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Abstract

The massive MIMO (multiple-input multiple-output) technology plays a key role in the next-generation (5G) wireless
communication systems, which are equipped with a large number of antennas at the base station (BS) of a
network to improve cell capacity for network communication systems. However, activating a large number of BS
antennas needs a large number of radio-frequency (RF) chains that introduce the high cost of the hardware and
high power consumption. Our objective is to achieve the optimal combination subset of BS antennas and users to
approach the maximum cell capacity, simultaneously. However, the optimal solution to this problem can be
achieved by using an exhaustive search (ES) algorithm by considering all possible combinations of BS antennas and
users, which leads to the exponential growth of the combinatorial complexity with the increasing of the number of
BS antennas and active users. Thus, the ES algorithm cannot be used in massive MIMO systems because of its high
computational complexity. Hence, considering the trade-off between network performance and computational
complexity, we proposed a low-complexity joint antenna selection and user scheduling (JASUS) method based on
Adaptive Markov Chain Monte Carlo (AMCMC) algorithm for multi-cell multi-user massive MIMO downlink systems.
AMCMC algorithm is helpful for selecting combination subset of antennas and users to approach the maximum cell
capacity with consideration of the multi-cell interference. Performance analysis and simulation results show that
AMCMC algorithm performs extremely closely to ES-based JASUS algorithm. Compared with other algorithms in our
experiments, the higher cell capacity and near-optimal system performance can be obtained by using the AMCMC
algorithm. At the same time, the computational complexity is reduced significantly by combining with AMCMC.

Keywords: 5G, Massive MIMO systems, Antenna selection, User scheduling, Adaptive Markov chain Monte
Carlo algorithm

1 Introduction
In order to satisfy the rapidly increasing requirements for
high data rate in current wireless communication systems,
a new massive MIMO (multiple-input multiple-output)
technology was introduced in [1–3]. Massive MIMO tech-
nique plays a key role to enhance the cell capacity without
increasing system bandwidth or base station (BS) trans-
mission power for the 5G network systems [4]. The key
idea of the massive MIMO technique is to install a large

amount of transmit antennas at the BS of a cellular and
provide services for several users sharing the same
spectrum resources. However, as the number of BS anten-
nas and users increases, the combination complexity and
hardware cost also increase dramatically. Therefore, when
the numbers of BS transmit antenna and active users are
extremely large, the joint antenna selection and user
scheduling (JASUS) algorithm [5–8] can be adopted as an
approach to decide the radio frequency (RF) chain config-
uration to improve the cell capacity in multi-cell massive
multi-user MIMO systems.
In a practical network, one of the key challenges in

multi-cell multi-user massive MIMO systems is the
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hardware cost and power consumption because the
element of each antenna needs a complete RF chain that
consists of RF amplifiers and analog-to-digital con-
verters, which are very pricey and are the main elements
of the power consumption at the BS [9]. Different
schemes were used in many types of research, such as
hybrid precoding and spatial modulation, to reduce the
cost of the hardware and the power consumption of the
system [10]. One of the best schemes to solve this prob-
lem is to applying antenna selection [11–13] to decide
optimal subset of BS transmit antennas for decreasing
the required number of high pricey RF chains while de-
creasing the resulting network performance loss.
However, in multi-cell multi-user massive MIMO sys-

tems, only a limited number of transmit antennas are se-
lected to provide services for active users scheduled.
Hence, if the number of users exceeds, the number of
selected transmit antennas, user scheduling must be per-
formed because different wireless channels have different
properties. High cell capacity can be obtained by sched-
uling users with the high channel quality. Therefore, the
research of JASUS method for multi-cell multi-user
massive MIMO systems is necessary.
Recently, only a few types of research have studied a

low complexity JASUS for downlink massive multi-user
MIMO systems. Benmimoune et al. [14] proposed a
two-step JASUS scheme for downlink multi-user massive
MIMO systems. It successively closed unnecessary an-
tennas and removes undesired users which contribute
little to system performance. However, due to the high
computational complexity, this algorithm can only be
employed to the scenarios with a smaller number of can-
didate antennas and user sets. Thus, using this algorithm
in practical multi-cell multi-user massive MIMO system
scenarios is difficult. Olyaee et al. [15] proposed a JASUS
method based on zero-forcing (ZF) precoding algorithm
for single-cell multi-user massive MIMO downlink sys-
tems. Though the ZF precoding method has a high sys-
tem performance, it also has a very high computational
complexity. For distributed downlink multi-user massive
MIMO system, a JASUS method was proposed in [16]
by Xu. et al. It successively obtains the majority of gain
with limited backhaul capacity. Lee et al. [17] proposed a
random antenna selection algorithm, the algorithm can
provide significant capacity efficiency gain, but it is diffi-
cult to use for multi-cell multi-user massive MIMO sys-
tems. However, the above researches focused on single-
cell multi-user massive MIMO systems. Thus, the re-
search of JASUS method for multi-cell multi-user
massive MIMO systems remains a largely open area.
Therefore, the novel JASUS algorithm with considered
multi-cell interference, which causes no or only a few
decreases of system performance, represents a new
promising research topic.

In this paper, we consider the problem of JASUS in
multi-cell multi-user massive MIMO downlink system op-
erating with TDD mode. Considering the trade-off be-
tween cell capacity and complexity, we proposed a low-
complexity algorithm for JASUS method based on
AMCMC. In our proposed method, only a small subset of
BS transmit antennas is selected to serve predetermined
active users, thus reduces the number of RF chains, avoids
uneconomical hardware costs, and reduces power con-
sumption caused by the selection of unnecessary transmit
antennas to provide the required services. The main con-
tributions of our work are as follows.

1. A low complexity JASUS method based on
AMCMC algorithm is proposed for downlink
multi-cell multi-user massive MIMO systems.
AMCMC algorithm is helpful for selecting
combination subset of antennas and users to
approach the maximum cell capacity while
decreasing the resulting network performance
loss.

2. In this paper, we proposed updating rules for the
selection probability of each base station transmit
antenna and the scheduling probability for each
user. In addition, we also proposed a new
projection strategy to satisfy the constraints of
antenna and user selection.

3. Performance analysis and simulation results show
that our proposed algorithm produced promising
results. Compared with ES-based JASUS algorithm,
the proposed algorithm achieved comparable
performance with low complexity. In addition, the
AMCMC-based JASUS algorithm outperforms
greedy-based JASUS and norm-based JASUS
methods in terms of cell capacity and SER (symbol
error rate) performance.

Notation: Symbol ℂ denotes the set of complex num-
bers, vectors are denoted by using lower-case bold letters,
matrices are denoted by using bold letters, |.| denotes the
absolute value of a scalar, ‖·‖F denotes the Frobenius norm
function, and (.) represents the binomial coefficient.
The remaining content is organized as follows. In

Section 2, the system model and capacity maximize
problem formulation are described. In Section 3, we for-
mulate the problem of JASUS method based on AMCMC
in multi-cell multi-user massive MIMO systems. Section 4
presents the simulation setup and assumption. In Section
5, we discuss the simulation results and analyze the com-
plexity; finally, this work is concluded in Section 6.

2 System model and problem formulation
In this part, we simply give the system model for multi-
cell massive multi-user
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MIMO downlink systems with the system capacity
formulation model with consideration of the multi-cell
interference.

2.1 System model
As shown in Fig. 1, the considered scenario is a multi-
cell multi-user massive MIMO downlink system operat-
ing in TDD mode, and the cell capacity maximizing
problem is studied with consideration of the inter-cell
interference. The system is composed of Β hexagonal
cells. All B BSs, where B = {1, 2,…, Β} are installed with
M antennas and serves U (M ≥U ≥ 1) single-antenna
users in each cell. The block-fading channel model is
assumed. We assume that BS can select N transmit an-
tennas among the M transmit antennas and schedule
K(K ≤N) users among the U users within the cell to be
served simultaneously. The channel vector giju ∈ ℂ

M

from the jth BS and user u in cell i can be expressed as

giju ¼
ffiffiffiffiffiffiffi
βiju

q
hiju ð1Þ

where βiju denotes the large scale channel fading be-
tween jth BS and user u in cell i, including shadowing

and path loss. hiju is the small-scale fading vector, and
hiju = [hiju1, hiju2,…, hijuM]

T ∈ ℂM. Then, the overall
downlink transmission matrix Gij ∈ ℂ

M ×U between the
BS in cell j and all users in cell i can be expressed as

Gij ¼ gij1; gij2;…; gijU
h i

¼ HijD
1
2
ij∈ℂ

M�U ð2Þ

where Hij = [hij1, hij2,…, hijU] ∈ ℂ
M ×U is the overall

small-scale fading matrix and Dij = diag(βij1, βij2,…, βijU).
Our objective is to find optimum combinations subset

of BS antennas and users to approach the maximum cell
capacity while decreasing the resulting network perform-
ance loss. Furthermore, we will decrease the number of
expensive RF chains and avoid the uneconomic costs of
the hardware and decrease power consumption caused
by selecting undesired antennas to provide the require-
ment of service.

2.2 Problem formulation
In the downlink system, the signal received by users in
cell i can be written as

Fig. 1. Illustration of the downlink multi-cell multi-user massive MIMO network transmission model
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ri ¼ ffiffiffiffi
pt

p XΒ
j¼1

GH
ij W js j þ ni ð3Þ

where pt denotes the transmitted power, sj = [sj1, sj2,…,
sjU]

T ∈ℂU is the transmit signals for users in cell j,
Wj ∈ ℂM ×U is the precoding matrix of BS in cell j, and
ni = [ni1, ni2,…, niu]

T ∈ℂU is the noise vector at the uth
user in cell i. The downlink signal received by user u in
cell i can be written as

riu ¼ ffiffiffiffi
pt

p
gHiiuwiusiu|{z}

desired signal

þ ffiffiffiffi
pt

p X
b≠u

gHiibwibsib|{z}
intra‐cell interference

þ ffiffiffiffi
pt

p X
j≠i

XU
b¼1

gHijuwjbsjb|{z}
inter‐cell interference

þniu

ð4Þ

where wjb is the bth column of precoding matrix Wj.
Formula (4) including the desired signal for the user u in
cell i, intra-cell interference signal (comes from other
users in the same cell), and inter-cell interference signal
(comes from other cells), respectively.
Since we used the zero-forcing (ZF) methods and sup-

posing that the channel state information (CSI) is per-
fectly known at the BS, the intra-cell interference signal
(second term) in function (4) drops to zero according to
prevenient works [14, 18–20]. Therefore, function (4)
becomes

riu ¼ ffiffiffiffi
pt

p
gHiiuwiusiu|{z}

desired signal

þ ffiffiffiffi
pt

p X
j≠i

XU
b¼1

gHijuwjbsjb|{z}
inter‐cell interference

þniu ð5Þ

We assume that BS can choose N transmit antennas
among the M transmit antennas, and schedule K(K ≤N)
users among the U users within the cell to be served
simultaneously. For convenience, we give the selected
subset of the antenna and scheduled subset of user indi-
cator functions are ω and ω,

ω ¼ ωmf gMm¼1 ð6Þ

ω ¼ ϖuf gUu¼1 ð7Þ
where ω and ω are binary vectors that include two
values 0 and 1 to indicate if a given antenna or a
given user is selected. (e.g., 1 → selected, 0 →
unselected).
For making an easy description, we will define to two

indicator functions, which are Im(ω) ≜ ωm ∈ {0, 1} and
IuðωÞ≜ϖu∈f0; 1g , respectively. We use these to indicate
whether the mth BS antenna and the uth user are selected
or not, respectively. s

ifωg∈ℂK denotes transmit signal

vector, sub-block channel matrix of corresponding

denotes by G
ijfω;ωg∈ℂN�K and n

ifωg∈ℂK is noise vector,

respectively. Finally, in order to denote the joint antenna
and user selection, we employ the 2-tuple Ω≜ðω;ωÞ . In
order to have an easy explanation, we will interchangeably
use Ω and ðω;ωÞ for the following part. After using an-
tenna selection and user scheduling method, function (5)
becomes

ri ϖuf g ¼ ffiffiffiffi
pt

p
gHii ω;ωf gwi ϖuf gsi ϖuf g

þ ffiffiffiffi
pt

p X
j≠i

XU
b¼1

gHij ω;ωf gw j ϖbf gs j ϖbf g

þ ni ϖuf g ð8Þ
where w jfϖbg is bth column of precoding matrix
W

jfω;ωg∈ℂN�K and nifϖug is the noise at the uth user

in cell i.

2.3 Capacity of massive MIMO
According to the aforementioned discussion, the re-
ceived signal-to-interference-plus-noise ratio (SINR) for
the user u ∈U (which is connected to cell i) with a se-
lected channel vector g

ijfω;ωg can be written as

SINRi ϖuf g ¼
pt g

H
ii ω;ωf gwi ϖuf g

��� ���2X
j≠i

pt g
H
ij ω;ωf gw j ϖuf g

��� ���2 þ ni ϖuf g
�� ��2 ð9Þ

Considering the inter-cell interference, the formula of
sum capacity for cell i can be expressed as

Ci
sum G ω;ωf g
� � ¼ log2 det I þ

pt G
H
ii ω;ωf gWi ω;ωf g

��� ���2X
j≠i

pt G
H
ij ω;ωf gW j ω;ωf g

��� ���2 þ ni ωf gnH
i ωf g

0
BBB@

1
CCCA

0
BBB@

1
CCCA

ð10Þ
Our target is to jointly select the optimal combination

sets of BS transmit antenna and active user to approach
the maximum cell capacity while decreasing the compu-
tational complexity. Hence, the problem of JASUS can
be written as

ΦC ¼ maximize
ω;ω

Ci
sum G ω;ωf g
� � ð11Þ

subject to

XU
u¼1

Iu ωð Þ ¼ K ð12Þ

XM
m¼1

Im ωð Þ ¼ N ð13Þ

Addressing the aforementioned problem by employing
an ES method needs to evaluating the cell capacity of
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φ≜CN
M � CK

U joint antenna and user combinations, where
CN

M and CK
U are the binomial coefficient. This fact indi-

cates that the ES method cannot be used in current the
massive MIMO systems where U and M are very numer-
ous, it leads to high computational complexity. Thus, a
low complexity algorithm for JASUS is needed in order to
obtain the best network performance with low computa-
tional complexity.
Obviously, formula (11) serves as the target function

in this study. Therefore, address the problem (11) in
multi-cell multi-user massive MIMO systems, we need
to solve the following three main problems:

1. Inter-cell interference: the first problem is the
inter-cell interference coming from other cells. In
order to solve this problem, cells can adjust their
precoding matrices, thus can eliminate or decrease
the interference from all users. In order to make
better use of the coordinated massive MIMO
technology, a group of users in the cells should
be scheduled so that each group of users in the
cell has the biggest spatial separation with the
interference channels of users in neighboring
cells.

2. Computational complexity: the second problem is
how to obtain the best combination subset of antenna
and user in each cell with lower computational
complexity so as to decrease or eliminate the
inter-cell interference and maximize the sum
capacity of all cells. We know that in multi-cell
massive MIMO systems, the various path loss
between the antennas coming from neighboring
cells and users coming from target cell also bring
to much computational complexity same to the
antenna selection and user scheduling. Thus, the
computational complexity of the ES algorithm
becomes very large than of a single-cell JASUS.

3. CSI feedback cost: for massive MIMO systems, the
perfect CSI feedback depends mainly on the
number of active antennas and the users they
support. Hence, in order to centralize processing
for selecting antennas and scheduling users across
cells, the BS needs to exchange the overall CSI of
overall combined subset antennas and users at each
scheduling period, it brings more burden for BS. In
addition, when the number of BS antennas and
users in each cell increases, the cost of CSI
increases accordingly.

On the base of the aforementioned discussion, a
low complexity scheme is needed from the practical
point of view for JASUS in multi-cell multi-user
massive MIMO scenarios to reduce the complexity of

function (11) while decreasing the cost of the CSI
feedback.

3 Joint antenna selection and user scheduling
algorithm
In this part, we presented two suboptimal iterative algo-
rithms for JASUS before a discussion of the proposed
AMCMC method.

3.1 Norm-based JASUS algorithm
Firstly, we presented a norm-based JASUS method for ad-
dressing the objective function (10). The norm-based JASUS
scheme maximizes kGfω;ωgkF

, where ‖.‖F is the Frobenius

norm function. Let CNB
sumðGfω;ωgÞ ¼ kGfω;ωgkF

. This

scheme including initialization step and iterative up-
dating step, respectively. This both steps use the vec-
tor norm as criteria which considerably decrease each
iterative computation complexity. The norm-based
JASUS problem is modeled as

ωNB ¼ arg max
ω;ω

CNB
sum G ω;ωf g
� � ð14Þ

where ωNB is the combination selection indicator.
Nevertheless, it has still a problem that when performing
transmit antenna selection and user scheduling simply
based on the F-norm criteria, it would sacrifice some cell
capacity. In sum, the norm-based JASUS method has ex-
tremely low complexity, but it cannot guarantee a high
sum capacity performance.

3.2 Greedy-based JASUS algorithm
In order to enhance the cell capacity over norm-based
JASUS, we presented a greedy-based JASUS algorithm.
Unlike to the norm-based JASUS algorithm, the greedy-
based JASUS algorithm maximizes the cell capacity in
each step. This method also includes initialization step
and iterative updating step. The greedy-based JASUS
problem is modeled as

ωGR ¼ arg max
ω;ω

CGR
sum G ω;ωf g
� � ð15Þ

where ωGR is the combination selection indicator. Com-
pared with the norm-based JASUS algorithm, this
method has a good capacity performance, but it has high
computational complexity.

3.3 AMCMC-based JASUS algorithm
Although the greedy-based JASUS method improved the
cell capacity, it ignores the computational complexity of
all system. For the actual network communication sys-
tem, it will not have commercial value or attraction.
Hence, considering the trade-off between cell capacity
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and complexity, we proposed a low-complexity JASUS
method based on AMCMC algorithm and its description
is as follows.
MCMC [21] is a method of generating random sam-

ples, which is often used to calculate statistical estima-
tion, marginal probability, and conditional probability.
MCMC algorithms depend on (Markov) sequences with
limit distributions corresponding to interest distribu-
tions. In the past decades, it has been widely used in
many fields such as engineering and statistics [22]. The
key idea of the MCMC method is that Markov chains
are simulated in state space X, and the stable distribu-
tion of the chains is the target distribution π [23].
In order to address our objection problem in (11), we

must tackle tow essential issues when applying AMCMC
algorithm. The first problem is how to provide a pro-
posal distribution of candidate samples LMCMC. The sec-
ond problem is how to design the most suitable
updating rule for the proposal distribution.

3.3.1 Derivation of the candidate sampling distribution for
the MCMC method
The biggest advantage of the MCMC method is that it
can search the “elite samples” instead of exhaustively
searching the whole samples. At iteration t, the samples

fΩℓ;t ¼ fωℓ;t;ωℓ;tggLMCMC
ℓ¼1 from an MCMC method can

be employed to estimate the maximum value of the tar-
get function Ci

sumðGfω;ωgÞ

Φ�
C ¼ arg max

Ωℓ;t≜ ωℓ;t ;ωℓ;tð Þ; ℓ¼1;2;…;LMCMC

Ci
sum G ωℓ;t ;ωℓ;tf g
� �

ð16Þ
where LMCMC denotes the total number of samples, and
Φ�

C is the estimated value of formula (11).
Given that scheduled of per user ϖu and selection of

each antenna ωm are binary variables, we use the Boltz-
mann distribution of the objective function Ci

sumð
Gfωℓ;t ;ωℓ;tgÞ with a suitable temperature τ

π Ωℓ;t
� �

Ωℓ;t≜ ωℓ;t ;ωℓ;tð Þ
¼ exp Ci

sum Ωℓ;t
� �

=τ
� �� 	

Γ
ð17Þ

where Γ ¼PΩℓ;t≜ðωℓ;t ;ωℓ;tÞ expfðCi
sumðΩℓ;tÞ=τÞg is a

normalization constant in the MCMC method that can
be neglected. Thus, maximizing Ci

sumðΩℓ;tÞ is equivalent
to maximizing π(Ωℓ, t), and π(Ωℓ, t) is the target
distribution.
In order to prove the MCMC method for searching

the distribution π(Ωℓ, t), we use a MIS (metropolized in-
dependence sampler) [23], which is a generic MCMC
method. The step is as follow. An initial value Ω[0], t is
chosen randomly. Given the current sample Ω[ℓ], t,

� A candidate sample Ω[new], t is drawn from proposal
distribution Ψ(Ωℓ, t; Rt − 1).

� Simulate u uniform[0, 1], and according to the
accepting probability α(Ω[ℓ], t,Ω[new], t), let

Ω ℓþ1½ �;t ¼ Ω new½ �;t if u≤α Ω ℓ½ �;t ;Ω new½ �;t
� �

Ω ℓ½ �;t otherwise



ð18Þ

Where

α Ω ℓ½ �;t ;Ω new½ �;t
� � ¼ min 1;

π Ω new½ �;t
� �

=Ψ Ω new½ �;t
� �

π Ω ℓ½ �;t
� �

=Ψ Ω ℓ½ �;t
� �( )

ð19Þ
After LMCMC iterations, we can achieve a set of sam-

ples fΩ½0�;t;Ω½1�;t;…;Ω½LMCMC�;tg , which is subjected to
distribution π(Ωℓ, t).

3.3.2 Derivation of updating rule for the AMCMC algorithm
In this part, we provide updating rule for the pro-
posal distribution. For the AMCMC method, the joint
proposal distribution is proportional to the product of
Bernoulli distributions, namely

Ψ Ωℓ;t ;Rt−1
� �

≜
ΠU

u¼1 p
Iu ωℓ; tð Þ
u;t−1 1−pu;t−1

� �1−Iu ωℓ; tð Þ

Γ
0|{z}

≜Ψ ωℓ; t ;Pt−1ð Þ

�
ΠM

m¼1 g
Im ωℓ; tð Þ
m;t−1 1−gm;t−1

� �1−Im ωℓ; tð Þ

Γ
0|{z}

≜Ψ ωℓ; t ;gt−1ð Þ

ð20Þ

where pu denotes the probability of the uth user be-
ing selected for communicating with the BS. That is,
ϖu ∼ Ber(pu) for u = 1, 2, …, U, and gm is the prob-
ability of the mth BS antenna being selected. That is,
ωm ∼ Ber(gm) for m = 1, 2, …, M. We use the indicator
functions Im(ωℓ, t) and Iuðωℓ;tÞ to indicate whether the
mth BS antenna and the uth user are selected or not, re-

spectively. Rt − 1 ≜ {Pt − 1, gt − 1}, where Pt ¼ fpu;tgUu¼1
, gt

¼ fgm;tgMm¼1
, and Γ′ is a normalization constant that

can be ignored in the AMCMC. The adaptation
scheme is employed to adjust the parameterized pro-
posal distribution Ψ(Ωℓ, t; Rt − 1) and minimize the
Kullback-Leibler divergence [24, 25] between the tar-
get distribution π(Ωℓ, t) and the proposal distribution
Ψ(Ωℓ, t; Rt − 1), namely

D π Ωℓ;t
� �

Ψ Ωℓ;t;Rt−1
� ���� 
 ¼ XLMCMC

ℓ¼1

π Ωℓ;t
� �� log

π Ωℓ;t
� �

Ψ Ωℓ;t;Rt−1
� � !

ð21Þ
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It is observed that ~D ¼ πðΩℓ;tÞ � logπðΩℓ;tÞ−D½πðΩℓ;tÞ
kΨðΩℓ;t ;Rt−1Þ� is a convex function [26]. Hence, the
minimization of the Kullback-Leibler divergence
D[π(Ωℓ,t)‖Ψ(Ωℓ,t; Rt − 1)] w.r.t. R can be achieved when
∂~D=∂R ¼ 0. Thus, ~D can be written as

~D ¼
XLMCMC

ℓ¼1

π Ωℓ;t
� �� logΨ Ωℓ;t;Rt−1

� � ð22Þ

We set the partial derivative of (22) to zero with re-
spect to R. Then, the Eq. (22) can be written as

∂
∂R

XLMCMC

ℓ¼1

π Ωℓ;t
� �� logΨ Ωℓ;t ;Rt−1

� � ¼ 0 ð23Þ

where the partial derivatives of logΨ(Ωℓ,t;Rt − 1) with re-
spect to pu and gm are respectively given by

∂
∂pu

logΨ Ωℓ;t;Rt−1
� � ¼ Iu ωℓ;t

� �
−pu;t−1

1−pu;t−1
� �

pu;t−1
ð24Þ

∂
∂gm

logΨ Ωℓ;t;Rt−1
� � ¼ Im ωℓ;t

� �
−gm;t−1

1−gm;t−1

� �
gm;t−1

ð25Þ

By substituting (24) and (25) into (23), we obtain

XLMCMC

ℓ¼1

π Ωℓ;t
� �� Iu ωℓ;t

� �
−pu;t−1

1−pu;t−1
� �

pu;t−1
¼ 0 for u ¼ 1; 2;…;U

ð26Þ
XLMCMC

ℓ¼1

π Ωℓ;t
� �� Im ωℓ;t

� �
−gm;t−1

1−gm;t−1

� �
gm;t−1

¼ 0 for m ¼ 1; 2;…;M

ð27Þ

Given a number of samples fΩℓ;t ¼ fωℓ;t ;ωℓ;tggLMCMC
ℓ¼1

drawn from target distribution π(Ωℓ, t), the Monte Carlo
estimate of ∂~D=∂pu and ∂~D=∂gm are

1
LMCMC

1

1−pu;t−1
� �

pu;t−1

XLMCMC

ℓ¼1

Iu ωℓ;t
� �

−pu;t−1

2
4

3
5 ð28Þ

1
LMCMC

1

1−gm;t−1

� �
gm;t−1

XLMCMC

ℓ¼1

Im ωℓ;t
� �

−gm;t−1

2
4

3
5

ð29Þ
Applying the Robbins-Monro stochastic approxima-

tion scheme [26], we can achieve the recursive up-
date function to close to the root of ∂~D=∂pu ¼ 0 and
∂~D=∂gm ¼ 0, namely

pu;t ¼ pu;t−1 þ
rt

1−pu;t−1
� �

pu;t−1

� 1
LMCMC

XLMCMC

ℓ¼1

Iu ωℓ;t
� �

−pu;t−1

 !

ð30Þ

gm;t ¼ gm;t−1 þ
rt

1−gm;t−1

� �
gm;t−1

� 1
LMCMC

XLMCMC

ℓ¼1

Im ωℓ;t
� �

−gm;t−1

 !
ð31Þ

where rt denotes the sequence of decreasing step sizes
[27]. In addition, we can simplify formulas (30) and (31),
because (1 − pu, t − 1)pu, t − 1 and (1 − gm, t − 1)gm, t − 1 has
no significant impact on the convergence of (30) and
(31). Hence, Eqs. (30) and (31) becomes

pu;t ¼ pu;t−1 þ rt � 1
LMCMC

XLMCMC

ℓ¼1

Iu ωℓ;t
� �

−pu;t−1

 !

ð32Þ

gm;t ¼ gm;t−1 þ rt � 1
LMCMC

XLMCMC

ℓ¼1

Im ωℓ;t
� �

−gm;t−1

 !

ð33Þ
The updated proposal distribution Eqs. (32) and (33)

are iteratively used with the objective to close to the tar-
get distribution.

3.4 Constraints for the AMCMC-based JASUS problem
For the JASUS problem, the vectors ω and ω are subject
to constraint functions (12) and (13), respectively. How-
ever, employing functions (32) and (33) with MIS to
generate samples, but we cannot ensure that the samples
meet the constraints (12) and (13). In order to ensure
that the samples drawn from (32) and (33) meet the
constraints (12) and (13), we propose a new projection
strategy. For convenience, we only introduce the pro-
posed projection strategy for ω because the similar pro-
jection strategy can be used to ω.
Assume the sample ωℓ, t drawn from Ψ(·; gt − 1) at

the tth iteration. We define the two sets, which are
ϕ0 = {m : Im(ωℓ, t) = 0} and ϕ1 = {m : Im(ωℓ, t) = 1}, re-
spectively. We use these to collect the indices for the unse-
lected and selected BS antennas, respectively. The following

projection strategy is applied if
PM

m¼1Imðωℓ;tÞ≠N :

� If
PM

m¼1Imðωℓ;tÞ < N , then the proposed projection
strategy sequentially selects the BS antenna with the
biggest probability from the set ϕ0 to the set ϕ1 until
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|ϕ1| =N, where ϕ1 is the number of elements of the
set ϕ1.

� If
PM

m¼1Imðωℓ;tÞ > N , then the BS antennas with
the smallest probability in the set ϕ1 are closed
sequentially according to the proposed projection
strategy until |ϕ1| =N.

3.5 Convergence analysis for the AMCMC-based JASUS
algorithm
In order to obtain a higher convergence rate, the
probability parameters Rt − 1 of the proposal distribu-
tion Ψ(Ωℓ, t; Rt − 1) are adjusted. In this paper, we use
literature [28] to explain the convergence problem,
because our proposed method gives a similar descrip-
tion of the convergence problem and proves the ef-
fectiveness of the method through analysis. Besides,
the complexity of the MCMC algorithm has been

proved to be only related to sample size LMCMC in [22].
The proposed adaptive strategy requires less sample size
and iteration times, which can significantly improve the
convergence speed of the MCMC algorithm.

3.6 Constrained AMCMC-based JASUS algorithm
On the base of the aforementioned discussion, we can
be written the proposed AMCMC-based JASUS algo-
rithm by the following steps. At iteration t, LMCMC

samples fΩℓ;t ¼ fωℓ;t;ωℓ;tggLMCMC
ℓ¼1 from the MCMC

method are can be generated by employing MIS
according to proposal distribution Ψ(Ωℓ, t; Rt − 1).
Then, the new proposal distribution Ψ(Ωℓ, t; Rt) will
be updated by the Kullback-Leibler divergence until
it approach the target distribution π(Ωℓ, t). The de-
tailed AMCMC-based JASUS algorithm is described
as follows.
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4 Simulation configuration
In this section, the simulation configuration and simula-
tion parameters are described. The considered scenario
is a multi-cell multi-user massive MIMO downlink sys-
tem operating in TDD mode with Β = 7, as shown in
Fig. 2. The simulation is done with a static network
simulator. The key simulation parameters are summa-
rized in Table 1. In this simulation, we assume that the
CSI is perfectly known at the transmitter, the total
power is uniformly allocated among the transmit anten-
nas. The system composed of Β hexagonal cells. All B
BSs, where B = {1, 2,…, Β} are installed with M antennas
and serve U single-antenna users in each cell. Each BS is
located at the cell center while U single-antenna users
are randomly located in the cell. There is no user move-
ment and handover during the simulation process.

5 Simulation results and analysis
In this section, we provide numerical results and compu-
tational complexity analysis of the proposed algorithm
by simulative evaluation.

5.1 Performance evaluation
As can be seen the result from Fig. 3, the multi-cell multi-
user massive MIMO downlink system using different
JASUS method at various SINR. We find that the sum
capacity of the AMCMC-based JASUS algorithm is very
close to the maximum capacity result obtained by the ES-
based JASUS algorithm with a wide range of SINRs. For
example, when the SINR is 20 dB, the achieved values of
cell capacity by using ES and AMCMC algorithms are

50.7 and 49.9 b/s/Hz, respectively. Ninety-eight percent of
the optimal capacity is obtained by our proposed method.
The result shows that the AMCMC-based JASUS method
has a good performance compared to the greedy-based
JASUS method with the wide range of SINRs, both
AMCMC-based JASUS and greedy-based JASUS methods
have better capacity performances compared to the norm-
based JASUS algorithm. This simulation result shows that,
when the SINR is 30 dB, ES, AMCMC, and greedy algo-
rithms enhanced cell capacity of approximately 9.1, 8.2,
and 5.8 b/s/Hz, respectively.
Figure 4 shows the increase of sum cell capacity dur-

ing each iteration for AMCMC-based JASUS algorithm
with SINR = 20 dB. As can be seen from Fig. 4, we find
that the AMCMC-based JASUS converges after about
t = 30 iterations. As expected, the sum cell capacity ob-
tained by AMCMC-based JASUS strictly monotonically
increased with a number of iteration.
Now, the assumed scenario is a multi-cell multi-user

massive MIMO downlink system with 50 active users
(U = 50) at SINR = 20 dB, and we assume a different
number of transmit antenna, M, from 16 to 60. Sixteen
antennas (N = 16) were selected to be used by the trans-
mitter and ten users (K = 10) were served. As can be
seen in the result from Fig. 5, the cell capacity difference
between the ES-based JASUS and AMCMC-based
JASUS scheme is relatively small, and the cell capacity
achieved by the aforementioned algorithms slightly
grows with M. In summary, when numbers of the se-
lected BS antennas (N) and scheduled users (K) are con-
firmed, the increase of the number of transmitting
antennas (M) has little effect on the system capacity per-
formance. Thus, it can be proven from the result that
activation of more transmit antennas at the BS side is
unnecessary.
A cell capacity performance comparison of each

JASUS algorithms with various numbers of the selected
antennas at SINR = 20 dB is shown in Fig. 6. The various

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

BS
User

Fig. 2 Multi-cell multi-user massive MIMO system with B = 7
and K = 10

Table 1 Simulation parameters setting

Parameters Values

No. of cells in the simulation Β 7

Average no. of UEs in one cell 2 ≤ U ≤ 50

Number of BS antennas M 10 ≤M ≤ 64

Inter-site distance 500m

Cell radius 295 m

Path loss 128.1 + 37.6×log10(distance(km))[dB]

Each BS transmission power 10 dB

Shadowing standard derivation 7 dB

Noise spectral density − 174 dBm/Hz

Users’ speed 0

System bandwidth 20 MHz
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numbers of the selected antennas (12 ≤N ≤ 24) corres-
pond to the different maximum cell capacity of the net-
works. Compared with the norm-based JASUS, the
JASUS algorithms, which are ES, AMCMC, and greedy,
had more significant enhancement for the system per-
formance. For example, the maximum cell capacity en-
hancements, which are approximately 2.5, 2.2, and 1.7 b/
s/Hz at SINR = 20 dB, are achieved when 18 (N = 18) BS
antennas are selected. From the figure, it can be ob-
served, when N > 18, the cell capacity achieved by the
JASUS algorithms is slightly growing when the number
of selected antenna goes large. Thus, it can be proven
from the result that when numbers of the scheduled
users K are confirmed, the system capacity sequentially
increases until the numbers of selected BS antenna close
to the N = 18, when N > 18, the increasing number of se-
lected antennas has no significant effect on the system

capacity performance. Therefore, the results show that
more antenna selection is unnecessary at the base sta-
tion. Thus, the proposed algorithm is demonstrated to
be effective. In addition, we considerably decreased sys-
tem cost and power consumption while approach the
maximum cell capacity by selected suitable transmit an-
tennas at BS side.
Figure 7 shows that the cell capacity different K at

SINR = 20 dB, for user scheduling and with transmit
antenna selection. It can be observed that the cell
sum capacity increases with increasing of user K. The
different numbers of the scheduled users (2 ≤ K ≤ 16)
correspond to the different maximum cell capacity of
the networks. Compared with the norm-based result,
ES, AMCMC, and greedy algorithms enhanced the
system performance. For example, the maximum cell
capacity enhancement, which are approximately 6.2,

Fig. 3 Ergodic capacity versus SINR with B = 7, M = 64, U = 50, N = 16, and K = 10

Fig. 4 Ergodic capacity achieved in iterative by AMCMC-based JASUS with B = 7, M = 64, U = 50, N = 16, K = 10, and SINR = 20 dB
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5.5, and 4.0 b/s/Hz at SINR = 20 dB, are achieved
when ten (K = 10) users are scheduled. From the fig-
ure, it can be observed that when K > 10, the cell
capacity achieved by the aforementioned algorithms
slightly grows when the number of the scheduled user
goes large. This result proves that the behavior of
JASUS algorithm does not change drastically when
the scheduled user number becomes large.

Finally, we discuss on SER of different JASUS algo-
rithms. A 16-QAM scheme is used with a ZF receiver.
The SER performance of the linear ZF receiver system is
shown in Fig. 8. Compared with the results of norm-
based JASUS algorithm, ES, AMMC, and greedy algo-
rithms improved the SER of the system. Same to the
case of the cell capacity performance, the system SER of
the AMCMC-based JASUS algorithm is close to that of

Fig. 5 Ergodic capacity of different algorithms with versus transmit antenna numbers with B = 7, U = 50, N = 16, K = 10, and SINR = 20 dB

Fig. 6 Ergodic capacity of different algorithms with different numbers of the selected antennas with B = 7, M = 64, U = 50, K = 10,
and SINR = 20 dB
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the ES-based JASUS algorithm. At the same time, we
find that ES-based JASUS and AMMC-based JASUS
have better SER performance than greedy-based JASUS
and norm-based JASUS, especially the SINR to high.
When the SINR is 20 dB, the SER performances of the
ES-based JASUS, AMCMC-based JASUS, greedy-based
JASUS, and norm-based JASUS algorithms are approxi-
mately 3.5 × 10−2, 3.9 × 10−2, 4.9 × 10−2, and 6.8 × 10−2,
respectively.

5.2 Computational complexity analysis
The computational complexities of the introduced differ-
ent JASUS algorithm are analyzed in this section. Table 2
summarizes the computational complexity of our pro-
posed algorithm along with the complexity of another al-
gorithm. The asymptotic notations, which reflect the
computational complexity, was used to evaluation how
the scheme responds to changes of parameters which are
M, N, U, and K. From Table 2, we can easily observe the

Fig. 7 Ergodic capacity of different algorithms with different scheduled number of users with B = 7, M = 64, U = 50, N = 16, and SINR = 20 dB

Fig. 8 SER versus SINR with B = 7, M = 64, U = 50, N = 16, and K = 10
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computational complexity gap between the four methods.
Note that CN

M denotes the binomial coefficient, and the
matrix inverse operation [29–32] makes the computa-
tional complexity of per sample up to O(N3). Thus, the
overall complexity of our proposed Algorithm 1 for the
problem of (11) is O(N3tLMCMC), where t × LMCMC is the
total number of target function evaluations. Ultimately,
we can be observed from Table 2 that our proposed algo-
rithm has a very low computational complexity compared
to ES-based JASUS and greedy-based JASUS algorithms.
However, the norm-based JASUS algorithm has a very low
computational complexity compared to our proposed al-
gorithm, but it also has a very low cell capacity. This result
shows that our proposed algorithm is suitable for practical
multi-cell multi-user massive MIMO system.

6 Conclusion
In this paper, we studied the problem of JASUS in a
multi-cell multi-user massive MIMO downlink system
operating with TDD mode. Considering the trade-off be-
tween network performance and computational com-
plexity, we proposed a low-complexity algorithm for
JASUS method based on AMCMC algorithm in the
downlink multi-cell multi-user massive MIMO systems.
AMCMC algorithm has been proven helpful for select-
ing combination subset of antennas and users to ap-
proach the maximum cell capacity with consideration of
the inter-cell interference. In our algorithm, the updating
rules of the selection probability of each base station an-
tenna and scheduling probability for each user are pro-
posed. In addition, we proposed a new projection strategy
to satisfy the constraints of selection. Performance analysis
and simulation results show that our proposed algorithm
can produce promising results and achieve a good trade-off
between complexity and performance. Compared with ES-
based JASUS algorithm, the proposed algorithm achieved
comparable performance with very low complexity. In
addition, we demonstrate that our proposed algorithm

outperforms greedy-based JASUS and norm-based JASUS
methods in terms of cell capacity and SER performance
with under poorly conditioned channels. At the same
time, the computational complexity is reduced signifi-
cantly by combining with the proposed algorithm.
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