
in terms of their expected, prioritized throughput. How-
ever, and as indicated in Section 4, power consumption
is of paramount importance in most IoT networks. As
the majority of IoT nodes are powered by batteries or
energy harvesting devices (e.g., solar panels), the power
consumption of such devices should be kept within rea-
sonable values to extend the lifetime of IoT networks
and thus, save on operational expenditures. In light of
the importance of power consumption and to enrich the
mathematical model of IoT nodes, the energy consump-
tion rate (w) of nodes is obtained in terms of the aforemen-
tioned variables. This energy consumption rate is defined
in Eq. 5.

(4)

E(CR;, SF;, TXD;, L;) - ASHt

w=3" - 5)

i=1

The energy consumption rate (i.e., power consumption),
expressed in Watts, can be computed as the energy con-
sumed per sensing cycle divided by the time duration of

2 Although there is a technique called channel activity detection, it is geared
towards detecting the preamble of potentially colliding LoRa transmissions.
Therefore, when a transmission—whose preamble has already been sent—is
on the air, there is no guarantee that it could be detected by other neighboring
LoRa nodes.
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such a cycle. This figure is then aggregated for the two
types of events. In turn, the energy consumed in a sensing
cycle is the product of the energy consumed in reporting
events of type i, E(CR;, SF;, TXP;,L;), and the probabil-
ity with which such an event is sent in a given sensing
cycle, )Lfff. As expected, the transmission configuration
employed determines the energy required to report an
event. More robust configurations entail longer ToA and
hence, an increased energy consumption.

6 Optimization of performance

Once the throughput and power consumption of nodes
is mathematically formulated, the maximization problem
can be characterized. The objective is to find the transmis-
sion policy C that maximizes the throughput of the node
while restricting its power consumption to a maximum
value of wmax watts. The transmission policy C is defined
by the set (CRy, CRy, SF1, SF2, TXPy, TXPy), that is, the
two transmission configurations employed in reporting
both types of events. Thus, the objective is to find the C
that maximizes y while keeping @ under wmax. Equation 6
formally defines this maximization problem:

maxicmize y
subjectto ® < Wmax
CR,CRy € (o, 5,24
567 8
SFy,SF; € {0,7,8,9,10,11,12}
TXP,, TXP, € {—4,—1,2,5,8,11, 14}
(6)

Note that only certain values of CR and SF are valid
in LoRa. Specifically, allowed CR values are %, %, %, and
%. Allowed SF values are 0, 7, 8, 9, 10, 11, and 12. Note
that SF = 0 has been included to indicate the action of
dropping a packet. Similarly, it is quite common that radio
transceivers can only transmit with specific transmission
power values (defined in their respective datasheets). For
illustrative purposes, the RN2483 LoRa transceiver has
been considered [36]. Such a radio chip is manufactured
by Microchip and permits 7 different transmission powers
(expressed in Eq. 6 in dBm). Furthermore, and as indicated
in the previous section, the BW over which the communi-
cation takes place must be the same for IoT end nodes and
gateways. Therefore, this value is a static parameter that is
shared among all devices. BW = 125 KHz is used through-
out the rest of this section since this is the most popular
value for its acceptable data rates and PRR values.

Forcing the variables under optimization (CF, SF, and
TXP) to take discrete values makes the equation above
an NP-hard combinatorial optimization problem with
38416 distinct valid configurations—for just two packet
types. Hence, solving Eq. 6 by systematically exploring

(2019) 2019:200 Page 8 of 13

the entire solution space is unfeasible if one considers
that such equation must be solved within very hardware-
constrained IoT devices. To this end, two different widely
known meta-heuristic have been tuned and tested: an eli-
tist genetic algorithm (GA) [37] and a version of the classic
simulated annealing (SA) algorithm [38]. Although a com-
plete description of them is beyond the scope of this paper,
it suffices to say that both work by iteratively improving
a candidate solution (or a set of them) by evaluating and
tweaking it. They have been chosen mainly due to their
implementation simplicity and reduced requirements in
terms of computational resources; thus, making it very
appropriate for IoT devices. However, we acknowledge
that the number of optimization algorithms is vast and
an exhaustive evaluation of all of them is not practical for
the purposes of this paper. Nevertheless, given the good
performance of GA and SA—as will be shown below—we
believe that the choice is appropriate and that making use
of any other potentially faster alternative would not have
a dramatic impact on the overall proposal performance.

Furthermore, the GA and SA heuristics have been
implemented in LoPy nodes [39], a LoRa-enabled,
Python-based IoT platform. The basic idea of this is to
demonstrate that these two meta-heuristics can run in
hardware-constrained IoT devices, and hence, that the
problem under consideration is solvable by current IoT
platforms. Interested readers are referred to [40] for fur-
ther details on our specific implementation of these two
algorithms. Also note that all programmed code is made
publicly available for the sake of reproducibility. To val-
idate the results yielded by these two approaches, the
exhaustive search has also been implemented in a desk-
top computer—where modern multi-core CPUs make it
viable—and has been used to compute the absolute best
attainable performance.

A 500 individual nodes simulation with randomized
parameters have been conducted and their best C and
y obtained with the three approaches: SA, GA, and
exhaustive search. The parameters of nodes have been
generated following the random distributions described
in Table 1. The employed packet lengths are within the
natural range of IoT monitoring assets of smart indus-
tries or infrastructures of the smart city [30]. The event

Table 1 Random distributions used to generate the parameters
of nodes

Parameter Distribution

Packet lengths (L1 and L) U(10,50) bytes

Event generation probs. (A and ;) U, 1)
Distance node-gateway U(0.5,7) km
Max. power consumption max U(0.1,25) mW
Sensing cycle (T) 5s
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generation probabilities are allowed to take any value
between 0 and 1 to cover a wide variety of distinct sce-
narios. Nodes are placed randomly at different distances
from the central gateway (GW). Specifically, nodes are
placed from 500 m to 7 km away from the central GW;
again, we believe that these are values that naturally match
LoRa-based smart cities/industries scenarios [41].

For the simulation of the noise (to compute SNR lev-
els), we have employed the closest-fit pattern matching
(CPM) method [42]. This extensively referenced method
can accurately capture complex temporal dynamics of
noise, finely representing the type of noise spikes that
occur in dense IoT deployments. CPM is fed with a base
noise trace [43] for it to artificially generate future noise
levels. This noise trace is chosen so as to mimic scenarios
where other interfering devices coexist in the same fre-
quency band [44]. Finally, the maximum allowed power
consumption is varied between 0.1 and 25 mW (note that
only communication-related consumption is considered).
These values simulate networks where nodes could be
powered during 0.5-6 years (respectively) with a pair
of regular AA batteries. These lifespans are completely
in-line with the spirit of IoT LoRaWAN networks [27].

Table 2 shows the mean throughput values obtained
with the three approaches. Results show that both the
SA and the GA algorithms obtain throughput values
remarkably close to those obtained with the exhaustive
search. This means that, these naturally local-optimizing
algorithms attain, in most cases, the global maximum
value of y. More precisely, mean throughput values dif-
fer from those achieved with the exhaustive search in
just 1.26% for the SA algorithm and in 1.42% for the GA
algorithm. These small differences illustrate the interest
of such approaches that, in addition, make maximizing
Eq. 6 timely solvable in hardware-constrained IoT devices.
Regarding computation times, our specific implementa-
tion of the SA tends to be more than two times faster than
the GA, hence making SA the preferred option (as SA
also provides larger mean throughput values). Specifically,
to compute C in LoPy nodes, the SA algorithm needed
an average time of 4.3 s, whereas GA required 9.93s, in
average, for the same task.

These execution times and performance values prove
that, although the performance maximization task is
an NP-hard optimization problem, applying two widely

Table 2 Mean throughput values obtained for 500 randomly
simulated nodes and for the three different approaches of
solving Eq. 6

Computing algorithm Mean throughput (y)

Exhaustive search 41.280 bytes/s
40.760 bytes/s

40.691 bytes/s

Simulated annealing (SA)

Genetic algorithm (GA)
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known heuristics to the problem at hand can be an effec-
tive alternative to exhaustive-search approaches or other
more complex alternatives.

7 Results and discussion

Once the optimal C can be derived in hardware-
constrained IoT nodes (via the SA proposed algorithm),
the performance values obtained with the proposed solu-
tion are compared to those attained under other well-
established and intuitive transmission policies. The alter-
native transmission policies that will be considered to this
matter are the following ones:

e Random parameter selection. C will be randomly
selected from the set of all feasible options. The only
condition to satisfy is: @ < Wpay-

e Conservative parameter selection. This policy gives
priority to large PRR values. C will be selected such as
® < Wpay and PRR > 0.99. If multiple combinations
are eligible, the C that leads to a higher PRR will be
chosen. On the other hand, if there is no C that can
jointly guarantee a PRR > 0.99 and @ < ®Wmax,
high-priority packets will take precedence over
low-priority ones (thus, discarding the latter).

e LoRaWAN adaptive data rate (ADR). ADR is the de-
facto LoRa mechanism for optimizing ToA of packets,
data rates, and energy consumption in LoRa networks
[45]. However, as the LoRaW AN specification does
not suggest a particular implementation of the ADR
mechanism, we consider for this matter the
implementation provided by The Things Network,
the largest public LoRaWAN network [46]. For a
given SNR history, the ADR mechanism, that runs in
a centralized entity (e.g., network server), determines
the best C for a given node.

As in Section 6, 500 randomly generated nodes are
simulated and their performance evaluated when the 4
different algorithms are employed to derive C. Again, the
random distributions described in Table 1 are used to set
the parameters of the nodes. Figure 4 depicts the obtained
results in a box plot. Note that, for a particular sim-
ulated node, the proposed solution consistently outper-
forms other alternatives in terms of achieved throughput.
However, since the final node performance is dominated
by its configuration (i.e., generated packet lengths, event-
generation rate) the performance value obtained in one
scenario cannot be directly compared to that obtained
in other scenario; this is the reason why the minimum
throughput value attained with our proposed solution for
500 nodes is not greater than the maximum throughput
value achieved with, e.g., the ADR mechanism.

Expectedly, the transmission configurations derived
from maximizing Eq. 6 using the SA algorithm, that is,
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Obtained performance for different
policy derivation algorithms
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Fig. 4 Throughput values for different policies. Box plot of the throughput values obtained for 500 randomly generated nodes when the 4 policy
derivation algorithms are employed. The “proposed solution” solves Eq. 6 with the SA algorithm. Average obtained throughput is also indicated in
the text

the proposed solution, yield the average best node perfor-
mance values (40.76 bytes/s). Specifically, when our solu-
tion is used instead of the ADR mechanism, an increase
in the throughput of 33.20% is appreciated (from 30.60 to
40.76 bytes/s). This improvement enlarges up to 91.81%
when our solution is preferred over a conservative policy
derivation approach (from 21.25 to 40.76 bytes/s). Natu-
rally, randomly choosing the transmission parameters lead
to the worst performance values (238.8% smaller). These
results highlight the value of mathematically modeling
node performance for a later optimization.

8 Conclusions

As far as the authors are aware, this work presents the
first mathematical model of LoRa nodes whose analysis
helps to fully describe the operational nature of long-range
IoT devices. Based on optimal policy-derivation theory,
the main benefit of this new model lies in its capacity
to numerically anticipate the performance of IoT nodes,
a required feature of IoT networks deployed in crucial
scenarios like smart cities/industries.

Furthermore, with the aim of enhancing the operation
of such networks, the performance of nodes is posed
and formulated as an optimization problem in which the
band usage is limited. This illustrates the limitation on
the transmission duty cycle imposed in many countries.
By jointly considering band and power utilization effi-
ciency, the maximum attainable performance of nodes,
in throughput terms, is computed and optimized with
respect to a set of feasible transmission parameters, thus

obtaining what is known as the optimal transmission pol-
icy. In addition to this, power consumption of nodes is
added as a constraint to the optimization problem to also
enlarge node lifespans.

However, since only discrete values from a set of allowed
configurations can be used in the optimization problem,
this complex combinatorial optimization problem is not
directly solvable in IoT nodes; mainly due to their lim-
ited computational power. To overcome this, two widely
known meta-heuristics are tuned, tested, and shown to
provide results close to those obtained under an exhaus-
tive search approach. At the same time, implementations
on a real IoT platform prove that running times of these
two meta-heuristics are within reasonable values, and
thus, our solution is fitted for hardware-constrained IoT
devices. Finally, the performance values obtained under
our solution are compared to three additional policies:
a random policy, a conservative policy, and the ADR
mechanism, the most popular approach for LoRaWAN
nodes. Results highlight the goodness of our solution
that increases performance in more than 33.20%, 91.81%,
and 238.8% when compared to ADR, conservative, and
random policies, respectively.

Appendix 1

Analysis of the Markov process

Let Q, be the amount of TDC recharged at the begin-
ning of each sensing cycle expressed in seconds. For a
given sensing periodicity, T, and a given duty cycle, DC;
Q, = T - DC. Moreover, let C; and C, be the amount of
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TDC consumed (in seconds) when a packet of type 1 and
2 (respectively) is issued under a given transmission pol-
icy. Similarly, let A; and A, be the probabilities with which
these two events are generated in each sensing cycle, and
Ao = 1 — A1 — Ao the probability with which no event is
generated.

For the sake of simplicity, a specific Markov chain is
analyzed and then generalized. Figure 5 depicts such an
example in which Q, = 2s, C; = 8s, C; = 11s. The
Markov chain is discretized with Q = 1. Note that each
state indicates the remaining TDC of the node.

Each sensing cycle, 2 s of TDC are recharged. Note that
the maximum storable TDC, TDCypy4x, is equal to 9 s and
hence, in the state 8, just 1s of TDC is recharged. If, in
a sensing cycle, an event of type 1 is transmitted, 8s of
TDC are also consumed. This would lead to a total decre-
ment of 8 — 2 = 6 seconds of TDC. Similarly, if a packet
of type 2 is generated, 9s of TDC are consumed in total.
Note that only when the node has 9s of TDC, that is,
TDC = TDCpmax, can it generate events (i.e., the trans-
mission of a type 1 or 2 information packet). This state is
called transmittable state because only from that state can
a new transmission be generated/issued.

In order to derive the steady-state probability of being
in the transmittable state, g, the equilibrium distribution
of the Markov chain is analyzed.

Solving the above equations:

1

T I3 M +5 A @)
w9 = (g +m7) + M9 - Ao T4 = T2

g = T 73 =71 + 79 - A1

7 = Tt5 Ty = T

TTe = T4 7'[1=0

5 = 73 o = 79 - A2

Yitomi =1
To generalize the equation above, it should be noted
that the number of sensing cycles required to recharge the
TDC spent/consumed in a transmission of a type-1 packet
and a type-2 packet are 3 and 5, respectively. This can be
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corroborated by carefully observing the state transitions
of Fig. 5. For instance, for a type-2 packet transmission, the
state of the node evolves from 9 to 0. After that, 5 sensing
cycles must be elapsed to get to state 9 again. Hence, the 3
and 5 values can be substituted with a more general value.
Thus, we get the following final expression:

1
14 19527 g 4+ 192527 29
(8)

P(transmittable) = g =

Appendix 2

Justification for node-centric approach

LoRaWAN networks follow a star topology, meaning that
there is a direct connection between end devices (IoT
nodes) and gateways. This implies that there is no cooper-
ation between nodes, as is common in multi-hop or mesh
topologies. Therefore, from a physical point of view, the
only way in which nodes interact with each other is via
interference. If two nodes transmit under the same fre-
quency channel and SF at the same time, their packet
may, a priori, collide. However, the so-called capture effect
can make the more powerful packet (in terms of trans-
mission power) prevail over the weaker one [47]. This
effect, together with the low data generation rate, short
packets, and the availability of different non-colliding fre-
quency channels, makes packet collisions very rare for
small to medium networks. To demonstrate this, the fol-
lowing mathematical experiment is carried out. Consider
a LoRa network composed of 100 nodes and that the
100 of them are in the coverage area of their respective
neighbors and transmitting under the same channel (the
worst-case scenario). Each of these nodes generates pack-
ets of 33 bytes with an event-generation rate varying from
1 packet per hour to 30 packets per hour. Note that the
LoRa MAC protocol, in the worst case (that is, disre-
garding the capture effect), follows an unslotted aloha-like
mechanism, and therefore the probability of collision for a

cq,

Fig. 5 Simple Markovian model of TDC. Markovian model of the TDC consumption/generation scheme. Note that each state indicates the

(discretized) remaining TDC of the node in seconds
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Table 3 Probability of collision, P(col), for different spreading
factors and packet generation rates

SF 1 pkt/h 5 pkts/h 10 pkts/h 30 pkts/h
7 0.0204% 0.1020% 0.2039% 0.6106%
8 0.0367% 0.1837% 0.3670% 1.0971%
9 0.0735% 0.3670% 0.7327% 2.1823%
10 0.1307% 0.6520% 1.2999% 3.8492%
1 0.2613% 1.2999% 2.5829% 7.5504%
12 0.4573% 2.2657% 4.4801% 12.8472%
packet transmission can be expressed as follows:
—T;Al
P(co) =1—e "'"%, 9)

where T; indicates the ToA of a generated packet i, and
)»iﬁg , the total aggregated traffic for the 100 nodes and for
the SF being employed in such a packet transmission. For
illustrative purposes and clarity, we assume a uniform dis-
tribution of SFs in the network. With all of this taken into
consideration, the probability of collision for each con-
figuration is described in Table 3 for 4 different packet
generation rates.

Note that for typical LoRa network traffic activity, the
collision probability is very low even for the SF longest
configuration (SF = 12). This demonstrates the applied
reasoning: although non-negligible, collisions do not play
a major role in typical LoRa networks. This is even more
so when:

o At least, the three mandatory channels are
considered, which divide by three the effective
aggregated event-generation rate. In other words, if
one considers the three channels, the values
presented in Table 3 would apply for a network
composed of three times more devices.

e The capture effect is taken into account since, as
demonstrated in [47], can even half the amount of
collisions in a LoRa network.
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