
RESEARCH Open Access

A novel cooperative spectrum signal
detection algorithm for underwater
communication system
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Abstract

In order to further improve the spectrum resource detection probability and increase the spectrum utilization rate
in underwater wireless communication systems, this paper designs a novel multi-layer cooperative spectrum
sensing algorithm based on compressed sensing, which uses compressed sensing technology to estimate the
spectrum to reduce the sampling rate and the overhead of sonar signals. This new algorithm seeks the optimal
hyper-parameter through Bayesian model. The multi-layer Bayesian model is introduced into the Dirichlet process
to realize the automatic grouping of compressed perceptual data with the information from the non-parametric
grouping mechanism, and the optimal super-parameters are selected through the fusion center to determine the
spectrum. Simulation results show that the proposed algorithm fully considers the temporal correlation of
compressed perceptual data and effectively improves spectral sensing performance of underwater communication
system.
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1 Introduction
With the increase of people’s demand for underwater
communication, underwater wireless communication
has been widely concerned by researchers. At present,
underwater communication usually adopts sound wave
as the carrier of signal transmission. Sound wave
frequency is low, bandwidth is narrow, and underwater
communication environment is very complex. The avail-
able communication spectrum of an underwater acoustic
channel with serious attenuation of a wireless electro-
magnetic wave is quite limited. On the other hand, a
large amount of communication data and high sampling
rate aggravate the scarcity of spectrum resources in
underwater acoustic communication. In addition, in
underwater communication, more and more communi-
cation applications require that channels provide wider
frequency bands. How to effectively realize fast percep-
tion of spectrum resources and realize broadband infor-
mation transmission? Some researchers have proposed

to introduce compressed sensing technology into
spectrum perception. Compressive sensing technology
has a huge application prospect. In literature [1], Zhi
et al. first proposed the application of compressive
sensing theory to cognitive radio, using wavelet edge
detection and base tracking algorithm for spectrum edge
detection. Literature [2] makes full use of L1 norm to
solve the problem and reconstructs the signal by minim-
izing the L1 norm problem. For the L1 norm problem, a
simple matching pursuit (MP) algorithm was proposed
in literature [3]. In literature [4], orthogonal matching
pursuit (OMP) algorithm is proposed on the basis of
MP. In literature [5], on the basis of OMP, a piecewise
orthogonal matching pursuit (StOMP) algorithm is
proposed, which compares selected atoms with a thresh-
old, updates the residual values, and iterates through a
loop to get the final solution. The compressed sensing
process not only reduces the limitation of signal band-
width, but also increases the computational complexity
and spectrum sensing time of the system due to the
complexity of signal reconstruction. The researchers are
also working on different ways to reduce computational
complexity and improve perceptual performance. In
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literature [6], sparse Bayesian learning is used to recon-
struct the compressible image under the condition of
noise measurement, and it is verified that this method
can effectively reduce the time of spectrum perception.
In reference [7], sparse Bayesian model and correlation
vector machine learning were studied, and sparse Bayesian
regression and classification model were established to
reduce the complexity. In literature [8], CS is used for
spectrum sensing, and CS data is studied to conduct joint
data fusion of some users’ compressed sensing data under
the condition that CS data do not share the same sparse
characteristics with super-parameters. Literature [9] pro-
poses a Bayesian direct spectrum sensing algorithm, that is,
Bayesian compressed sensing is used to detect the spectrum
without reconstructing the signal, and the information of
the main user is estimated directly from the over-parameter
in the compressed measured value to complete the detec-
tion. This model can estimate not only the signal parame-
ters, but also the error band of the signal.
Compressive sensing technology is a technique pro-

posed for sparse signal sampling and compression at the
same time. By sampling a very few characteristic obser-
vation values of analog signal, signal acquisition is com-
pleted through spatial transformation. The receiver
completes the original signal reconstruction from the
compressed data by solving an optimization problem.
However, the signal reconstruction process in com-
pressed sensing is relatively complex, which makes the
computational complexity of the system large and the
spectrum perception time long, and affects the overall
performance of the system. In the process of spectrum
signal detection, cognitive users only care about whether
the spectrum is occupied or not, but do not care about
which specific signal. In this paper, we use this feature
to design a novel algorithm which is spectrum signal
detection algorithm based on compressed sensing. In the
underwater communication system, each SU is com-
pressed and data acquisition, using Bayesian model to
obtain shared super-parameters, fusion center through
super-parameters to complete the decision of the spectrum
occupancy information. Without signal reconstruction, a
single SU completes spectrum signal detection and then
popularized the algorithm to the whole underwater cogni-
tive wireless communication system, making full use of the
compressed sensing data collected by different cognitive
users at different layer and fully considering the correlation
of compressed sensing data to complete the signal detec-
tion process.

2 System model and analysis
2.1 Methods
If the sonar signal of the underwater communication
system is a one-dimensional discrete-time signal with
finite length and real value, it is expressed by x, which is

a column vector of N × 1 in RN space. If in RN there
exists a base matrix of N ×N which is composed of N
standard orthogonal bases ψ = [ψ1, ψ2,…, ψN], in which
each column vector in the base matrix is ψi {i = 1, 2….
N}, a set of standard orthogonal bases for N × 1, in
which any discrete-time vector can be represented by
this basis matrix, that is, the sonar signal x can be
expressed as the following:

x ¼ ψs ð1Þ
where s is the weighted coefficient column vector of

N × 1. It can be seen from formula (1) that both x and s
can indicate that the sonar signal to be compressed is in
time domain, x is in the time domain, frequency domain,
or spatial domain, while s is in the domain of ψ.
First, we define the sparsity of the sonar signal. If most

of the observed coefficients of a signal are equal to zero
or nearly zero, and only a few non-zero coefficients exist,
then the sonar signal is sparse in this domain, which is
called sparse domain. In the process of compression
sensing, the most important condition is that the sonar
signal is sparse in a certain domain, so how to select the
sparse domain is the basis of realizing compression sens-
ing. From the introduction, we can know that the num-
ber of authorized users is very small, and the spectrum
utilization of some bands is very low. The signal of
authorized users in cognitive radio network is sparse in
the frequency domain, which satisfies the condition of
compressed sensing application. Therefore, compressed
sensing technology can be introduced to optimize the
design. If there are only K numbers belong to non-zero
values in the column vector s, the other values are
approximately equal to or equal to 0, and satisfy the
K < <N, at this point, the signal x is sparse relative to
the range ψ, satisfying the application condition of com-
pression sensing. For K sparse sonar signal x, the theory
of compression sensing proves that M sample values are
selected in signal x by measuring matrix, and the
receiver can use M sample values to realize signal recon-
struction with high probability, in which M is far less
than N, so data compression can be realized. The acqui-
sition of the M sample values is represented by the
following formula

y ¼ Φx ¼ ΦΨs ð2Þ
where y is a vector of M × 1, whose elements represent

the size of the M sample values extracted, and Φ is the
measurement matrix of M ×N. M/N is the compression
ratio, which indicates the degree of compression of the
data in the process of compression sensing. The sparse
sonar signal information should not be lost during the
compression of the measurement matrix, so the selec-
tion of the measurement matrix is strictly required, and
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scholars have made extensive research on the measure-
ment matrix. The restricted isometry property (RIP) [10]
of a matrix is a widely accepted constraint condition,
that is for K sparse sonar signals x. If there is a value δk ∈
(0, 1) such that:

1−δkð Þ xk k22≤ Φxk k22≤ 1þ δkð Þ xk k22 ð3Þ

It is called Φ satisfies the K order RIP characteristic.
The RIP parameter of order K is δk ∈ (0, 1). In practice,
the δk smaller value means more stringent constraints
and better reconfiguration performance [11].

2.2 Collaborative awareness model for underwater
communication system
The underwater communication system structure is
shown in Fig. 1.
In the underwater communication cognitive wireless

network, a single-layered center is occupied by SU and PU.
When signal detection is needed, the control center sends
out an indication signal, and all members of the hierarchical
center synchronously perform signal detection operations.
Each SU collects compressed data, uses Bayesian model to
obtain shared super-parameters, and transmits the results to
the cognitive radio user base station to get the preliminary

signal detection results. When the members of the hierarch-
ical center collect the perceptual data, the distributed com-
putation is carried out and the results are broadcast to the
hierarchical control center [12, 13]. After several informa-
tion exchanges, the proposed spectrum signal detection
algorithm will approach a fixed value and obtain preliminary
signal detection results. The next step is to fuse the data
obtained from a single hierarchical center through the data
fusion center to realize the joint signal detection of multiple
hierarchical centers, because PU is also distributed in differ-
ent locations in space and the transmission power is limited.
The sparse state of the wireless spectrum may vary with the
change of spatial position [14]. Therefore, the compressed
perceptual data of different stratified centers may not be
statistically relevant, and the super-parameters obtained may
not be ideal. In this section, a hierarchical Bayesian model
based on Dirichlet process (DP) is proposed to realize com-
pressed sensing. The data are grouped and the shared
hyper-parameters are mined in each group to achieve the
optimal signal detection results.

2.3 Bayesian analysis
In the process of transmitting information underwater,
there will inevitably be noise interference, then formula
(2) corresponding expression can be written as

Fig. 1 Multi-layer structure model of an underwater communication system block diagram. When the signal detection is required, the control
center will issue an indication signal, and all members of the grading center will perform the signal detection operation synchronously. Each SU
collects the compressed data, uses the Bayesian model to obtain the shared super-parameters, and transmits the results to the cognitive radio
user base station to obtain the preliminary signal detection results. When members of the hierarchical center collect perceptual data, distributed
computing is performed and the results are broadcast to the hierarchical control center. After a lot of information exchange, the frequency
spectrum of the spectrum signal detection algorithm is proposed to be close to a fixed value, the next step is through the data fusion center on
the individual level data fusion, the center of the implement multiple layers joint spectrum signal detection, this paper puts forward a kind of
based on Dirichlet process (DP) hierarchical Bayesian model to achieve compression perception. The data are grouped and the shared super-
parameters are mined in each group to obtain the optimal signal detection results
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y ¼ ΦX þΦW ð4Þ
where w =ΦW, and assuming underwater noise that

the average value of the service is 0, the Gaussian distri-
bution of variance σ2, and make the parameter λ0 ¼ 1

σ2 ,
then the observed value y from the Gaussian distribu-
tion. The likelihood function of the observed value y can
be expressed as:

p yjX; λ0f g ¼ 2π=λ0ð Þ−M
2 exp −

λ0
2

y−ΦXk k22
� �

ð5Þ

Suppose that the signal sent by the cognitive radio
user X is distributed from a Gaussian with a mean of
zero, one-dimensional discrete-time signal X = [x1, X2…
xN], the k discrete value is denoted by Xk. The likelihood
function of the discrete-time signal is as follows:

p Xjλ; λ0f g ¼
YM
k¼1

N Xk j0; λ−10 ; λ−1k
� � ð6Þ

Among them, M is the number of sampling points in
the cognitive radio user’s compressed perceptual data.
Among them, λ = {λ1, λ2,⋯, λM} is the super-parameter.

According to the sparse characteristic of the wireless
spectrum of underwater communication system, if the
parameter λ0 is assumed to be Gamma distribution, X also
has sparse property. Take a and b as parameters, namely:

p λ0ja; bf g ¼ Ga λ0ja; bð Þ ¼ ba

Γ að Þ λ
a−1
0 exp −bλ0ð Þ ð7Þ

3 Algorithm design
For a hierarchical underwater communication cognitive
radio network, assuming that there are L cognitive radio
users in the hierarchical center, the compressed sensing
model provided extends to all cognitive radio users in
the layer.

y1 ¼ Φ1X1 þ w1

⋮
yL ¼ ΦLXL þ wL

8<
: ð8Þ

We assume that the variables of the Gaussian distribu-
tion are Xi, yi, wi, and Φi is the M ×N dimension vari-
able, where i = 1, 2, …L. The likelihood function of the
single cognitive radio user observation value in the hier-
archical center can be expressed as:

p yijXi; λ0f g ¼ 2π=λ0ð Þ−
mi
2 exp −

λ0
2

yi−ΦiXik k22
� �

ð9Þ
mi——the number of points in the compressed sensing

data of the ith cognitive user.
In the underwater communication cognitive wireless

network, the data of single hierarchical center perception
is combined signal detection through the fusion center

[15]. Based on compress sensing, automatic grouping of
compressed perceptual data for hierarchical Bayesian
model is realized, different stratified centers may have
different hyper-parameter: λ = {λi1, λi2,⋯, λiM}, and i = 1,
2, ⋯, C (C is the number of stratified centers in CRN).
It is assumed that {λi, .i = 1, 2,⋯,C} G is independent of
the same distribution and G is one of DP implementa-
tions. When the fusion center obtains the super-parametric
information λ−i = {λ1, λ2,⋯, λi− 1,λi+ 1,…λc} of other stratified
centers, the underlying distribution G0 will be updated.
which is as follows:

p λijλ−i; ξ;G0
� � ¼ ξ

ξ þ C−1
G0

þ 1
ξ þ C−1

XK
k¼1

n−ik δλK ð10Þ

where δλK is a pulse function. If n−ik is used to denote the
number of subsets with different values in the super-

parametric set fλkgCk¼1 of hierarchical centers. It is shown
that the new hyper-parameter λk is more inclined to be
selected the larger membership n−ik when implemented by
DP.
In the data fusion center, if the super-parameter is

represented by “λ∗” and the K super-parameter is repre-
sented by λ�k , the probability of the distribution G is

expressed lk at the point λ�k . Moreover,
P J

k¼1 lk ¼ 1, J is
the number of possible values of super-parameters [16],
J < <C. In the DP-based hierarchical Bayesian model,
the maximum likelihood function corresponding to the

data fusion center λ∗ can be further expressed as lðλ�Þ
¼ P J

k¼1 ℓkðλ�kÞ , if the probability distribution is repre-
sented as the jth stratified center and the kth λ�k is taken
as the maximum super-parameter, then:

ℓk λ�k
� � ¼ XC

j¼1

γ j;k logp yjjλ�k
� �

�

¼
XC
j¼1

γ j;k log
Z

p yjjX j; λ0
� �

p y jjλ�k ; λ0
� �

p λ0ja; bð ÞdX jdλ0�

¼ −
1
2

XC
j¼1

γ j;k mj þ 2a
� �

log yTj Λ
−1
j;ky j þ b

� �
þ log Λ j;k

�� ��h i
þ Const

ð11Þ
Where

Λ j;k ¼ Eþ
XM

t¼1;t≠n

λ�−1k;t Φ j;tΦT
j; t
þ α�−1k;n Φ j;nΦT

j;n

¼ Λ j;k;−n þ λ�−1k;n Φ j;nΦT
j;n

ð12Þ

where Λj, k is not included in the Λj, k where is the part
of the n column vector (Φj, k, n) that does not contain
Φj, k:n = 1, 2⋯, M. The determinant and inverse matrix
of Λj, k can be further expressed as:
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j Λ j;k j¼j Λ j;k;−n‖1þ λ�−1k;n Φ
T
j;nΛ

−1
j;k;−nΦ j;n j ð13Þ

Λ−1
j;k ¼ Λ−1

j;k;−n‐
Λ−1

j;k;−nΦ j;nΦT
j;n
Λ−1

j;k;−n

λ�k;nΛ
‐1
j;k;−nΦ j;n

ð14Þ

In this case, λ�N ;k represents the Kth stratified center,
the nth super-parameter. When the partial derivative

with respect to ∂lk ðλ�k Þ
∂λ j;k

¼ 0, the extreme point can be ob-

tained, namely:

λ j;k ≈
L

XL
i¼1

mi þ 2að Þh2j;k=t j;k−pj;k

p j;k p j;k−h
2
j;k=t j;k

� �
ð15Þ

Assuming that:

pj;k ¼ ΦT
j; k
Λ‐1

j;‐kΦ j;k ð16Þ

hj;k ¼ ΦT
i; k
Λ‐1

i;‐kyi ð17Þ

t j;k ¼ yTi Λ
‐1
j;‐kyi þ 2b ð18Þ

If the denominator is 0, then λj, k =∞. It needs to be
removed Φj, k. So we can use the formula (12) and λj,
k =∞. Update the super-parameters λj, k continuously,
{k = 1,2… L, j = 1,2... N}.
In order to obtain the optimal super-parameter, the

detailed steps of the proposed algorithm are as follows:

① Initialization parameter λj, k and base vector Φi ,
{k = 1,2… L; i = 1, 2, …, N; j = 1,2... N};
② For any k = 1, 2… L, you pick a basis vector Φj, k and
calculate the mean μi and the covariance Σi and
calculate the following:

P j;k ¼ ΦT
j; k
Λ‐1

j Φ j;k ð19Þ

H j;k ¼ ΦT
i; k
Λ‐1

i yi ð20Þ

T j;k ¼ yTj Λ
‐1
j y j þ 2b ð21Þ

If pj;k ¼ P j;k þ P2
j;k

λk−P j;k
, hj;k ¼ H j;k þ P j;kH j;k

λn−P j;k
, and t j;k

¼ T j;k þ H2
j;k

λn−P j;k
. According to formula (15) to update the

super-parameter λj, k, when selecting the super-parameter,
the increment Δlk(λj, k) of likelihood function lk(λj, k)
should be maximized during each iteration;

③ When the number of iterations is greater than the
set threshold or when Δlk(λj, k) is less than a certain
value, reach the termination condition of iteration
algorithm and stop iteration; otherwise, go back to step

②. The final decision can be made by comparing the
obtained optimal over-parameter with the preset
threshold value.

The final decision is realized by the iterative algorithm,
which initializes parameters λ�k;n and base vectors Φj, n

and constantly updates weight coefficients γj, k and λ�k;n .
The super-parameters λ�k;n were selected in each iteration
process to maximize the increment until the calculated
increment reaches the iteration termination condition or
the iteration number reaches the prescribed upper limit;
otherwise, the parameters are updated continuously until
the iteration algorithm stops. The binary spectrum deci-
sion result is obtained by using the obtained super-
parameters and the preset threshold value.

4 Simulation analysis
The simulation conditions are as follows: in the under-
water communication system cognitive network, the
single-layer cognitive radio network numbers are 50, and
each layer has 20 SUs. The whole wireless spectrum is
evenly divided into 200 subcarriers, and there are 50 PU
in the network. Each PU communication takes up one
subcarrier frequency and sets the noise of underwater
communication system which is Gaussian white noise.
Performance analysis and simulation are as follows.

4.1 Complexity analysis
The new cooperative spectrum signal detection algo-
rithm for underwater communication based on com-
pressed sensing is to introduce the unknown variable to
a certain prior condition distribution, select and update
the hyper-parameter through the basis function, and
increase continuously through the iterative operation
until the iteration condition is met. The observation
matrix only contains the basis function existing in the
current model. The various algorithm complexity pairs
are shown in Table 1. In the process of solving the max-
imum likelihood function, comparing the EM algorithm, the
complexity of O(N3), the matching pursuit (MP) [17, 18],
and orthogonal matching pursuit (OMP) algorithms [19],
the complexity of O(M ×N) adopts the algorithm men-
tioned and only updates the super-parameter at a time, and
to achieve some estimate parameter and error covariance
update, eliminating the complex matrix inversion process,

Table 1 Comparison of algorithm complexity

Algorithm Complexity

EM O(N3)

MP O(M × N),M ≥ N

OMP O(M × N),M ≥ N

Paper algorithm Less than O(N × N)
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the dimension of point estimate parameters, and covariance
dimension is far less than O(N×N) in sparse signal, so the
computational complexity of compressed sampling is effect-
ively reduced.

4.2 Noise robustness
In broadband spectrum signal detection of the under-
water communication system, there are all kinds of
interference in the channel, and the performance of the
algorithm will also be affected by the underwater noise.
But from the broadband spectrum collaborative percep-
tion algorithm based on compression perception, we
found in the derivation that updating the parameters of
the iterative process has nothing to do with the noise
variance, λ0 ¼ 1

σ2 , so this section of perception algorithm
can effectively reduce the influence of underwater noise
to eliminate noise variance SNR wall of the problems of
uncertainty and to improve the accuracy of the detection
algorithm. The performance of the algorithm is verified
at different underwater noise levels. In Gaussian white
noise, Fig. 2 depicts the normalization error performance
of different algorithms. The comparison shows that the
novel cooperative spectrum signal detection algorithm
based on compressed sensing for underwater communi-
cation system has advantages over other algorithms
under the given noise level.

4.3 Sensing performance analysis
4.3.1 Relationship between SNR and detection probability
In the underwater communication system, assume that
each primary user sends a signal length of N = 256 and
the number of samples is M = 30. Cognitive users can
exchange information with adjacent users. Considering
the signal-to-noise ratio varies from – 15 to 5 dB, we
can compare the detection probabilities of paper algo-
rithm and the classical algorithms when the number of
underwater communication cooperative users is differ-
ent. After the cognitive user obtains the local detection
result through the compressed sensing, the detection
probability can be obtained according to the actual
spectrum occupancy of the channel and the simulated
spectrum occupancy. The simulation result is shown in
Fig. 3.
It is clear that our method can present a higher detec-

tion probability than that of the traditional method with
the aid of the increasing number of underwater commu-
nication cooperative users. However, whether it is a
single-user or multiple user detection, it is not difficult
to find that when the signal-to-noise ratio is very low,
between – 15 dB and 10 dB, the detection probability is
very low and the performance of cooperative spectrum
detection do not have many advantages. This low signal-
to-noise ratio state is equivalent to a situation where
severe shadow-fading or other fading are encountered in

Fig. 2 Normalized error performance of different algorithms under white Gaussian noise. In the wideband spectrum signal detection, there are
various kinds of interference in the channel, and the performance of the algorithm is also affected by the noise. However, from the derivation of
the wideband spectrum cooperative perception algorithm based on compressed sensing, we find that the parameters of the updating iterative
process have nothing to do with noise variance, so this part of the perception algorithm can effectively reduce the impact of noise, eliminate the
uncertainty of noise variance SNR, and improve the accuracy of the detection algorithm. At different noise levels, the performance of the
algorithm is verified. In Gaussian white noise, Fig. 2 describes the normalized error performance of different algorithms. The comparison shows
that the paper algorithm based on compressed sensing has advantages over other algorithms at a given noise level
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the actual underwater communication environment.
Cognitive users in this environment will affect the perform-
ance of collaborative spectrum detection and even reduce
the detection performance of cognitive users in underwater
acoustic channel state with high SNR. So, the cooperative
spectrum detection is helpless to improve the performance,
but reduces detection performance.

4.3.2 The relation between sampling number and detection
probability
If each SU of the underwater communication system
collects different observations through compressed sens-
ing, we can further simulate its operating characteristic
curve.
This result in Fig. 4 indicates that the spectrum sens-

ing performance of the MP algorithm and the OMP
algorithm is gradually improved when the number of
observation points of the compressed sensing is in-
creased. This is because that the more sampled values,
the more information is obtained. Besides, the MP algo-
rithm and the OMP algorithm are algorithms for a single
task, regardless of the spatial diversity information, and
the only information available is from the compressed
sensing observations. Compared with the MP and OMP

algorithms, the proposed algorithm has no change in the
ROC curve when the number of observation is greater
than 20 and the detection probability approaches 1,
because it makes full use of the compressed sensing data
information collected by each SU and the number of
iterations of the algorithm is not related to the number
of samples. Even at lower sample values, it can still
obtain better detection performance and effectively
reduce the system overhead of spectrum sensing. From
the ROC of the three algorithms and considering the
lower number of observation, it is obvious that in under-
water communication system, the algorithm can achieve
the purpose of effective signal detection through a small
amount of information acquisition. Compared with trad-
itional MP and OMP, the performance of underwater
acoustic communication system is improved.

4.3.3 The relation between false alarm probability and
detection probability
To better verify the effectiveness of the novel coopera-
tive spectrum signal detection algorithm for the under-
water communication system, we compare it to existing
legacy and improved algorithms. In paper [20], a sparse
Bayesian learning algorithm is proposed to achieve local

Fig. 3 The curve of the relationship between SNR and detection probability. Considering the change of SNR between – 15 db and 5 dB, we can
compare the detection probability of the paper algorithm and the classical algorithm in the case of different number of cooperative users. After
the cognitive user obtains the local detection results through compressed sensing, the detection probability is obtained according to the actual
spectrum occupation of the channel and the simulated spectrum occupation. With the increase of the number of cooperative users, our method
has higher detection probability than the traditional method. However, no matter it is single-user detection or multi-user detection, it is not
difficult to find that when the SNR is very low, the detection probability is very low between – 15 db and 10 dB, and the performance of
cooperative spectrum detection does not have many advantages. This low SNR state is equivalent to a severe shadow-fading or other fading in
real environments. Cognitive users in this environment will affect the performance of cooperative spectrum detection and even reduce the
detection performance of cognitive users with high SNR. Therefore, synergetic spectrum detection not only improves the detection performance,
but also reduces it
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optimization through sparse linear regression using the
mechanism of support vector machine, so as to complete
the single-task Bayesian compressed sensing algorithm
(SBCS) for solving the process. In paper [21], a Wide-Band
Cooperative Compressive signal detection for Cognitive
Radio Systems Using Distributed Sensing Matrix (WBCCSS)
is proposed. This algorithm introduces the distributed per-
ception matrix method and uses the distributed multi-node
fusion to complete the spectrum perception. In paper [22],
this has been put forward by building a hierarchical Bayesian
model of multitasking, and assuming that the cognitive user
acquisition of compressed sensing data with the same pa-
rameters, by the fusion center data compression perception
of the cognitive users to seek the optimal share of super-
parameter and thus to accomplish the signal reconstruction
process of multitasking compression sensing algorithm
(MTCS).
Figure 5 indicates the four algorithms under the same

SNR performance simulation curve comparison as follows:
when the false alarm probability is 0.1, the detection prob-
abilities of BCS, WBCCSS, MTCS, and paper algorithm
were 0.3328, 0.3815, 0.5246, and 0.7925, respectively, so
the joint spectrum signal detection algorithm compared to
BCS, WBCCSS, MTCS algorithm, and spectrum detection

has better performance, and from the simulation curve, it
can be found using the Dirichlet process that it can be
achieved within each group shared with shearing section
at parameters. The process fully considers the perception
of the temporal correlation of the data compression. The
performance of the algorithm is obviously better than
BCS, WBCCSS, and MTCS.

5 Results and discussion
This paper presents an efficient underwater communica-
tion signal detection method based on compressed sens-
ing technology. In underwater communication cognitive
wireless networks, different cognitive radio users and
authorized users may have different sparse spectrum due
to their different distributed environments in different
spaces and the complexity of underwater channels. In
the algorithm design, each CR node uses compressed
sampling technology to estimate the frequency spectrum
to reduce the rate and overhead of sonar signal sam-
pling. The Bayesian model is used to find the optimal
super-parameter to detect the spectrum information.
The proposed algorithm effectively solves the high com-
putational complexity of sonar signal reconstruction in
compression sensing. The joint cooperative spectrum

Fig. 4 The curve of the relationship between observed values and detection probability. This result in Fig. 4 indicates that the spectrum sensing
performance of the MP algorithm and the OMP algorithm is gradually improved when the number of observation points of the compressed
sensing is increased. This is because that the more sampled values, the more information is obtained. Besides, the MP algorithm and the OMP
algorithm are algorithms for a single task, regardless of the spatial diversity information, and the only information available is from the
compressed sensing observations. Compared with the MP and OMP algorithms, the proposed algorithm has no change in the ROC curve when
the number of observation is greater than 20 and the detection probability approaches 1. Because it makes full use of the compressed sensing
data information collected by each SU and the number of iterations of the algorithm is not related to the number of samples. Even at lower
sample values, it can still obtain batter detection performance and effectively reduce the system overhead of spectrum sensing. From the ROC of
the three algorithms and considering the lower number of observation, it is obvious that the correct detection probability of the paper algorithm
is better than the MP and OMP algorithms, and the spectrum sensing performance is better
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algorithm utilizes the information of non-parametric
grouping mechanism. The multi-layer Bayesian model
introduces the Dirichlet process to realize the automatic
grouping of compressed perceptual data, deduces the
shared hyper-parameter, then selects the best super-
parameter to decide the spectrum through the fusion
center, and finally transfers it to the SU. The algorithm
makes full use of compressed perceptual data collected
by different cognitive radio users in different layers and
performs fusion and collaboration to complete signal
detection and effectively improve the performance of
underwater communication spectrum signal detection.
Effectively reduce the channel overhead in the under-
water communication system; solve the series of prob-
lems such as high complexity, slow convergence speed,
and low reconstruction precision of the compressed
sensing reconstruction algorithm; improve the efficiency;
and increase the throughput of the system, which has a
great significance for achieving high-quality underwater
communication.
From the current research status, there are still the

following problems and challenges in the wide-band
spectrum compressed sensing technology of underwater
communication system: at present, spectrum detection is
carried out by using compressed sensing, and the pro-
cessing method in most literatures is to obtain the com-
pressed sampling first, then reconstruct the sonar signal,
and finally carry out spectrum detection on the recon-
structed signal. Its perceptual performance is easily affected
by the variance uncertainty of noise. The compressed

sensing reconstruction algorithm is a np-hard problem with
high computational complexity and needs more time, espe-
cially for the broadband signal reconstruction process
which takes too long and is not conducive to real-time
application. Therefore, how to effectively reduce the recon-
struction time and the reconstructed signal with a good
mean square error is a big difficult problem in compressed
sensing.
Secondly, as the sonar signal sparsity in the actual

underwater communication network is unknown and
variable, it is difficult to determine the signal sparsity for
some complex sonar signals, or it is not precisely sparse.
In order to ensure the reconstruction accuracy of broad-
band sonar signals, the sampling rate usually meets the
condition of the maximum possible sparsity of the
signals, resulting in the waste of sampling resources.
Moreover, in CR networks, the cooperative compressed
spectrum sensing fusion mechanism is crucial, which
will directly affect the performance of underwater cogni-
tive wireless networks. The corresponding efficient and
low-complexity fusion mechanism still needs to be fur-
ther explored.

Abbreviations
BCS: Bayesian compressed sensing; CR: Cognitive radio; CRN: Cognitive radio
network; DP: Dirichlet process; EM: Expectation maximization; MP: Matching
pursuit; MTCS: Multitasking compression sensing; OMP: Orthogonal matching
pursuit; PU: Perception of the user; RIP: Restricted isometry property; RN: N-
Dimensional Real Vector Space; ROC: Receiver operating characteristic curve;
SBCS: Single-task Bayesian compressed sensing; SNR: Signal-to-noise ratio;
SU: Secondary user; WBCCSS: Wide-Band Cooperative Compressive
Spectrum Signal

Fig. 5 Four algorithms’ performance comparison under the same SNR. Figure 5 indicates the four algorithms under the same SNR performance
simulation curve comparison as follows: when the false alarm probability is 0.1, the detection probabilities of BCS, WBCCSS, MTCS, and paper
algorithm were 0.3328, 0.3815, 0.5246, and 0.7925, so the joint spectrum signal detection algorithm compared to BCS, WBCCSS, MTCS algorithm,
and spectrum detection has better performance, and from the simulation curve, it can be found using the Dirichlet process that this can be
achieved within each group shared with shearing section at parameters. The process fully considers the perception of the temporal correlation of
data compression. The performance of the algorithm is obviously better than BCS, WBCCSS, and MTCS
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