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Abstract

sources and channels.

Correlated sources passing through broadcast channels is considered in this paper. Each receiver has access to
correlated source side information and each source at the sender is kept secret from the unintended receiver. This
communication model can be seen as generalizations of Tuncel's source over broadcast channel and Villard et al.’s
source over wiretap channel. An outer bound for secure transmission region of arbitrarily correlated sources with the
equivocation-rate levels is derived with ultra-low latency and used to prove capacity results for several classes of
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1 Introduction
The communication of two correlated sources S; and Sy
over broadcast channel (BC) p(y1,y2|x) with correlated
side information (SI) S; and S, at the receivers is con-
sidered [1-5]. In addition, each source should be kept as
secret as possible from the unintended receiver where the
secrecy is measured by the equivocation rate [6-9]. We
refer to this model as the discrete memoryless BC-SI with
two confidential sources (DM-BCCS-SI). DM-BCCS-SI
model is shown in Fig. 1 and covers various practical appli-
cations in distributed video compression, peer-to-peer
data distribution systems, and wireless sensor networks.
This paper investigates reliability and security of the DM-
BCCS-SI [10-13]. In general, four fundamental issues
need to be solved: (i) How to use distributed source codes
to decrease transmission load but increase secrecy rates?
(if) How to find capacity of BCs with arbitrarily correlated
sources? (iii) How to design coding strategy for secure
transmission? (iv) How to build a source-channel cod-
ing to derive the optimal bounds or make source-channel
separation theorem hold?

Although there have been results about source-channel
coding for BCs, we have a limited understanding of
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general source-channel matching conditions for reliable
transmission, let alone for secure transmission [14-19]. In
2006, Tuncel [20] found the optimal source-channel rate
for broadcasting a common source to multiple receivers.
In 2013, Villard et al. [21] investigated the source-channel
coding for secure transmission of a source over 2-receiver
wiretap channel with arbitrarily correlated side informa-
tion at both receivers. In Tuncel and Villard et al’s works,
the source and channel variables are statistically inde-
pendent. And in some special cases, it is proved that
source-channel separation theorem holds. However, in
general, the separation may be suboptimal for broadcast-
ing arbitrarily correlated sources. So far, the well-known
sufficient conditions for reliable transmission of arbitrar-
ily correlated sources over BC firstly introduced by Han
and Costa in [22] are due to using the joint distribution
of source and channel variables. On the other hand, the
necessary conditions were provided by Kramer et al. [23].
Recently, we studied broadcast channels with confiden-
tial sources (BCCS) and without side information [24],
which generalizes Han-Costa model to secure situation by
considering each source kept secret from the unintended
recipient. In this paper, we are devoted to establish the suf-
ficient and necessary conditions for secure transmission
of the DM-BCCS-SI in Fig. 1.

Shannon showed that his inner bound is indeed the
capacity region of the “restricted” two-way channel, in
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Fig. 1 System model for the DM-BCCS-SI

which the channel inputs of the users depend only on the
messages (not on the previous channel outputs). Several
improved outer bounds using the “dependence-balance
bounds” are proposed by Hekstra and Willems. In this
paper, we both consider the inner bound and outer bound.
The source (S1,S>) is said to be admissible with secrecy
level (Es1, Esg) for this BC-SIif for any A, 0 < A < 1, and
for large enough m and n, there is a code with length-m
source sequence and length-# codewords such that

P <k, PR <,
Esy < ZH(SP|YESY) + A, Esy < LH(SPIYIS!) + A
1)

where Pgl") and P‘(g’) are the respective error probabilities
for receivers 1 and 2, %H (S7"1Y7 S is the equivocation
rate which denotes the uncertainty for S; at receiver 2
given the sequences Y;' and 3’21, the similar description is
for %H (S§”|Y1"§§”) at receiver 1. A set of all admissible
sources with the equivocation rate levels (S1, S, Es1, Es2)
satisfying the condition (1) is called secure transmission
region.

In this paper, we establish outer and inner bounds of
secure transmission region of the DM-BCCS-SI, which
consists of a set of admissible sources with a range of
secrecy levels. Furthermore, the proposed outer bound is
shown to be tight in the following three aspects: (i) Joint
source-channel coding, whose distribution relies on joint
probability of source and channel variables. (ii) Separate
source-channel coding, whose distribution is determined
by statistically independent distribution of source and
channel variables, is not necessarily the optimal codes for
the source or the channel and is refered to as Operational
separation in [20, 25]. (iii) Informational separation refers

to classical separation in Shannon sense, that is, com-
parison of the optimal source coding rate region and the
channel capacity region is sufficient to find the optimal
secure transmission region.

2 Anouter bound

Let K = f(S) = g(T) be the common variable in the sense
of Gacs and Korner (and also Witsenhausen), and con-
sider auxiliary random variables W, U, V' that satisfy the
Markov chain property

S—>TwWUV - X - YZ

Consider a general outer bound of the DM-BCCS-SI.
Assume the common variable K = a(S;) = b(Sy) of §;
and Sy in the sense of G-K. The source code length m
may differ from the channel code length n (see Fig. 1).

The auxiliary random variables (f(, §1,§2,§1,§2> have

the same probability distribution as (K™, S}, SY, 3{",53")
respectively (according with [23, Theorem 1]).

Theorem 1 (Outer bound) An admissible source pair
(S1,S2) with secrecy level (Esi, Esa) for the DM-BCCS-SI
satisfies the following bounds

H(KIS)) /R <1 (1”(; YilS, u1> 2)
H(K|S) /R <1 (1”(; Y2|§2u2) 3)
H(S1S) /R <1 (Sl; Y1|§1u1) (4)
H (S2185) /R < I (Sz; Y2|§2u2> 5)
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H ($15218152) /R

<I (51; Y1|§2§1§2U1U2) +1 (§2§1U1; Y2|§2U2) (©)
H ($15215182) /R o -
< 1 (8i8ats vilSith ) +1 (S0 Val$18:55 U L)
[H (S11S1)+H (S2152) =1 (S15 S21S1K) =1 (S2: $1K152) ] /R
1(K$18:Ui Ui i) +1 (31511155152t Uy )
< ~ ~ = =
| (52; Y2|1<5152u1u2)
(8)
[H (S11S1)+H (S2152) =1 (S15 S21S2K) =1 (S15 S2K151) ] /R
I (1<5152u1 Us; Yz) +1 (52; Ysl81815: U uz)
< ~ ~ = =
~ | 41 (sl; Y1|K5152U1U2)
)
1(S1;81152) — 1(~51~; S21S2) +1(51;§z|52§12 y
+R [1 (:91; Y1|§2:91§2U1U2) -1 <§1; Y2|§2§1§2U1U2>],
Es1 < 1 1(S1;511K) — I (S15S21K) +1(S1; S21KS81)
+R[ (51, n |K5152U1U2> -1 (51, Y2|K5152U1U2)}
H (5115252)
(10)
1(S2:521S1) — 1 (S25 S11S1) + 1 (S2 S115152)
+R [1 (52, Y2|515152U1U2) *1<52 Y1|515152U1U2>]
Esy < 1 1(S2:521K) —1(S S11K) +1(S2: 51 |1<52)~ i
+R [1 (Sz; Y2|k§1§2U1U2> -1 (Sz; n |k«§l«§2uluz)j|,
H (S215151)
(11)
where R = n/m and for the distribution
P (72515231:92%1”2%}’1)/2) =p (5132:91:92%1”2)
(12)

p <x|/~<§1§2M1 M2) pO1y2x)

Remarks 1 Without the side information §1,§2,§1,§2,
the bounds (2)-(11) are reduced to the bounds given in
[24, Theorem 2].

2.1 Proof of Theorem 1
Fano’s inequality gives

H (K™Y\"S7") <H (S71y,"8") <P

—"el

-mlog,|S1|+1 (13)

H (K™Y2"S)) < H (S2"[Y2"8y") < P - milog,|Sa| + 1

(14)
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Let 8 = P"log,|S1| + 1/m and 8, = P4 log,|Ss| +
1/m, and define the auxiliary random variables

U= Uy=Yl, (15)

which satisfy (12).
At first, we consider the entropy bounds of a single
source S; and have the facts

mH (S1) = H(S™) (16)
m[H(Sy) — 81) < H (S}") — H (S7"|Y]'ST")

=I(SP5Y]Sy) =1 (sq",s'”) +1(ST5YTIST)

= ml (S1;51) + Y1y (S5 Yl Sy vy 1) (17)

= ml ($1:81) + Xy 1 (8 VadSith)
= ml (S1:81) +nl (S5 V111t

where (16) follows from discrete memoryless property
and (17) follows from Fano’s inequality (13). And we have

m[H (S1|S1) — 81] < nl (31; Y1|§1U1> (18)

Next, we consider the entropy bounds of two sources
$18s.

m[H (S1) + H (S2) — &1 — 8]

SL(STS YISY) +1(S35Y5S5) ] _

=m[I(S1;81)+1 (S2; S2) 141 (S5 YTIST) + 1 (S Y2 IS
(19)

< L1 (S1351) +1(52:8) 1+ (75 535 YT 18Y)
+H (S35 SPYYSy) _ o
= m [1(S1;81) +1 (S2; S2) +1 (S1;5252151) + 1 (S2 $1152) ]
+1 (ST Y |SYSTISY) + 1 (St Y3ST Sy
(20)
For any random variables W, Y”, Z", we have

n

= [(wy™=hz)) —1(wy5 z},,)],
i=1

1 (W;Zn)

(21)

where Y0 = Zn .1 = 0. Hence, the last two terms in (20)
are bounded as the following inequality
I(ST5YPISTSTSY) +1(Sy Y3|ST'Sy")
1
g 1(S7s vulsgsysy Y vg, (22)
= i=1 +1 (SmSmYl 1, Y21|Sm 2;+1)
Substitute (15) for (22), we have

m[H (515215182) — 81 — 82]
<mn [1 (Sl, Y1|525152U1U2) +1 <5251U1, Y2|52U2>]

(23)
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Next, we consider another outer bound of (19)

1 (S1380) + 1 (52352)] +1 (ST Y137 +1 (555 Y155
< m[I(Sy;S1) +1(S282) 1+ (SPK™; Y|ST)
+1 (S5 K™Y3Sy)
<m[I(S1;51) +1(Sa; S2)] + 1 (K™; YJIS) + 1 (7 Sy IK™SY")
+1 (75 YPIK™SPST) + 1 (S5 YPIK™ST) — I (S YIIK™ST)
+H (K™|S5") + 1 (S5 Sp Yy |K™Syr)
m[1(S1:81) +1(S2:82) +1(S152151K) +1 (S2; $1K1S>) ]
+1 (K™ STSy5 YT |ST) — I (S5 YHK™STSyT)
+1 (S5 YR IK™ S S

(24)
For any random variables W, Y”, Z", we attain
n n
DIZYT) =3 I (WY 25)
i=1 j=

As aresult, The last three terms in (24) are bounded as the
following inequality

L(K™SPsys YTIST') +1(S35 Y3 K™ SPSy) | _
—I (S5 YIK™ S S -

i:fl [1 (ks vi= v, va) + 1 (Sps vulkmsgspsg iy, )
41 (s;"; Yol K"S0S Yty m)]
(26)
Combining (24) and (26), we obtain

[H(& 1S1) + H(S2152) — (515 52151K) }
1(52,51K|52) —381— & @7)
1(K5152U1U2, Y1) + 1(Sy; Y1|525152U1U2)
+I(S; Ya|KS1 Sy U Up) i|

We now consider the equivocation-rate bounds

mEgy < H (S7|Y}Sy)
= H (ST1Y3Sysy) + 1 (ST 83158y
< H (SPIY5S3S5) + H (S3'1Y5'SY)
< H (SPISY) = 1(SY5 Y3'S5'1S5") + més .
= 1S5 YYSTIS3) + H (STIYYSy'ST") — (ST Y5'S'1SYT) + mda
<I (sgﬂ;s;ﬂs;”_) + 1 (S YISS) — 1 (ST 501S)
—1 (S5 Y3S'SH) + m (81 + 82)

m[1(S1;811S2) — 1 (S1:521S2) + 81 + 62
+ (ST;SE”lf{“ISS@i”) — (ST Y3185'Sy)
=m[I(S1;51152) — I (S1;52182) + 81 + 62
—I (SZ";SI”{E’ISS”SS") +1(§T:3§”\5§’13€”Yf
=m[I(S1;51152) — I (S1:52182) + 61 + 62
(S YYISESYISy) — 1(S7's Y3157y
—L(ST5SPISyISy) +1 (S75 8718y yy)

m [I(S1;81182) — 1 (S15521S2) + 1 (S1; 521281) + 81 + 62
+ (ST Y{'IS3 SISy — 1 (ST Y3'IS5SYSy)

m[I(S15811S2) — I (S155212) + 1 (S1; S21281) + 61 + 82 +

; [7 (st vulsgSpsyyiT vy, ) — 1 (Sps vail sy v vg,, ) |

+ 1 (S YpSeSwS)

+1(Sy;551S3S)

—_

(28)
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Therefore, we have

mEs) < m[1(S1;51152) = 1 (515 52152) +1 (51 5218251) + 81 + 8]
11 (311185150 ) 1 (35 V285150 D) |
(29)
We consider another case
mEsy < H (S?'|Y5Sy)
=H (SPIK™ YRS + 1 (S); K™ Y3Sy)
< H (SPIK™) — I (75 YESTIK™) + mb,
< I(SPYPSPIK™) — ISP YRSTIK™) 4+ m (81 + 62)
= I(S7;SIK™) — (S5 S5 IK™)
I (S YPIK™S) — ISP YRIK™SY) + m (81 + 82)
m[I(S1;511K) — I (S1; S21K) + 81 + 82
+1 (ST S YR|KMST) — 1 (ST YR IK™SS)
=m[I(S1;S11K) — I (S1; 521K) + 1 (S1; S21KS1) + 81 + 82 ]
+1 (75 YP|\K™SPSy) — ISV Yy K™SPS)
= m[1(S1;$11K) =1 (S1382|K) + 1 (S1;52/KS1) + 81 + 82] +
) [1 (s vulkmsysy vy, ) — (s valkmSpsy v v, )|
i=1

Therefore, we have

mEsy < m[I(S1;511K) = I (S1;521K) 41 (S1; S21KS1) + 81 + 82
+n [1 (31; )41 |1~<§1~_92U1U2> -1 (:91; Y2|1~<§1§2U1U2)}

(30)
And we also have the following steps
mEs, < H(S7'Y;5y) ]
= H (STS5S YY) + 1 (Sy'; S| Y3S) 31)

< H (S}'|S5'Sy') + méy
= mH (8115282) + mdy
According to (18), we get (4), and similarly get (2), (3),

and (5). According to (23), (27), (29), (30), and (31), we get
(6), (8), and (10) and symmetrically get (7), (9), and (11).

3 Aninnerbound
Theorem 2 (Inner bound) A source pair (S1,Sy) with
secrecy level (Es1, Esy) is admissible for the DM-BCCS-SI if

H (S1) < I(Uol1S1; Y181) — I (UpUy; S2|S1) (32)

H (S2) < I(UolsS; Y2Ss) — I (Uola; $11S2) (33)

H (8182) < I (UolU1S1; Y181) +1 (UzS2; Y2521 KUy)
—1 (U1 S1; Uz821K Uop)

(34)

H (8182) < I(U1S1; Y1S1IKUo) + I (UolU»Sa; YaS5)
—I (U181; Uz $21K Up)

(35)
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H ($182) < I (UplsS1; Y181) + I (UolUaSa; YaS)
—1 (U181; US| KUp) — 1 (851825 KUp)

(36)
Es1 < H(Sl|52.§2UQU2Y2) (37)
Esy < H(52|51§1U0U1 Yl) (38)

Es1 < I(S1Uy; Y1S11KUo) — I (S1Ua; $282Un Y| KUy)
(39)

Esy < I(Sal; Y2S2|KUo) — I (Sall; $181ULY1IKUp)
(40)
for all the distributions

p (51523152%0u1 Urxy192) (41)
= p (51525152) p (uouru2x|5152) p (y1721%)
Remarks 2 The proof of Theorem 2 uses joint source-
channel coding. We choose R = 1(m = n) so as to apply
joint typical decoding for source and channel sequences, the
same method used in [22-24, 26]. In addition, the receiv-
ing sequences Y{' and :9’17 can be combined into one such
that the proof of Theorem 2 is the same as the proof in
[24, Theorem 1]. Consider limitted space, we omit the inner
bound proof here.

Remarks 3 Theorems 1 and 2 extend Villard et al’s
secure transmission of a source over wiretap channel [21]
to that of two correlated sources over BC. Inequalities
(30)-(34) and (2)-(9) are respectively the inner and outer
bounds for reliable transmission without security con-
straints, whose bounds extend Tuncel's [20] and Kang
et al’s results [26] to arbitrarily correlated sources and
extend Timo et al.’s result [27] for noiseless network to that
for noisy BC. 1f§1,§2 = a constant, Theorem 2 is reduced
to [24, Theorem 1].

4 Special cases

We here consider three classes of DM-BCCS-SI: Joint
Source-Channel Coding, A Single Source Passing through
BCs with Degraded SI and Independent Sources given SI.
Furthermore, we assume R = 1, i.e.,, n = m. In this case,
the capacity theorem proofs in Subsections A and B follow
from Theorems 1 and 2 and they are not given here.

4.1 Joint source-channel coding

4.1.1 Markov sources and degraded S|

Assume the deterministic side information at the receivers
for the DM-BCCS-SI.

(2019) 2019:216 Page 5 of 13

Theorem 3 (Sl, Sy, K, Sq, .§2) forms the Markov chains

S$1>K—>83, 8 =8 =8, 8%—>5—>58 42
and deterministic functions
S1=F1(S1), $2=F2(S2) (43)

(S1,S2) with secrecy level (Es1,Esz) is admissible for the
semi-deterministic DM-BCCS-SI, i.e., y1 =f (x), if

H (K15152) < min{I (Uo; Y1), 1 (Uo; Y2)} (44)
H (S1181) < H (Y1) (45)
H ($2182) < I (Ul Ya) (46)
H(Sl|§1) +H(52|§2) -1 (51;52|§1§2) (47)
< I(Uo; Y1) + 1 (Uy; Ya|Uo) + H (Y1|Uol)

H (S1181) + H (S21S2) — 1 (51 5215152) (48)

< I(Uplh; Y2) + H (Y1|Uoll2)

Es1 < min{H (S11S2) + H (Y1|Y2Uol) , H (S1|S2)}
(49)

Esy < min{H (S2]S1) + I (Uy; Y2|Uo) — I (Un; Y1|Up),
H (S2151)}

(50)
for some distribution

P (51525182) p (woualsis2) p (Kluouz) p (y1y21%) -

4.1.2 More capable BCs with partial degraded S|

Theorem 4 Counsider a class of less-noisy DM-BCCS-SI
defined by I(U; Y1) > I(U; Y3) for all Markov chains U —
X — Y1Ys, and (Sl, S5, 81, Sg)forms the Markov chains

S2—81—515, S1 -5 -8, (51)
(81, S2) with secrecy level (Esy, Esy) is admissible if

H(8,1S2) < I(U; Y>) (52)

H (8182181) < I Ya|U) + I(U; Ya) (53)

Es1 < min {I0G Y11U) — I(X; Ya|U) +1 (S15511S2)
—1 (S1;52152) , H (5115282)}
(54)

Esy =0
for some
P (51525182) p (uls152) p (x|w) p (71721).

(55)

distribution
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Remarks 4 Without side information and security con-
straints, Theorems 3 and 4 are reduced to [23, Theorems 3
and 4] firstly discussed by Kramer et al.. It should be noted
that operational separation also hold for these two cases.
That is, independent distribution of source and channel
variables is also sufficient for the optimal results.

4.2 Operational separation: a single source passing
through BCs with degraded S|

A single source S transmission over BC with side informa-

tion S; and S, at both receivers is considered.

Theorem 5 (i) S is reliably transmitted if

H(S|S1) < min{I(X; Y1), I0G Y1 |U) + I(U; Ya)} (56)

H (SIS2) < I(U; Ya) (57)

(ii) Consider security constraints, S with secrecy level Eg
is admissible for wiretap channel, Receiver 1 is legitimate
user, Receiver 2 can be seen as an eavesdropper, if

H (SI81) < I(U; Y1) (58)

Esi <min{I ($;81) —1(S;S2) + 1 (U; Y1|Q)

—I(W;Y]Q), H (SI5:)) (59)

for some distribution p (Slggls)p (x|u) p (y1y2|x), and
(S, S1, Sz) satisfies the Markov chain S — S — Sy

For K = 2, rate R is achievable using separate source
and channel coders if and only if

(H(X|Y1), H(X|Y2)) € RC™, (60)

where RC¥= {(Ry,Ry) € C%™}.

Remarks 5 Using operational separation, source vari-
ables (S, S1, 32) are independent of channel variables
(U, X, Y1, Ys). Thereliable bounds (54)-(55) are the special
case that exists in [20, Theorem 5]. The secure bounds (56)-
(57) extend Merhav’s bounds for degraded wiretap channel
[28].

4.3 Informational separation: independent sources given
SI

Theorem 6 Cousider a semi—c{ete_rministic DM-BCCS-

SL ie., y1 = f(x) where (Sl,Sz,Sl,Sz) forms the Markov
chains

$1>81—>5, 85— 8—>5 (61)
S1—> 81— 8, 81— 81— S (62)

(i) (81, S2) is reliably transmitted if

(2019) 2019:216 Page 6 of 13
H ($1151) < H(Y1) (63)
H (S2182) < I(U; Ya) (64)

H (S1151) + H ($2182) < HA W) + I(U;Y)  (65)

(ii) The secrecy capacity of (Es1, Es2)

Esy <min {7 (S1;811S2) =1 (S1; S21S2) +H (Y1|YaUolby),
H ($1152)}
(66)

Egp < min {I (S2s §2|K) -1 (52;§1|K)

+ I (Uy; Ya|Uo) — I (Uy; Y1|Up), H (S2151)} (67)

for some distribution p (31525132)p(uoulugux)p(ylyﬂx)

Remarks 6 The proofof Theorem 6 is given in Appendix A,
which is based on stand-alone source and channel codes
and applying Slepian-Wolf source coding followed by Mar-
ton’s BC coding. Information separation for Theorem 6 sug-
gests that source-channel separation in the informational
sense is optimal.

5 Conclusion

In this paper, we studied the problem of sending a pair
of correlated sources through a broadcast channel with
correlated side information at the receivers. In addition,
each source should be kept secret from the unintended
receiver. Due to the lack of a general source-channel
separation theorem for broadcast channels, optimal per-
formance sometimes requires joint source-channel coding
such as Theorem 2. We also established a general outer
bound and have analyzed three classes of sources and
channels in which this general outer bound is tight, that is,
source channel coding, operational separation, and infor-
mational separation are respectively proved to be optimal
performance.

Appendix A

Proof Of Theorem 6

We outline the proof of reliable transmission bound
of (S1,S2) and the bound of the equivocation-rate pair
(Es1,Es2). We start with the proof of the direct part in
Case (i). Let (Ry, Ry) satisfy the bounds

H (S1181) < Ry < I(Uy; Y1) (68)
H ($2152) < Ry <1 (Un; Y) (69)
H(51|§1) +H(Sz|§2) <R +Ry < (70)

I(Uy; Y1) +1(Uy; Y2) — I (Uy; Uy)
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for some distribution p(x|uy, u#3). The right-hand side of
(65)-(67) can be seen as Marton’s BC bound and the left-
hand side of (65)-(67) can be seen as Slepian-Wolf bound
for distributed source coding.

Code Generation: Consider a distribution p(u1, 42) and
a function x(u1, u2), Let Ry > Ry, Ry > Ry. Randomly and
mdependently assign an index m(s7") to each sequence
s e 8] according to a uniform pmf over [1 2”R1] The
sequences with the same index m; form a bin ?8; (m,).
Similarly assign an index w1y (55”) € [1 : 2"R2] to each
sequence s7' € SJ'. The sequences with the same index
my form a bin ?B5(m15).

For each mj, generate a
2”(1_31*131)

C1(m1)
ui(h),
Similarly,

subcodebook

consisting of sequences

L oe [(ml — D2 RR) 7, mlzn@lRl)C].
for each my, generate a subcodebook ?Cy(m3y) con-
~R2) independent sequences us (h),
1)271(1_?2—1?2) +1: m22n(f€2—R2)
(my, my), find an index pair (I3, lz) such that

sisting of (R

b e [(le — ] For each pair

u (1) € C1 (my), uy (h) € Ca (ma), (uf (), uy (1)) € T (Uy Ua)

and generate a channel codeword x” (u{’ (l), uly (lg)).

Encoding: Use the above separate source and channel
code for encoding. The source encoder finds the bin index
m1 and my of s and s respectively using the Slepian-
Wolf source code, and forwards them to the channel
encoder. The channel encoder transmits the codeword
x"(m1, my) corresponding to the source bin index using
Marton’s code.

Decoding: We use a separate source and channel
decoder. Upon y}, Channel-Decoder 1 tries to find the
unique index m; such that the corresponding channel
codewords satisfy (u’f(ll),y’f) € TE(”) and uf(h) €
C1(my). If such m; exists and is unique, set #1; = my;
otherwise, declare an error. Similarly, Channel-Decoder 2
tries to find the unique my such that (ug(lz), yg) € Te(”)
and u}(l;) € Cy(m3), and then set 71y = my.

Then, 17 and 71y are provided to the source decoders
1 and 2 respectively. Upon 31” and SS”, Source-Decoders
1 and 2 find the unique (S;”,sg‘) such that s7" € B (ﬁql),
(s7,87) € T and s € B (i), (5,55 € T
thus set (31",35") = (si”,sgq).

Error analysis: Assume (s},s4) is sent by the encoder,

, and

such that the corresponding indices (i, ip). (21,22)
denotes the decoded indices at the receivers. The average
probability of decoding error can be computed as

PY S Y (st sy) # (5158 (ST sy) =

515
<Z P{s‘i” 7&§;"\m1=rh1,51”=s;"}p(s{”)
+Z P{s2 # s |m2=rh2,S§"=sgf}p(s§")
+Z P{m1#mﬂ5’”—sl b (s7)

p P{my # i) Sy = 53"} p (s3')

(s s3)}p (57 53)

(71)
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The first two terms in (68) are close to zero with large
m when applying Slepian-Wolf source code, and the last
two terms in (68) are also close to zero with large »
when applying Marton’s code for a semi-deterministic BC.
Hence, P — 0.

We next prove the converse for Case (i). Consider (4)-

(6), let <I~<,§1:§2: U1,U2) =UyS =Y,8% =U, U=
Uyl,, get
H (51181) < I(Y1lo; Y1) < H(Y1) (72)
H ($2182) < I(Upl; Ya) = I(U; Yo) (73)

I (31; Y1|§2§1§2U1U2) +1 <§2§1U1; Y2|§2U2>
<I(Yy; Y1|Uoly) + I (Uogly; Y2) = H(Y1|U) +1(U;Y?)
(74)

Consider the Markov chains (58) and (59), we have

H ($15218152) = H ($1151) + H (S2152) (75)
Then we get (60)-(62).

We next consider Case (ii). Independence of source and
channel implies that the DM-BCCS-SI can be viewed as a
parallel broadcast channel. That is, in addition to the real
BC p(y1,21x), there is a virtual BC with input (51, S2) and
two outputs S; and S,. For the real BC, the inner bound of
(Es1, Es2) can follow from [10, Theorem 4], and we here

only give the con-verse proof. Let (I(, S, 5, u, U2> =

Uy, S1 = Y1, Sy = Uy, and thus inequalities (63)-(64) fol-
low easily from the first term in (10) and the second term
in (11) respectively, and the fact (58), that is

Es1 < H (S115:52)

= H (51152) (76)

Esy < H (S218151) = H (S2151) (77)
Appendix B

Proof of inequalities (25) and (22)

The proof of inequality (25) uses the similar procedure as

that in [23, (60)-(65)], and we here give the proof in detail:

I(SP Y7 |STSSa) + 1 (S Y3158y
@ Z [1 (sys vaulsysysy Y”l) +1(sgyih g8y }
L(S5Y5 Y31 IST'SY)
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¢ 1 (st Yl,l.|s;"§'f*§gfy{—1) + 1 (S5 YaYg 1878 ) |
S| 1 (S v, 8T8y ]
(S vulsy Sy + 1 (SPvi T vaulSpsy gy
=i_fl HL(SEYITN YR ISYSE) — 1 (S5 g, 1878
| (v Vg spSSEYTY
¢ 1 (sps Yl,»|s;”s;”5'2”_Y{_ Y +1 (Spv{ s vaalSy85 g ) |
S| 1 (Vi Y3 ISyS7Sy Y
¢ [ —n (vaalspsysysgyit) +1 (S50 S Vo875 ¥, ) }
=IRY (vulsySysyyiys,)
Sy |- H(Viulsysysysy 1Y2,i+l)+1(55”.§;”YliI;Yz,i|§qu2n,i+1)i|
S|+ (rulsySrsy iy,
-y [1( TSI Y ) 1 (SESPY T Vel g ) |

I
—

(78)

where step (a) follows from Lemma 1.

Lemma 1 [23] For any random variables W,Y",Z", we
have

I(W;Z”)=Z}.q J(wythz) —1(wyh z),,)] (79)

=
Therefore, we get (25).

Consider (75) and (20), we have

[ (S11S1) + H (S21S2) — I(Sl,sz|§132)}
—I(S1;82181) — 1 (S2;511S2) — 81 — 82

<n [1 (51, Y1|525152U1U2> +1 (5251U1, Y2|§2U2)]

and

(51|S1) +H(52|52) — 1(S1;8215182) — I (S1; S2151)
=1 (52,51|52)
= H (5115182) 4+ H (52/5152) —
(S1|5152) +H (S218152) —
H (515215:55)

1(81;8218152)
H (S115182) +H (S11525152)

Therefore, we get (22). That is

m [H (515218152) — 81 — 82] i i
<n [1 (51; Y1|§2§1§2U1U2> +1 (§231U1; Y2|§2U2>]

Proof of inequality (24)

The proof of inequality (24) uses the similar procedure as
that in [23, (73)-(85)], and we here give the proof in detail.
The last two terms in the left-hand side of (23) can be
bounded as:
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L YSKMSIS) — 1 (Sy; Y |K™ SISy
(52 Yyl KMSS Y"‘l)]

Il
M:N

(P YulK S5y Yy, ) -

Il
™M=

SmYz L Yol K8y anﬂ) I(Y{ L Yo K™ S ST it 2"1+1)
71 52 Y2 YulK™3 8y 1)+1(Y2,+1,Y1,|1(’"s"'smsmw 1)

Il
M=

Il
™M=

[1 SEYITS Yl K SIS ) = 1 (SE Vg ulK™Sysy i) |
1Sy Vol kST g ) + 1 (Y Yl K7 SESE Yy )
1 (Sgs vtk SESEYITYg ) = 1 (Y YulK 8PSy it

Il
M=

[1 (55 Yol kST Vg ) — 1 (S VK Sy Y ) |

Il
™M=

[I (52 Yol KMSP Sy 1Yz:+1) 71(5’” Yyl K883 1Y2z+1)]

Il
—

(80)

The first term in the left-hand side of (23) can be
bounded as

- n - .
LK"Yy ISY) < Y1 (kmspsys viSyyi™)

Ms

I(K™SPSESTY =y, 15 Y1)

N
Il
—

(81)
Consider (77) + (78), and we have

& L(K7SpSpSTY Y Vi)
=Ry (S5 Yol K8y {7 g ) = 1 (SE YulK™SySy YT vy, )
s I (K’"smsmsmsm Yy le)
=R (sg",YZ,W"S’”sm R I B LGP D s G
& 1 (K7SpSEYIT Y Yur) + 1 (STSEs YUl SIS YT )
S| (S el YT g ) — (S5 YK S YT )
) 1 (KmSrs Y g le)
=x| (S VaulkmsgSSE YT g ) + 1 (SEs vl SS YT gL, )
= - - . - — .
| (S5 Yal K SESE YT Y ) — 1 (S VK SpSy YT g )
_i (KmSmSth 1 21+1,y1v)
= (s;"; Vi KmSpgmsmy i IYZM) +1 (Sg’; Yas K33 y{*1Y{i+l)
(82)
Therefore, we get (24).

Proof of Theorem 3
Inner bound (admissibility):

Consider the case where S1 — K — S2 forms a
Markov chain and the deterministic SI S; = F1(S1)
and Sy = F5(S2). (S1,82) can be partition into five
parts Wy, W1, Wo, W3, Wy, where (W3, Wa) with entropy
(nH (Sl) nH (Sz)) can be decoded by S; and S, respec-
tively, and three independent messages Wy, W1, Wy with
entropies nRo, nR1, nRy, respectively, satisfying

H (K18152) < Ro, H (S1181) < Ro+Ry, H (S21S2) < Ro+R;

(83)
On the other hand, Wy, Wi, W, are encoded by Xu et

al’s secure coding scheme before being transmitted over
BC, then we get Xu et al’s rate equivocation region
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[29, Theorem 1]. Comparing the source coding rate region
(80) with Xu et al.’s rate equivocation region, we have an
inner bound

H (K|8182) < min{I (Uo; Y1) ,1 (Up; Y2)} (84)
H (81151) < I (UolUy; Y1) (85)
H ($21S2) < I (Uol; Ya) (86)
H (81151) + H (S21S2) — I (S155215152) (87)
< I(Uoly; Y1) + 1 (Uy; Ya|Uop) — I (Uy; Uz|Up)

H (Sﬂgl) +H (SZ|-.§2) —](51;52|§1§2) (88)

< I(Uy; Y1|Uo) + 1 (Uolly; Yo) — 1 (Uy; Uz |Uo)

Es1 <min{H (81182)+1 (Ux; Y1|Uo) —1 (Uy; Us Yo |Up),
H (5112)}
(89)

Esy < min {H (S3181) + I (Up; Ya|Uo) — I (Un; Uy Y1|Up)
H ($251) }
(90)
Next, consider the semi-deterministic BC and (81)-(87),
let U; = Y and obtain (42)-(48). Furthermore, for any
distribution
P (51525152) puoualsis2)p(xluouz)p(y1y21x)
we can achieve the right-hand sides of (81)-(87) due to the
conditions

= F1(51), 52 = F2(S2)

Consider (2)-(11) and choose
U, Sy = U,. For (42), consider

ST —> K— 52,31

Outer bound:
K5152U1U2 = uO» Sl

(2) and (3), and the facts
H(KI$iS:) = H (KI1) = 1 (R vilSithy) < 1 (Ui )
(1)

H(KI$:8:) < H (K1S) =1 (Ki 252l ) < 1(Uos Vo)
(92)
For (43) and (44), consider (4) and (eq:F5), and the facts

H($1181) =1 (S5 1ilith ) < H (1) (93)

H($:15) =1 (35 12150ls) < 1(WUolii Y) - (98)
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For (45), consider (8) and §; — K — 83,51 — S1— So,
Sy — Sy — S1, and the facts

H(K)=1(51;82),

1(S1;82181K) =0, (95)
1(S2;5115:K) =0
and
H(KIS2) =1(S1:52182)
= 1(85151;82182) — I (82 115251)
=1(8151;52152) (96)

=1 (31;52@2)_ +1(S1;5215152)
=1(51;5215152)

Consider (8), we have

H (S11S1) 4 H (S21S2) — 1 (513 S2181K) — I (S2; S1K|S2)
=H (51|51) +H (Sz|52) -1 (Sz,K|52) -1 (52,51|52K)
= H (81151) + H ($21S2) — H (K1S2)
= H (S1/51) + H (S$21S2) — (51,52|§15~2)
<I (I(SlszL[]Ug, Yl) +1 (Sl; Y1|§2§1§2U1U2>

+1 <§2; Y2|I~<§1§2U1U2>
<I(Uy Y1) +H M|Ugly) + I (Uy; Ys|Up)
97)
_ For (46), consider (6) and S; — S1 = 82,8 > S —
S1, and the facts

1 (Sl;§2|§1) = 0, I(S2;§1|§2) =0 (98)
and
(Slszlglgz)
=H (S1|51) +H (52|52) —1 (51,52|5152) (99)
—1(S1;5,151) — 1 (S2; S11S2) o
= H (S1151) + H (S2152) — I (S1; 5215152)
Therefore, we have
H (S1151) + H (52|52) —1(S1;5215:152)
<1 (3511185150t ) +1 (351155 YISl )
< H M |Uolh) + I (Uplly; Yr)
(100)

For the first term in (47), consider the first term in (10),
and

1(S1;82152) = 0,1(S1;51152) = H (S11K).
So we have

Es1 <1(S1;8112) — I(S1;521S2) +1 (S1; 5215251)
(51, Y1|525152U1U2) =1 (Sl, Y2|525152U1U2)

H (S1|52) + I (Uy; Y1|Uola) — I (Uy; Ya|Uola)

H (S11S2) + 1 (Uy; Y1Ya|UglUs) — I (Uy; Ya|Uoly)

H (511S2) + 1 (Uy; Y1|YaUplh)

H (511S2) + H (Y1|YaUoUy)

=
=

(101)
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For the first term in (48), consider the second term in
(11), and we have

Esy <1(S2;S2|K) — 1 (82 S11K) 41 (23 S11KS2)
+1 (SQ; Y2|I~<§1<§2LI1 Uz) -1 (Sz; Y1 |I~<§1§2U1 Uz)
= H (52IK) + I (Us; Ya|Uo) — I (Us; Y1 Uo)

H (821S1) + I (Uy; Ya|Uo) — I (Ly; Y1|Uo)

(102)
The second terms in (47) and (48) follow from the facts

Es1 < H (8115252) < H (511S2) (103)

Esy < H ($:1$151) < H (S211) (104)
Proof of Theorem 4
Inner bound:

Consider (30)-(38) in Theorem 2, Uy = S U, U; = X,
U = a constant, $1S; are independent of U U U;, U and
X satisfy the Markov chain U — X — Y;Y,. We obtain
(50)-(53).

Specifically, consider (30) and the facts

H (S1) < I(Uol1S1; Y181) — I (Uoly; S21S1)
=1 (UXSlsz; Y151) —_] (US2X;85|81)
=1(X; Y1) +1 (5152 51) — 1 (S 82151)
and
H (S1) —1(8152;81) +1(S2;521S1)
=H(S) -1 (5152;51)_+H(52|51)
=H(5152) —1 (S152: 81)
=H (5152|51)
Therefore
H (8152181) < I (Y1) (105)
Consider (31) and the fact

H (S2) < I(UolhSo; Y2Sy) — I (Upla; S11S2)
=1 (USy; Y282) — I (US2; $11S2)

=1 (USz; YzSz)

=1(S282) +1(U; Y2)

Therefore
H ($215:) < I(U; Y»)
Consider (32) and the fact

(106)

H (85152)

< I(UolhS1;Y181) + I (UnS2; Y282 |KUp) — I (U1 S1; UnS2|K Uo)
= I (UXS152; Y181) + 1 (S2; Ya$51|KSo ) — I (XS1; S2|KSaUD)
=1(X; Y1) +1(S182;51) +1 (S2; 521S2) — I (S15521S2)
=10GY1) +1(S15:51)

Therefore

H (5182151) <1 (X; Y1) (107)

(2019) 2019:216 Page 10 0of 13

Consider (33) and the facts

H (8152)

< I(thS; 181K Uo) + 1 (UolhS2; YaS) — I (UnS1; UnS2|K Uo)

= I (XS1; Y1S$1|KSald) + I (USa; Y2S3) — I (XSy; S2|KSo )
=1V +1(S1;51182) + 1 (U Ya) +1(S23S2) — 1 (S15521S2)
=1V +1U; Y2) +1(S1:51182) +1(S2: S2)

and
H (5182) — I (S1;511S2) — I (S2; S2) i
=H (5182) —H (51182)+H (S118281) —H (S2)+H (S21S2)
= H (S115281) + H ($2152)

Therefore

H ($11281) + H ($21S2) < 1 (G YalU) +1(U; Ya)
(108)
Consider (34) and the fact

H (5152) ) )

<I(UolUS1; Y181) +1(UoUaSa; YaS2) — (U1 S1; UaSa| K U)
—1(8152; KUp)

= I (UXS1S2 Y151) +1 (USa; Y2S5) — I (XS1; S2|KSrU)
—1 (8182 KSU)

=1(GY1) +1($15281) +1(U; Y2) +1(5252)
—1(851;82182) — 1 (5152; $2)

=1(X: YD) +1U; Y2) +1(S152:81) +1(52:52) — H (S2)
=1(X; YD) +1(U;Y2) +1(515281) — H (S2182)

Therefore
H ($152181) + H ($21S2) < 1 (G Y1) +1(UsY2) (109)
Consider (102) and (103), the bound (106) is redundant.
Since Sy — §1 — §1853, S1 — Sy — Sy and the facts
H(5152|~:91§2) =H (515_2|L:91) o
H(5152|§152) =H (Szl§152) + H (511528152)
= H (S521S2) + H (5118251)
Therefore
H(5152|31) = H(Sz|§2) +H(51|52§1)

And the bound (105) is equal to (51). Due to the less

noisy condition I(U; Y1) > I(U;Y3), the bound (102) is

redundant. Hence, we have the bounds (49) and (51).
Consider (37), we have

Es1 < I(S1l; Yi81|KUo) — 1 (S1Ui; $282Un Y2 | KUo)
=1 (SlX; Y151|1<U52) -1 (SlX; 5252Y2|](U52)
=10GYIIU) — 1 (X; Ya|U) 41 (S1551152) — 1 (S15 5252152)
=1 (XGN|U)—-1X;Ys|U) +1(51;51|52)—1(51;52|52)
(110)
Consider (35) and the independent distribution of
source and channel variables, we have

Es1 < H(SﬂSzSzUoUzYz) = H(51|52§2)
Combining (107) and (108), we get (52).

(111)
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Consider (38), we have

Esy < I(Soll; YaSy|KUo) — I (Spll; $i181Uh Y1|KUp) .
=1 (52; ¥2$2|]<52U) -1 (_52;5151XY1|K52U)
=1(85252152) — I (S2;$151152)
=0
(112)
Furthermore, for any distribution
P (51525182) p (uls1s2) p (xlu) p (y1y21%)

Hence, we achieve Theorem 4.
Outer bound:
According to Theorem 1, we choose

SRS Syl Uy = U, Sy = X (113)
satisfying
U—X—YY
Consider (5), we have

H ($:15) <1 (S ValSally) < 1(Us Yo) (114)

Consider (6), and the fact
1(31; Y1|§2§1§2U1U2> +1(§2§1U1; Y2|§2U2)
<IX;nU)+1U;Y)
We have
H ($182181) < IQG VU +1(U; Ya)

Therefore, we get (50) and (51).
Consider the first term in (10), we have

(115)

(116)

Es1 < 1(S1381152) =1 (S1552182) 41 (S1;521251)
+1 (51; Y115:518: Uy U —1<51; Y2|52§1§2U1U2>
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On the other hand Egy > 0, therefore we have

Esy =0 (121)

Proof of Theorem 5
Assume the distribution p (:913’2 |s) P (1y21%) p (x|u).

Case (i):

Inner bound:

For Theorem 2, we choose S = S, = K = S, Uy = U,
Uy = X, U2 = a constant, satisfying the Markov chain
u—X-—y.

Consider (30) and the fact

H(S) <I(XS$181) =10GY1) +1(S;51) (122)
H (SIS1) <1(X;Y1)
Consider (31) and the fact
H (S) <I(US; Y25,)
We have
H (SIS:) < 1(U;Y») (123)
Consider (33) and the fact

H (S) < I(XS;Y1811SU) + I (US; Y2S5)
=1 XGNIU) +1(U;Y2) +1(S;52)
<SICGNIU) +IU;Y2) +1(S55)

where the last step follows from the Markov chain
S — 5'1 — S”z
Therefore, we have

H(SIS1) < IXGYIU) +1(U;Ya) (124)

< 1(S1:51182) — I (S1;52182) + 1 OG V1 |U) — 1 (X Ya|u)  Outer bound:

(117)

Consider the second term in (11) and the less noisy
condition and the facts
Esp <1 (52;§g|5~1) —I(S2;51151) +1(5~2;§1|51§2)
+1 (52; Y2|515152U1U2> —1<52; Y1|515152U1U2>

1(:92; Y2|§1§1§2U1U2) < 1<§2; Y1|§1§1§2U1U2)

(118)
1(852;5119182) =0 (119)
1(S2;82181) < 1(S251151) (120)

where (115) due to less noisy condition, (116)-(117) due to
S1— 83 — 85,8 — §1 — §15; and the fact

H (S215152) = H (S218151) -

Consider (4), (5) and (8), choose I~(§1§2U1U2= a con-
stant, S = X, So = U, and have the facts

H(S181) <1 (SunilSith) < 1(Xv) (125)
H (S152) <1 (Sai YalSalla) < 1 (U Y2) (126)
H(SIS1) < 106U +1(U; Ya) (127)

Case (ii):

The proof of (56) follows from (54) in Case (i).

Inner bound:

Consider (35) and (37), we choose S = S, S = K =
Uy = Null, U = U, Uy = Q, we have (57).

Outer bound:

Consider (10), we have (57). Specifically, Assume

SRS Syl = Q8 = U
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Consider the first term in (10), we have the facts

I (81;31|Sz) —I(S1;82182) +1 (51;§2|52§1)

+1 (51 1115:Q) =1 (S 1215:Q)

=1(581) —I(S:S2) +1(S;52151)

(U Y1|Q) — 1 (31; Y2|Q)

=1(5:81) —1(5:5) + 1 WU 111Q — 1 (35, 121Q)

where the last step follows from the Markov chain

S—>§1—>§2.

Abbreviations
BC: broadcast channel; BCCS: broadcast channel with confidential sources;
DM: discrete memoryless; Sl: side information
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